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RANK PENALIZED ESTIMATORS FOR

HIGH-DIMENSIONAL MATRICES

OLGA KLOPP

Abstract. In this paper we consider the trace regression model.

Assume that we observe a small set of entries or linear combina-

tions of entries of an unknown matrix A0 corrupted by noise. We

propose a new rank penalized estimator of A0. For this estimator

we establish general oracle inequality for the prediction error both

in probability and in expectation. We also prove upper bounds for

the rank of our estimator. Then we apply our general results to

the problem of matrix completion when our estimator has a par-

ticularly simple form: it is obtained by hard thresholding of the

singular values of a matrix constructed from the observations.

1. Introduction

In this paper we consider the trace regression problem. Assume that
we observe n independent random pairs (Xi, Yi), i = 1, . . . , n. Here Xi

are random matrices of dimension m1×m2 and known distribution Πi,
Yi are random variables in R which satisfy

(1) E (Yi|Xi) = tr(XT
i A0), i = 1, . . . , n,

where A0 ∈ R
m1×m2 is an unknown matrix, E (Yi|Xi) is the conditional

expectation of Yi given Xi and tr(A) denotes the trace of the matrix A.
We consider the problem of estimating of A0 based on the observations
(Xi, Yi), i = 1, . . . , n. Though the results of this paper are obtained for
general n,m1, m2, our main motivation is the high-dimensional case,
which corresponds to m1m2 ≫ n, with low rank matrices A0.

Setting ξi = Yi − E (Yi|Xi) we can equivalently write our model in
the form

(2) Yi = tr(XT
i A0) + ξi, i = 1, . . . , n.

The noise variables (ξi)i=1,...n are independent and have mean zero.
The problem of estimating low rank matrices recently generated a

considerable number of works. The most popular methods are based
on minimization of the empirical risk penalized by the nuclear norm
with various modifications, see, for example, [1, 2, 3, 4, 6, 7, 9, 15, 18].
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In this paper we propose a new estimator of A0. In our construction
we combine the penalization by the rank with the use of the knowledge

of the distribution Π =
1

n

n
∑

i=1

Πi. An important feature of our estimator

is that in a number of interesting examples we can write it out explicitly.
Penalization by the rank was previously considered in [5, 10] for the

multivariate response regression model. The criterion introduced by
Bunea, She and Wegkamp in [5], the rank selection criterion (RSC),
minimizes the Frobenius norm of the fit plus a regularization term pro-
portional to the rank. The rank of the RSC estimator gives a consistent
estimation of the number of the singular values of the signal XA0 above
a certain noise level. Here X is the matrix of predictors. In [5] the au-
thors also establish oracle inequalities on the mean squared errors of
RSC. The paper [10] is mainly focused on the case of unknown variance
of the noise. The author gives a minimal sublinear penalty for RSC
and provides oracle inequalities on the mean squared risks.

The idea to incorporate the knowledge of the distribution Π in the
construction of the estimator was first introduced in [14] but with a
different penalization term, proportional to the nuclear norm. In [14]
the authors mostly treat the noisy matrix completion and give a sharp
oracle inequality in probability which is optimal up to a logarithmic
factor. They also provide lower bounds.

In the present work we consider a more general model than the model
of [5, 10]. It contains as particular cases a number of interesting prob-
lems such as matrix completion, multi-task learning, linear regression
model, matrix response regression model. The analysis of our model
requires different techniques and uses the matrix version of Bernstein’s
inequality for the estimation of the stochastic term, similarly to [14].
However, we use a different penalization term than in [14] and the main
scheme of our proof is quite different. In particular, we obtain a bound
for the rank of our estimator in a very general setting (Theorem 2, (i))
and estimations for the prediction error in expectation (Theorem 3).
Such bounds are not available for nuclear norm penalization used in
[14]. Note, however, that under very specific assumptions on Xi, [4]
shows that the rank of A0 can be reconstructed exactly, with high prob-
ability, when the dimension of the problem is smaller then the sample
size.

The paper is organized as follows. In Section 2 we define the main ob-
jects of our study, in particular, our estimator. We also show how some
well-known problems (matrix completion, column masks,”complete”
subgaussian design) are related to our model. In Section 3, we show
that the rank of our estimator is bounded from above by the rank of
the unknown matrix A0 with a constant close to 1. In the same sec-
tion we prove general oracle inequalities for the prediction error both
in probability and in expectation. Then, in Section 4 we apply these
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general results to the noisy matrix completion problem. In this case
our estimator has a particularly simple form: it is obtained by hard
thresholding of the singular values of a matrix constructed from the
observations (Xi, Yi), i = 1, . . . , n. Moreover, up to a logarithmic fac-
tor, the rates attained by our estimator are optimal under the Frobenius
risk for a simple class of matrices A(r, a) defined as follows: for any
A0 ∈ A(r, a) the rank of A0 is supposed not to be larger than a given r
and all the entries of A0 are supposed to be bounded in absolute value
by a constant a.

2. Definitions and assumptions

For 0 < q ≤ ∞ the Schatten-q (quasi-)norm of the matrix A is
defined by

‖ A ‖q=
(

min(m1,m2)

Σ
j=1

σj(A)
q

)1/q

for 0 < q <∞ and ‖ A ‖∞= σ1(A),

where (σj(A))j are the singular values of A ordered decreasingly.
For any matrices A,B ∈ R

m1×m2 , we define the scalar product

〈A,B〉 = tr(ATB)

and the bilinear symmetric form

(3) 〈A,B〉L2(Π) =
1

n

n
∑

i=1

E (〈A,Xi〉〈B,Xi〉) , where Π =
1

n

n
∑

i=1

Πi.

We introduce the following assumption on the distribution of the matrix
Xi:

Assumption 1. There exists a constant µ > 0 such that, for all ma-
trices A ∈ R

m1×m2

‖ A ‖2L2(Π)≥ µ−2 ‖ A ‖22
Under Assumption 1 the bilinear form defined by (3) is a scalar

product. This assumption is satisfied, often with equality, in several
interesting examples such as matrix completion, column masks, “com-
plete” subgaussian design.

Example 1. Matrix Completion. Assume that the design ma-
trices Xi are i.i.d uniformly distributed on the set

(4) X =
{

ej(m1)e
T
k (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}

,

where el(m) are the canonical basis vectors in R
m. Then, the problem

of estimating A0 coincides with the problem of matrix completion under
uniform sampling at random (USR). The latter problem was studied
in [11, 16] in the non-noisy case (ξi = 0) and in [18, 9, 14] in the noisy
case. In a slightly different setting the problem of matrix completion
was considered, for example, in [7, 6, 8, 13, 12].
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For such Xi, we have the relation

(5) m1m2 ‖ A ‖2L2(Π)=‖ A ‖22,

for all matrices A ∈ R
m1×m2 .

Example 2. Column masks. Assume that the design matrices
Xi are i.i.d. replications of a random matrix X , which has only one
nonzero column. If the distribution of X is such that all the columns
have the same probability to be non-zero and the non-zero column Xj

is such that E
(

XjX
T
j

)

is the identity matrix, then the Assumption 1
is satisfied with µ =

√
m2.

Example 3. “Complete” subgaussian design. Suppose that
the design matrices Xi are i.i.d. replications of a random matrix X
and the entries of X are either i.i.d. standard Gaussian or Rademacher
random variables. In both cases, Assumption 1 is satisfied with µ = 1.

The general oracle inequalities that we prove in Section 3 can be
applied to these examples. In Section 4 we treat with more details the
matrix completion problem (Example 1).

We define the following estimator of A0:

(6) Â = argmin
A∈Rm1×m2

{

‖ A ‖2L2(Π) −
〈 2

n

n
∑

i=1

YiXi, A
〉

+ λrankA

}

,

where λ > 0 is a regularization parameter and rankA is the rank of the
matrix A.

For matrix regression problem and deterministic Xi, our estimator
coincides with the RSC estimator. Indeed, the matrix regression model
is given by

(7) Ui = ViA0 + Ei i = 1, . . . l,

where Ui are 1×m2 vectors of response variables, Vi are 1×m1 vectors
of predictors, A0 is a unknown m1×m2 matrix of regression coefficients
and Ei are random 1 × m2 vectors of noise with independent entries
and mean zero.

We can equivalently write this model as a trace regression model.
Let Ui = (Uik)k=1,...m2 , Ei = (Eik)k=1,...m2 and Zt

ik = ek(m2) Vi where
ek(m2) are the m2 × 1 vectors of the canonical basis of Rm2 . Then we
can write (7) as

Uik = tr(Zt
ikA0) + Eik i = 1, . . . l and k = 1, . . .m2.

Set V = (V t
1 , . . . V

t
l )

t
and U = (U t

1, . . . U
t
l )

t
, then

‖ A ‖2L2(Π)=
1

l m2
‖ V A ‖22
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and

Â = argmin
A∈Rm1×m2

{

1

l m2
‖ V A ‖22 −

2

l m2

〈

V tU,A
〉

+ λrankA

}

= argmin
A∈Rm1×m2

{

‖ U − V A ‖22 +lm2λrankA
}

.

This estimator, called the RSC estimator, can be computed efficiently
using the procedure described in [5].

Under Assumption 1, the functional

A 7→ ψ(A) =‖ A ‖2L2(Π) −
〈 2

n

n
∑

i=1

YiXi, A
〉

+ λrankA

tends to +∞ when ‖ A ‖L2(Π)→ +∞. So there exists a constant c > 0
such that min

A∈Rm1×m2

ψ(A) = min
‖A‖L2(Π)≤c

ψ(A). As the mapping A 7→ rankA

is lower semi-continuous, the functional ψ(A) is lower semi-continuous;
thus ψ attains a minimum on the compact ball {A :‖ A ‖L2(Π)≤ c} and
the minimum is a global minimum of ψ on R

m1×m2 .
Suppose that Assumption 1 is satisfied with equality, i.e.,

‖ A ‖2L2(Π)= µ−2 ‖ A ‖22 .
Then our estimator has a particularly simple form:

(8) Â = argmin
A∈Rm1×m2

{

‖ A−X ‖22 +λµ2rankA
}

,

where

(9) X =
µ2

n

n
∑

i=1

YiXi.

The optimization problem (6) may equivalently be written as

Â = argmin
k

[

argmin
A∈Rm1×m2 , rankA=k

‖ A−X ‖22 +λµ2k

]

.

Here, the inner minimization problem is to compute the restricted rank
estimators Âk that minimizes the norm ‖ A−X ‖22 over all matrices of
rank k. Write the singular value decomposition (SVD) of X:

(10) X =
rankX

Σ
j=1

σj(X)uj(X)vj(X)T ,

where

• σj(X) are the singular values of X indexed in the decreasing
order,

• uj(X) (resp. vj(X)) are the left (resp. right) singular vectors
of X.
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Following [17], one can write:

(11) Âk =
k

Σ
j=1
σj(X)uj(X)vj(X)T .

Using this, we easily see that Â has the form

(12) Â = Σ
j:σj(X)≥

√
λµ
σj(X)uj(X)vj(X)T .

Thus, the computation of Â reduces to hard thresholding of singular
values in the SVD of X.

Remark. We can generalize the estimator given by (6), taking the
minimum over a close set of the matrices, instead of the set {A ∈
R

m1×m2}, such as a set of all diagonal matrices, for example.

3. General oracle inequalities

In the following theorem we bound the rank of our estimator in a
very general setting. To the best of our knowledge, such estimates were
not known. We also prove general oracle inequalities for the prediction
errors in probability analogous to those obtained in [14, Theorem 2] for
the nuclear norm penalization.

Given n observations Yi ∈ R and Xi, we define the random matrix

M =
1

n

n
∑

i=1

(YiXi − E(YiXi)).

The value ‖M ‖∞ determines the ”the noise level” of our problem.

Theorem 2. Let Assumption 1 be satisfied and ̺ ≥ 1. If
√
λ ≥ 2̺µ ‖

M ‖∞, then

(i)

rankÂ ≤
(

1 +
2

4̺2 − 1

)

rankA0,

(ii)

‖ Â− A0 ‖L2(Π) ≤ inf
A∈Rm1×m2

{

‖ A− A0 ‖L2(Π)

+ 2

√

λmax

(

1

̺2
rankA0, rankA

)

}

,

(iii)

‖ Â− A0 ‖2L2(Π) ≤ inf
A∈Rm1×m2

{

(

1 +
2

2̺2 − 1

)

‖ A− A0 ‖2L2(Π)

+ 2λ

(

1 +
1

2̺2 − 1

)

rankA
}

.
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Proof. It follows from the definition of the estimator Â that, for all
A ∈ R

m1×m2 , one has

‖ Â ‖2L2(Π) −
〈

2

n

n
∑

i=1

YiXi, Â

〉

+ λrankÂ ≤

‖ A ‖2L2(Π) −
〈

2

n

n
∑

i=1

YiXi, A

〉

+ λrankA.

Note that

1

n

n
∑

i=1

E(YiXi) =
1

n

n
∑

i=1

E(〈A0, Xi〉Xi)

and

1

n

n
∑

i=1

〈E(YiXi), A〉 = 〈A0, A〉L2(Π).

Therefore we obtain

‖ Â−A0 ‖2L2(Π) ≤‖ A−A0 ‖2L2(Π) +2〈M, Â− A〉+ λ(rankA− rankÂ).

(13)

Due to the trace duality, we have

‖ Â−A0 ‖2L2(Π) ≤‖ A−A0 ‖2L2(Π) +2 ‖M ‖∞‖ Â− A ‖1 +λ(rankA− rankÂ)

≤‖ A−A0 ‖2L2(Π) +2 ‖M ‖∞‖ Â− A ‖2
√

rank(Â−A)+

+ λ(rankA− rankÂ).

Under Assumption 1, this yields

‖ Â−A0 ‖2L2(Π) ≤‖ A−A0 ‖2L2(Π) +

+ 2µ ‖M ‖∞‖ Â− A ‖L2(Π)

√

rank(Â− A) + λ(rankA− rankÂ)

≤‖ A−A0 ‖2L2(Π) +λ(rankA− rankÂ)

+ 2µ ‖M ‖∞
(

‖ Â−A0 ‖L2(Π) + ‖ A−A0 ‖L2(Π)

)

√

rank(Â− A)

(14)

which implies

(

‖ Â−A0 ‖L2(Π) −µ ‖M ‖∞
√

rank(Â− A)
)2

≤

≤
(

‖ A−A0 ‖L2(Π) +µ ‖M ‖∞
√

rank(Â− A)
)2

+ λ(rankA− rankÂ).

(15)
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To prove (i), we take A = A0 in (15) and we obtain:

λ(rankÂ− rankA0) ≤
(

µ ‖M ‖∞
√

rank(Â− A0)
)2

≤ λ

4̺2
(rankÂ+ rankA0).

(16)

Thus,

(17) rankÂ ≤
(

1 +
2

4̺2 − 1

)

rankA0.

To prove (ii), we first consider the case rankA ≤ rankÂ. Then (15)
implies

0 ≤λ(rankÂ− rankA) ≤
(

‖ A− A0 ‖L2(Π) + ‖ Â− A0 ‖L2(Π)

)

×
(

‖ A−A0 ‖L2(Π) − ‖ Â−A0 ‖L2(Π) +2µ ‖M ‖∞
√

rank(Â−A)
)

.

Therefore, for rankA ≤ rankÂ, we have

‖ Â−A0 ‖L2(Π) ≤‖ A−A0 ‖L2(Π) +2µ ‖M ‖∞
√

rank(Â− A)

≤‖ A−A0 ‖L2(Π) +2µ ‖M ‖∞
√

rankÂ+ rankA

≤‖ A−A0 ‖L2(Π) +

√

2λ

̺2
rankÂ.

(18)

Using (i) we obtain

‖ Â−A0 ‖L2(Π)≤‖ A− A0 ‖L2(Π) +2

√

λ

̺2
rankA0.(19)

Consider now the case, rankA ≥ rankÂ. Using that
√
a2 + b2 ≤ a+b

for a ≥ 0 and b ≥ 0, we get from (15) that

‖ Â−A0 ‖L2(Π) ≤‖ A−A0 ‖L2(Π) +2µ ‖M ‖∞
√

rank(Â− A)+

+

√

λ(rankA− rankÂ)

≤‖ A−A0 ‖L2(Π) +
√
λ

(√

rankÂ + rankA+

√

rankA− rankÂ

)

.

(20)

Finally, the elementary inequality
√
a+ c+

√
a− c ≤ 2

√
a yields

(21) ‖ Â−A0 ‖L2(Π)≤‖ A− A0 ‖L2(Π) +2
√
λrankA.

Using (19) and (21), we obtain (ii).
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To prove (iii), we use (14) to obtain

‖ Â− A0 ‖2L2(Π) ≤ ‖ A−A0 ‖2L2(Π) +λ(rankA− rankÂ) +

+ 2

√

λ
2

̺
√
2
‖ Â− A0 ‖L2(Π)

√

rankÂ+ rankA

+ 2

√

λ
2

̺
√
2
‖ A− A0 ‖L2(Π)

√

rankÂ+ rankA.

From which we get
(

1− 1

2̺2

)

‖ Â− A0 ‖2L2(Π) ≤
(

1 +
1

2̺2

)

‖ A−A0 ‖2L2(Π)

+ λ(rankA+ rankÂ) + λ(rankA− rankÂ)

≤
(

1 +
1

2̺2

)

‖ A−A0 ‖2L2(Π) +2λ rankA

and (iii) follows. �

In the next theorem we obtain bounds for the prediction error in
expectation. Set m = m1+m2, m1∧m2 = min(m1, m2) and m1∨m2 =
max(m1, m2). Suppose that E (‖M ‖2∞) < ∞ and let Br be the set of
non-negative random variables W bounded by r. We set

S = sup
Bm1∧m2

E (‖M ‖2∞ W )

max{E(W ), 1} ≤ (m1 ∧m2)E
(

‖M ‖2∞
)

<∞.

Theorem 3. Let Assumption 1 be satisfied. Consider ̺ ≥ 1, C2 ≥ S
and a regularization parameter λ satisfying

√
λ ≥ 2̺µC. Then

(a)

E(rankÂ) ≤ max

{(

1 +
2

4̺2 − 1

)

rankA0,
1

4̺2

}

,

(b)

E

(

‖ Â−A0 ‖L2(Π)

)

≤ inf
A∈Rm1×m2

{

‖ A− A0 ‖L2(Π)

+
5

2

√

λmax

(

rankA,
rankA0

̺2
,
1

4̺2

)

}

,

and
(c)

E

(

‖ Â− A0 ‖2L2(Π)

)

≤ inf
A∈Rm1×m2

{(

1 +
2

2̺2 − 1

)

‖ A− A0 ‖2L2(Π)

+2λ

(

1 +
1

2̺2 − 1

)

max

(

rankA,
1

2

)}

.
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Proof. To prove (a) we take the expectation of (16) to obtain

λ(E(rankÂ)− rankA0) ≤ E

(

µ2 ‖M ‖2∞
(

rankÂ+ rankA0

))

.(22)

If A0 = 0, as
√
λ ≥ 2̺µC we obtain

(23) λE(rankÂ) ≤ µ2C2max{E(rankÂ), 1} ≤ λ

4̺2
max{E(rankÂ), 1}

which implies E(rankÂ) ≤ 1

4̺2
.

If A0 6= 0, rankÂ+ rankA0 ≥ 1 and we get

λ(E(rankÂ)− rankA0) ≤ µ2C2
(

E

(

rankÂ
)

+ rankA0

)

≤ λ

4 ̺2

(

E

(

rankÂ
)

+ rankA0

)

which proves part (a) of Theorem 3.
To prove (b), (18) and (20) yield

‖ Â−A0 ‖L2(Π) ≤‖ A−A0 ‖L2(Π) +2µ ‖M ‖∞
√

rankÂ+ rankA

+ IrankÂ≤rankA

√

λ(rankA− rankÂ)

where IrankÂ≤rankA is the indicator function of the event {rankÂ ≤
rankA}. Taking the expectation we obtain

E ‖ Â−A0 ‖L2(Π) ≤‖ A−A0 ‖L2(Π) +2µE

(

‖M ‖∞
√

rankÂ+ rankA

)

+
√
λE

(

IrankÂ≤rankA

√

rankA− rankÂ

)

.

Note that Cauchy-Schwarz inequality and C2 ≥ S imply

E (‖M ‖∞ W ) ≤ Cmax{E(W ), 1}.

Taking W =
√

rankÂ+ rankA we find

E ‖ Â−A0 ‖L2(Π) ≤‖ A−A0 ‖L2(Π) +2µCmax

{

E

√

rankÂ + rankA, 1

}

+
√
λE

(

IrankÂ≤rankA

√

rankA− rankÂ

)

.

(24)

If E
√

rankÂ+ rankA < 1, which implies A = 0, as
√
λ ≥ 2̺µC we

obtain

E ‖ Â− A0 ‖L2(Π) ≤‖ A− A0 ‖L2(Π) +

√
λ

̺
.

This prove (b) in the case E

√

rankÂ+ rankA < 1.
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If E
√

rankÂ + rankA ≥ 1 from (24) we get

E ‖ Â−A0 ‖L2(Π) ≤‖ A−A0 ‖L2(Π) +
√
λ

{

1

̺
E

(

IrankÂ≤rankA

√

rankÂ + rankA

)

+E

(

IrankÂ≤rankA

√

rankA− rankÂ

)

+
1

̺
E

(

IrankÂ>rankA

√

rankÂ+ rankA

)}

.

Using that ̺ ≥ 1 and the elementary inequality
√
a + c+

√
a− c ≤ 2

√
a

we find

E ‖ Â−A0 ‖L2(Π) ≤‖ A−A0 ‖L2(Π) +
√
λ
(

2
√
rankA P(rankÂ ≤ rankA)

+
1

̺
E
(

IrankÂ>rankA

√

2rankÂ
)

)

.

The Cauchy-Schwarz inequality and (a) imply

E ‖ Â−A0 ‖L2(Π) ≤‖ A−A0 ‖L2(Π) +
√
λ
(

2
√
rankA P(rankÂ ≤ rankA)

+
2

̺

√

max

{

rankA0,
1

4̺2

}

P
1/2(rankÂ > rankA)

)

.

Using x +
√
1− x ≤ 5/4 when 0 ≤ x ≤ 1 for x = P(rankÂ ≤ rankA)

we get (b).
We now prove part (c). From (14) we compute

‖ Â−A0 ‖2L2(Π) ≤‖ A−A0 ‖2L2(Π) +λ(rankA− rankÂ)

+ 2

(√
2µ̺ ‖M ‖∞

√

rankÂ + rankA)

)

×

×
(

1√
2̺

‖ Â−A0 ‖L2(Π) +
1√
2̺

‖ A−A0 ‖L2(Π)

)

≤
(

1 +
1

2̺2

)

‖ A− A0 ‖2L2(Π) +
1

2̺2
‖ Â−A0 ‖2L2(Π)

+ 4̺2µ2 ‖M ‖2∞ (rankÂ+ rankA) + λ(rankA− rankÂ)

which implies

(

1− 1

2̺2

)

‖ Â− A0 ‖2L2(Π)≤
(

1 +
1

2̺2

)

‖ A− A0 ‖2L2(Π)

+ 4 ̺2µ2 ‖M ‖2∞ (rankÂ+ rankA) + λ(rankA− rankÂ).
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Taking the expectation we obtain

E ‖ Â− A0 ‖2L2(Π) ≤
(

1− 1

2̺2

)−1
{

(

1 +
1

2̺2

)

‖ A− A0 ‖2L2(Π)

+ 4 ̺2µ2
E

(

‖M ‖2∞ (rankÂ+ rankA)
)

+ λE(rankA− rankÂ)
}

.

As C2 ≥ S we compute

E ‖ Â−A0 ‖2L2(Π) ≤
(

1− 1

2̺2

)−1
{

(

1 +
1

2̺2

)

‖ A− A0 ‖2L2(Π)

+ 4̺2µ2C2max
(

E(rankÂ) + rankA, 1
)

+ λ(rankA− E(rankÂ))
}

.

(25)

The assumption on λ and (25) imply (c). This completes the proof of
Theorem 3. �

4. Matrix Completion

In this section we present some consequences of the general oracles
inequalities of Theorems 2 and 3 for the model of USR matrix comple-
tion. Assume that the design matricesXi are i.i.d uniformly distributed
on the set X defined in (4). This implies that

(26) m1m2 ‖ A ‖2L2(Π)=‖ A ‖22,

for all matrices A ∈ R
m1×m2 . Then, we can write Â explicitly

(27) Â = Σ
j:σj(X)≥

√
λm1m2

σj(X)uj(X)vj(X)T .

Set r̂ = rankÂ. In the case of matrix completion, we can improve
point (i) of Theorem 2 and give an estimation on the difference of

the first r̂ singular values of Â and A0. We also get bounds on the
prediction error measured in norms different from the Frobenius norm.

Theorem 4. Let λ satisfy the inequality
√
λ ≥ 2µ ‖ M ‖∞ (as in

Theorem 2). Then

(i) r̂ ≤ rank(A0);

(ii) | σj(Â)− σj(A0) |≤
√
λm1m2

2
for j = 1, . . . , r̂;

(iii) σ1(Â−A0) ≤
3

2

√
λm1m2;

(iv) for 2 ≤ q ≤ ∞, one has
∥

∥

∥
Â−A0

∥

∥

∥

q
≤ 3

2
(4/3)2/q

√

m1m2λ(rankA0)
1/q,

where we set x1/q = 1 for x > 0, q = ∞.
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Proof. The proof of (i) and (ii) is obtained by adapting the proof of
[14, Theorem 8] to hard thresholding estimators.

We now prove (iii). Note that X − A0 = m1m2M . Let B = X− Â,
by (27) we have that σ1(B) ≤

√
λm1m2. Then

σ1(Â− A0) = σ1(X− A0 −B) = σ1(m1m2M −B)

≤ m1m2 ‖M‖∞ +
√

λm1m2 ≤
3

2

√

λm1m2

(28)

and we get (iii).
To prove (iv) we use the following interpolation inequality (see [18,

Lemma 11]): for 0 < p < q < r ≤ ∞ let θ ∈ [0, 1] be such that
θ

p
+

1− θ

r
=

1

q
then for all A ∈ R

m1×m2we have

(29) ‖A‖q ≤ ‖A‖θp ‖A‖
1−θ
r .

For q ∈ (2,∞) take p = 2 and r = ∞. From Theorem 2 (ii) we get
that

(30)
∥

∥

∥
Â−A0

∥

∥

∥

2
≤ 2

√

m1m2λrankA0.

Now, plugging (iii) of Theorem 4 and (30) into (29), we obtain
(31)
∥

∥

∥
Â− A0

∥

∥

∥

q
≤

∥

∥

∥
Â− A0

∥

∥

∥

2/q

2

∥

∥

∥
Â−A0

∥

∥

∥

1−2/q

∞
≤ 3

2
(4/3)2/q

√

m1m2λ(rankA0)
1/q

and (iv) follows. This completes the proof of Theorem 4. �

In view of Theorems 2 and 3, to specify the value of regularization
parameter λ, we need to estimate ‖M‖∞ with high probability. We
will use the bounds obtained in [14] in the following two settings of
particular interest:

(A) Statistical learning setting. There exists a constant η such that
max

i=1,...,n
| Yi |≤ η. Then, we set

(32) ρ(m1, m2, n, t) = 4ηmax

{
√

t+ log(m)

(m1 ∧m2)n
,
2(t+ log(m))

n

}

,

n∗ = 4(m1 ∧m2) logm, c∗ = 4η.

(B) Sub-exponential noise. We suppose that the pairs (Xi, Yi)i are
iid and that there exist constants ω, c1 > 0, α ≥ 1 and c2 such
that

max
i=1,...,n

E exp

( | ξi |α
ωα

)

< c2, Eξ2i ≥ c1ω
2, ∀ 1 ≤ i ≤ n.
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Let A0 = ((a0ij)) and max
i,j

| a0ij |≤ a. Then, we set

ρ(m1, m2, n, t) = C̃(ω ∨ a)max

{
√

t + log(m)

(m1 ∧m2)n
,

(t + log(m)) log1/α(m1 ∧m2)

n

}

,

(33)

n∗ = (m1 ∧m2) log
1+2/α(m), c∗ = C̃(ω ∨ a).

where C̃ > 0 is a large enough constant that depends only on
α, c1, c2.

In both case we can estimate ‖M ‖∞ with high probability:

Lemma 5 ([14], Lemmas 1, 2 and 3). For all t > 0, with probability at
least 1− e−t in the case of statistical learning setting (resp. 1− 3e−t in
the case of sub-exponential noise), one has

(34) ‖M ‖∞≤ ρ(m1, m2, n, t).

As a corollary of Lemma 5 we obtain the following bound for

S = sup
Bm1∧m2

E (‖M ‖2∞ W )

max{E(W ), 1} .

Lemma 6. Let one of the set of conditions (A) or (B) be satisfied.
Assume n > n∗, logm ≥ 5 and W is a non-negative random variable
such that W ≤ m1 ∧m2, then

E
(

‖M ‖2∞ W
)

≤ e2 logm

c∗nm1m2
max{E(W ), 1}.(35)

Proof. We will proof (35) in the case of statistical learning setting. The
proof in the case of sub-exponential noise is completely analogous. Set

t∗ =
n

4(m1 ∧m2)
− logm.

Note that Lemma 5 implies that
(36)

P (‖M ‖∞> t) ≤ m exp{−t2 n(m1 ∧m2)(c
∗)−2} for t ≤ t∗

and

(37) P (‖M ‖∞> t) ≤ 3
√
m exp{−t n/(2c∗)} for t ≥ t∗.

We set ν1 = n(m1 ∧m2)(c
∗)−2, ν2 = n(2c∗)−1 and q =

log(m)

log(m)− 1
.

By Hölder’s inequality we get

E
(

‖M ‖2∞ W
)

≤
(

E ‖M ‖2 logm∞
)1/ logm

(EW q)1/q .(38)
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We first estimate
(

E ‖M ‖2 logm∞
)1/ logm

. Inequalities (36) and (37) im-
ply that

(

E ‖M ‖2 logm∞
)1/ logm

=





+∞
∫

0

P
(

‖M ‖∞> t1/(2 logm)
)

dt





1/ logm

≤






m

(t∗)2k
∫

0

exp{−t1/ logmν1}dt

+ 3
√
m

+∞
∫

(t∗)2k

exp{−t1/(2 logm)ν2}dt







1/ logm

≤ e

(

log(m)ν− logm
1 Γ(logm) +

6√
m

log(m) ν−2 logm
2 Γ(2 logm)

)1/ logm

.

(39)

The Gamma-function satisfies the following bound:

(40) for x ≥ 2, Γ(x) ≤
(x

2

)x−1

.

We give a proof of this inequality in the Appendix. Plugging it into
(39) we compute

(

E ‖M ‖2 logm∞
)1/ logm ≤ e

(

(log(m))logmν− logm
1 21−logm

+
6√
m
(log(m))2 logmν−2 logm

2

)1/ logm

.

Observe that n > n∗ implies ν1 logm ≤ ν22 and we obtain

(

E ‖M ‖2 logm∞
)1/ logm ≤ e log(m)ν−1

1

(

21−logm +
6√
m

)1/ logm

.(41)

If E(W q) < 1 we get (35) directly from (38). If E(W q) ≥ 1, the bound
W ≤ m1 ∧m2 implies that

(W )1/(log(m)−1) ≤ exp

{

log(m1 ∧m2)

log(m)− 1

}

≤ exp

{

log(m)− log 2

log(m)− 1

}

≤ e exp

{

1− log 2

log(m)− 1

}

.

(42)

and we compute
(

E
(

W 1+1/(log(m)−1)
))1−1/ logm ≤ E

(

W 1+1/(log(m)−1)
)

≤ e exp

{

1− log 2

log(m)− 1

}

E(W ).
(43)
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The function
(

21−logm +
6√
m

)

exp

{

(1− log 2) logm

log(m)− 1

}

=
e

2

(

21−logm +
6√
m

)

exp

{

1− log 2

log(m)− 1

}

is a decreasing function of logm which is smaller then 1 for logm ≥ 5.
This implies

(44)

(

21−logm +
6√
m

)1/ logm

exp

{

1− log 2

log(m)− 1

}

< 1

Plugging (43) and (41) into (38) and using (44) we get (35). This
completes the proof of Lemma 6. �

The natural choice of t in Lemma 5 is of the order logm (see the

discussion in [14]). Then, in Theorems 2 and 3 we can take
√
λ =

2̺c

√

(m1 ∨m2) log(m)

n
, where the constant c is large enough, to obtain

the following corollary.

Corollary 7. Let one of the set of conditions (A) or (B) be satisfied.

Assume n > n∗, logm ≥ 5, ̺ ≥ 1 and
√
λ = 2̺c

√

(m1 ∨m2) log(m)

n
.

Then,

(i) with probability at least 1− 3/(m1 +m2), one has

‖ Â−A0 ‖2√
m1m2

≤ inf
A∈Rm1×m2

{

‖ A− A0 ‖2√
m1m2

+ 2

√

λmax

(

rankA0

̺2
, rankA

)

}

and, in particular,

‖ Â−A0 ‖2√
m1m2

≤ 4c

√

(m1 ∨m2) log(m)rankA0

n
,

(ii) with probability at least 1− 3/(m1 +m2), one has

‖ Â− A0 ‖22
m1m2

≤ inf
A∈Rm1×m2

{(

2̺2 + 1

2̺2 − 1

) ‖ A−A0 ‖22
m1m2

+
4̺2λ

2̺2 − 1
rankA

}

,

(iii)

E ‖ Â− A0 ‖2√
m1m2

≤ inf
A∈Rm1×m2

{‖ A− A0 ‖2√
m1m2

+
5

2

√

λmax

(

rankA,
rankA0

̺2
,
1

4̺2

)

}
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and, in particular,

E ‖ Â−A0 ‖2√
m1m2

≤ 5c

√

(m1 ∨m2) log(m)

n
max

(

rankA0,
1

4

)

,

(iv)

E ‖ Â− A0 ‖22
m1m2

≤ inf
A∈Rm1×m2

{

(

2̺2 + 1

2̺2 − 1

) ‖ A− A0 ‖22
m1m2

+

(

4̺2λ

2̺2 − 1

)

max

(

rankA,
1

2

)

}

,

and, in particular,

E ‖ Â−A0 ‖22
m1m2

≤ 16 c2(m1 ∨m2) log(m)

n
max

(

rankA0,
1

2

)

.

(v) with probability at least 1− 3/(m1 +m2), one has

‖ Â− A0 ‖22
m1m2

≤
(

2̺2 + 1

2̺2 − 1

)

inf
0<q≤2

λ1−q/2 ‖ A0 ‖qq
(m1m2)q/2

,

Proof. (i) - (iv) are straightforward in view of Theorems 2 and 3. The
proof of (v) follows from (i) using the same argument as in [14] Corol-
lary 2. �

This corollary guarantees that the normalized Frobenius error
‖ Â− A0 ‖2√

m1m2

of the estimator Â is small whenever n > C(m1 ∨ m2) log(m)rankA0

with a constant C large enough. This quantifies the sample size n
necessary for successful matrix completion from noisy data.

Comparing Corollary 7 with Theorem 6 and Theorem 7 of [14] we
see that, in the case of Gaussian errors and for the statistical learning
setting, the rate of convergence of our estimator is optimal, for the class
of matrices A(r, a) defined as follows: for any A0 ∈ A(r, a) the rank of
A0 is supposed not to be larger than a given r and all the entries of A0

are supposed to be bounded in absolute value by a constant a.

5. Appendix

For completeness, we give here the proof of (40).

Proposition 8.

Γ(x) ≤
(x

2

)x−1

for x ≥ 2

Proof. We set Γ̃(x) = Γ(x)

(

2

x

)x−1

. Using functional equation for Γ

we note that Γ̃(x) = Γ̃(x+ 1)2−1

(

1 +
1

x

)x

. Applying this equality n
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times we get

(45) Γ̃(x) = Γ̃(x+ n) exp

{

n−1

Σ
j=0

(x+ j) log

(

x+ j + 1

x+ j

)

− n log 2

}

.

By Stirling’s formula, we have that

Γ̃(x+ n) =

√

π

2

(

2

e

)x+n√
x+ n

(

1 +O

(

1

x+ n

))

.

Plugging this into (45) we obtain

log Γ̃(x) = lim
n→∞

[

n−1

Σ
j=0

(

(x+ j) log

(

x+ j + 1

x+ j

))

− n

−n log 2 + 1

2
log(x+ n)

]

+ x(log 2− 1) +
1

2
log(π/2).

Note that

n−1

Σ
j=0

(

(x+ j) log

(

x+ j + 1

x+ j

))

− n =
n−1

Σ
j=0





1
∫

0

x+ j

x+ j + u
du− 1





= −
n−1

Σ
j=0

1
∫

0

u

x+ j + u
du.

Defining

F (x) = lim
n→∞



−
n−1

Σ
j=0

1
∫

0

u

x+ j + u
du+

1

2
log(x+ n)− n log 2





we have

(46) log Γ̃(x) = F (x) + x(log 2− 1) +
1

2
log

(π

2

)

.

Observe that F is infinitely differentiable on [1,+∞). Moreover the
series defining F can be differentiated k times to obtain F (k). Thus

F ′(x) = lim
n→∞





n−1

Σ
j=0

1
∫

0

u

(x+ j + u)2
du+

1

2(x+ n)





= lim
n→∞

n−1

Σ
j=0

1
∫

0

u

(x+ j + u)2
du

(47)

and

(48) F ′′(x) = − lim
n→∞

n−1

Σ
j=0

1
∫

0

2u

(x+ j + u)3
du < 0.
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The relation (46) implies that (log Γ̃)′(2) = F ′(2) + log 2 − 1. Using
(47) for x = 2 we get

(log Γ̃)′(2) = lim
n→∞

(

log(n+ 2)− log 2−
n−1

Σ
j=0

1

j + 3

)

+ log 2− 1

= lim
n→∞

(

log n−
n

Σ
j=1

1

j

)

+
1

2
= −γ +

1

2
< 0

where γ is the Euler’s constant. Together with log Γ̃(2) = 0 and

(log Γ̃)′′(2) = F ′′(2) < 0 this implies that

log Γ̃(x) < 0

for any x ≥ 2. This completes the proof of Proposition 8. �
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