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[1] Mantle convection in the Earth and Mars are dominated by large-scale flow, and this
can be due at least in part to the effect of thermally insulating continent-like
heterogeneities. Indeed, the presence of a finitely conducting lid on top of a convective
isoviscous fluid at infinite Prandtl number induces the formation of a zone of hot
upwelling centered beneath the lid and a large horizontal cellular circulation on each side
of the lid. In a previous paper, this lateral cellular circulation was limited in size by the
dimensions of the model. We now use very large aspect ratio models in order for this
circulation to be unhampered. The large-scale circulation consists of the constructive
superposition of hot and cold plumes attracted to and expelled from, respectively, the
conductive lid. The width of the cellular circulation increases with the Rayleigh number of
the fluid, and we propose a scaling law to explain this expansion. Scaling laws for the
velocity of the plumes and heat transfer by this large-scale circulation are also developed.
Although the model used is much simpler than actual planetary mantles, the driving
mechanism for the large-scale circulation must operate in a similar fashion. Important
implications in terms of heat transfer can therefore be predicted.

Citation: Grigné, C., S. Labrosse, and P. J. Tackley (2007), Convection under a lid of finite conductivity in wide aspect ratio models:

Effect of continents on the wavelength of mantle flow, J. Geophys. Res., 112, B08403, doi:10.1029/2006JB004297.

1. Introduction

[2] Convection in the mantle of the Earth is dominated by
a large-scale circulation, as evidenced by the sizes of plates
and the power in the degree 2 of the spherical harmonic
expansions of the gravity field and tomographic models
[Hager et al., 1985; Su and Dziewonski, 1991; Woodward
and Masters, 1991; Zhang and Tanimoto, 1991;Montagner,
1994]. This observation is at odds with the dynamics of
standard Rayleigh Bénard convection in which the typical
horizontal wavelength of circulation is about twice the
depth of the convective layer [e.g., Koschmieder, 1993],
that is convective cells of aspect ratio 1. In the physics
literature, a transition to large-scale flow at high Rayleigh
number has been observed [Krishnamurti and Howard,
1981] but this has been attributed to the Reynolds stress
due to plumes, which is nonexistent at infinite Prandtl
number, the regime that is relevant to planetary mantles.
Other solutions have been proposed to generate this large-
scale flow, like depth-dependent physical properties [e.g.,
Hansen et al., 1993; Tackley, 1996; Dubuffet et al., 1999;
Busse et al., 2006] and the effects of continents [e.g.,
Gurnis, 1988; Zhong and Gurnis, 1993; Yoshida et al.,

1999; Honda et al., 2000; Phillips and Bunge, 2005]. This
last effect is the one investigated in the present paper.
[3] A fixed lid of finite thermal conductivity set on top of

an isoviscous fluid of infinite Prandtl number induces the
formation of a zone of hot upwelling centered beneath this
lid, which feeds a horizontal cellular circulation on each
side of the lid [e.g., Guillou and Jaupart, 1995; Lenardic
and Moresi, 2001; Grigné et al., 2007]. The zone of hot
upwelling can consist of either one fixed plume, for low
Rayleigh numbers, or of a set of small plumes, at high
Rayleigh number. At high Rayleigh number the convection
is time-dependent and hot plumes, forming at the bottom
boundary layer of the model away from the lid, are attracted
toward the center of the lid, while cold plumes are expelled
from the lid. A time averaging method is used to study the
lateral extent of the circulation induced by the lid, and we
observe that this circulation is wider at higher Rayleigh
numbers.
[4] The effect of the horizontal scale of flow on heat

transfer has been the subject of several studies [e.g., Olson
and Corcos, 1980; Hansen and Ebel, 1984; Turcotte and
Schubert, 1982, 2002; Grigné et al., 2005] and it was
generally found that the heat flow dependence on the
wavelength is maximum for cells that are approximately
square. Consequently, continents would affect the thermal
evolution of the Earth not only by reducing the effective
surface of cooling [Grigné and Labrosse, 2001], but also by
changing the wavelength of mantle convection. In addition
to quantifying the effect of a conductive lid on the wave-
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length of convection, we study the implications it has in
terms of heat transfer.
[5] The pattern of convection obtained for two-dimen-

sional experiments carried out in wide aspect ratio boxes is
presented in section 2 and is compared to what is obtained
when the model has an aspect ratio equal to or smaller than 4.
In section 3, a scaling law is proposed to explain why the
size of the cellular circulation generated by the lid increases
with the Rayleigh number. In section 4 we present a scaling
law for the heat transfer in wide aspect ratio boxes. The
implications of the observed thermal features in our experi-
ments for the Earth’s mantle are discussed in section 5.

2. Model and Phenomenology

2.1. Model: Boundary Conditions

[6] The experiments we carry out in the present paper are
similar to the ones presented in Grigné et al. [2007]: we use
two-dimensional Cartesian models and solve the equations
of convection for an isoviscous fluid at infinite Prandtl
number, using the code Stag written by P. Tackley [e.g.,
Tackley, 1993]. We use a regular grid with square cells, with
64 cells in the vertical direction at Rayleigh numbers less
than or equal to 106, and 128 cells for larger Rayleigh
numbers. Numerical experiments are continued until a
statistical stationary state is reached, that is to say until
the time evolution of temperature and heat flux in the model
involves only fluctuations around a mean value. All the
examples of temperature and velocity fields presented

hereafter are obtained in this statistical stationary state.
We explicitly choose to use free-slip boundary conditions
at the bottom and at the top of the fluid, with no mechanical
coupling between the lid and the fluid, in order to study the
thermal effect of the lid on the fluid in an isolated way.
Periodic boundary conditions are used on the vertical walls
of the model.
[7] The fluid is heated from below, and a condition of

fixed temperature is imposed at the bottom of the model. At
the surface, thermal conditions of mixed-type [Sparrow et
al., 1964; Grigné et al., 2007] are imposed: a finitely
conducting lid is put on top of the model, partially covering
its surface. A fixed zero temperature is imposed at the
surface of the fluid outside of the lid. At the interface
between the lid and the fluid, continuity of temperature and
heat flux is imposed. A zero temperature is then applied at
the surface of the lid and on its vertical boundaries.
[8] The thermal condition at the surface of the fluid

located under the lid is of mixed type. It can be described
by a dimensionless number, called Biot number B [Sparrow
et al., 1964]:

B ¼ kc

k

d

dc
; ð1Þ

where kc and k are the thermal conductivities of the lid and
of the fluid, respectively, and dc and d are their respective
thicknesses. This number describes the insulating effect of
the lid [see Sparrow et al., 1964; Guillou and Jaupart,
1995; Grigné et al., 2007]: If the lid is very thick (dc ! 1)
or with a low conductivity (kc ! 0), then the lid is very
insulating (B ! 0), and the boundary condition at its base
tends toward one of fixed zero heat flux. On the other hand,
a thin (dc ! 0) or very conductive (kc ! 1) lid implies a
thermal boundary condition close to one of fixed tempera-
ture (B ! 1).
[9] We use the following parameters to render the system

of equations nondimensional: The characteristic length is
the depth of the mantle d, the characteristic temperature is
the superadiabatic temperature jump DT across the mantle,
and the characteristic time and velocity are [t] = d2/k and
[u] = k/d, respectively, where k is the thermal diffusivity
of the mantle. The Rayleigh number is

Ra ¼ ragDTd3

km
; ð2Þ

where r, a and m are the reference density, thermal
expansion and dynamic viscosity of the mantle, respec-
tively. In the remainder of this paper, the asterisk is added to
parameters that are made dimensionless.

2.2. Phenomenology

[10] Snapshots of the temperature fields obtained with
such models, with a lid of Biot number B = 10 and of
nondimensional width a = 1, at a Rayleigh number Ra =
107, in a model of aspect ratio 4, are presented in Figure 1.
We choose a lid of Biot number B = 10 because this value
corresponds to the Biot number of the continental litho-
sphere for whole mantle convection: If the thermal conduc-
tivity of the continental lithosphere is considered to be the
same as the one of the mantle, then this Biot number B = 10

Figure 1. Snapshots of the temperature field obtained at
Ra = 107 under a lid of width a = 1 and Biot number B = 10,
at different times, taking t = 0 at an arbitrary instant (top).
The open triangles follow hot plumes attracted toward the
center of the lid, while black triangles follow cold plumes in
the upper boundary layer.
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corresponds to a continental lithosphere thickness equal to
one tenth of that of the mantle, that is to say close to 300 km,
which is within the estimates obtained by heat flux measure-
ments [e.g., Rudnick et al., 1998; Jaupart and Mareschal,
1999; Michaut and Jaupart, 2004].
[11] A set of hot plumes is clearly present beneath the lid

(Figure 1). Different time steps are shown in Figure 1 and
indicate that these hot plumes in the bottom boundary layer
are attracted toward the center of the model, while cold
plumes forming in the upper boundary layer are expelled
toward the vertical boundaries of the model. The tempera-
ture field and the stream function of the flow for this case
are presented in Figure 2, as well as a model of aspect ratio 8
with the same lid and Rayleigh number. In the model of
aspect ratio 8 (Figure 2, right), a zone of upwelling,
consisting of a set of hot plumes, is also present under the
lid. The presence of two convective cells is visible in the
snapshot of the streamlines. It also appears that these
convective cells are not spread out over the whole half
width of the model, in contrast to the model of aspect ratio
4. In this latter case, a simple loop model is a good approach
to understand the scaling of the heat transfer and of the
velocity in the model [e.g., Turcotte and Schubert, 1982,
2002; Grigné et al., 2005]. For the model of width 8, the
flow is more complex, and the scaling law proposed by
Grigné et al. [2007] for the heat flux does not apply
straightforwardly.
[12] Figure 2 (right) shows that the lateral circulation

generated by the presence of the lid is wide. In order to
study the maximum extent of this lateral circulation, we use
models of aspect ratio 32, with a lid of width a = 1.
Snapshots of the temperature fields and of the streamlines
are presented in Figure 3 for Rayleigh numbers varying
from 105 to 108. At Ra = 105, convective cells are clearly
visible in both the temperature field and the streamlines.
The cells with the hot upwelling located under the lid,
which we will call, for simplicity, ‘‘continental cell’’ in the
remainder of this paper, have a dimensionless width L ’
2.5, while the other cells in the models have an aspect ratio
L = 1.7 ± 0.2. At Ra = 106, the continental cell has a width
close to 3. Cells outside of the lid have a normal aspect
ratio, between 1 and 1.7.
[13] At higher Rayleigh numbers, no clear convective cell

can be detected in the snapshots of the temperature fields,

but it remains clear from the streamlines of the flow that a
large-scale circulation is present, in contrast to normal cells
visible far away from the lid. In the examples with Ra = 107

and Ra = 108, convection is highly time-dependent, with
small hot plumes forming far away from the lid and
attracted toward it, while cold plumes are expelled from
the lid. An important feature of Figure 3 is that the width of
the continental cells clearly increases with the Rayleigh
number. In order to compare the mean behavior of the flow
for the different Rayleigh numbers, we compute the time-
averaged temperature, velocity and stream function fields.
Time-averaged streamlines are, for instance, presented in
Figure 4.

3. Width of the Cellular Circulation

3.1. Time-Averaged Circulation

[14] Figure 4 presents the time-averaged stream function
for the cases Ra = 107 and Ra = 108 with a lid of Biot
number B = 10 and of width 1. Figure 4 explains how we
compute the width of the cellular circulation generated by
the lid. The positions x0 and x1 denote the limits of this
circulation: x0 is the position of the center of the lid (x0 = 16
in Figure 4), and x1 is the position where the time-averaged
stream function at middepth changes sign. L denotes the
convective cell width derived this way from the time-
averaged stream function.
[15] Figure 5 represents the values of L as a function of

the Rayleigh number for experiments carried out in boxes of
width 32, with a lid of width 1 and of Biot number B = 10.
Instantaneous values of L can be obtained from snapshot of
the stream function, and the error bars in Figure 5 are
computed as the standard deviation between the time-
averaged value L and instantaneous values of L. Figure 5
shows that the width L scales as Ra1/4. An explanation for
this scaling is derived in two steps: We first consider the hot
zone under the lid and study the velocity of the plumes in
that zone. In the second step, we consider the driving force
for the horizontal circulation.

3.2. Vertical Velocity Scaling

[16] Grigné et al. [2007] defined two regimes of cellular
circulation generated by the lid, which depend on the
geometry of the model and of the lid, and on the Rayleigh

Figure 2. Snapshots of (top) the streamlines and (bottom) temperature fields obtained at Ra = 107, for a
continental lid of Biot number B = 10 and of dimensionless width a = 1, for models of aspect ratio (left) 4
and (right) 8.
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number. For low Rayleigh numbers or large lids, the
circulation is steady state or weakly time-dependent, and
can be described as a perfect convective cell, with a single
hot plume under the lid and a single cold plume along the
vertical boundaries of the model. This regime was named
‘‘forced loop’’ because the geometry of the model is such
that cold and hot plumes do not develop freely by destabi-
lization of the boundary layers, but their position is forced
by the size of the model. For narrower lids or larger boxes,
when the Rayleigh number is large enough (Ra � 106) the
zone of upwelling under the lid is not formed by a single
plume but by a set of hot plumes attracted toward the center
of the model. We named that regime ‘‘free loop.’’ In that

case, the time-averaged vertical velocity at middepth is
smaller in amplitude than the one along the vertical
downwelling, which is opposite to simple Rayleigh-Bénard
convection or to the forced loop case, where the velocity of
the hot and cold plumes are the same.
[17] For wide aspect ratio models and for Ra > 105 the

regime is clearly one of free loop, with a zone of upwelling
under the lid formed by several hot plumes. Figure 6
presents the time-averaged vertical velocity at middepth
under the lid as a function of the Rayleigh number, as well
as the vertical velocity of plumes located far away from the
lid. These two velocities are denoted by Wh and W, respec-
tively, in Figure 6. For simple Rayleigh-Bénard convection,

Figure 3. Snapshots of the temperature field and of the stream function obtained in models of aspect
ratio 32, for a lid of width 1 and Biot number B = 10, for different Rayleigh numbers. Only the right half
of the model is shown, the flow being statistically symmetrical compared to the center of the lid. The
same shading scale is used for the different Rayleigh numbers.
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the time-averaged vertical velocity of plumes and the
horizontal velocity along the horizontal boundaries of the
model both scale as Ra2/3 [e.g., Turcotte and Schubert,
1982, 2002; Grigné et al., 2005]. Here, the vertical velocity
under the lid Wh clearly scales as Ra1/2.
[18] This can be explained by studying the form of the

convective heat flux under the lid. This convective heat flux
at a depth z is

A zð Þ ¼ rCp vz T � T zð Þ
� �

; ð3Þ

where Cp is the heat capacity of the fluid, vz the vertical
velocity and T zð Þ is the horizontally averaged temperature
at the depth z. The dimensionless form of the convective
heat flux is

A* ¼ v*z T*� T* zð Þ
� �

: ð4Þ

Figure 7 presents this time-averaged convective heat
flux for a model of aspect ratio 4, with a Rayleigh number
Ra = 107, for a lid of Biot number 10 and of width 1 and 2,

Figure 4. Time-averaged stream function for the experi-
ments presented in Figure 3 with Ra = 107 and 108 and its
profile at middepth. The vertical dashed line indicates the
position x1 where the stream function changes sign. As in
Figure 3, only the right half of the model is presented.

Figure 5. Width L of the continental cell, as defined in
section 2.2, as a function of the Rayleigh number, for a lid
of width 1 and Biot number B = 10, for models of aspect
ratio 32. Error bars represent the standard deviation between
instantaneous values of L and the time-averaged value L.
The dashed line is drawn using L = 0.1 Ra1/4.

Figure 6. Time-averaged vertical velocity as a function of
the Rayleigh number for experiments with a lid of width 1
and Biot number B = 10. Solid squares are for the vertical
velocity at middepth under the center of the lid (continental
cell), and open squares are for the plumes far away from the
lid (normal convective cells). The dash-dotted and dashed
lines are drawn using W = 0.17 Ra2/3 and Wh = 0.8 Ra1/2,
respectively.

Figure 7. Contour lines of the time-averaged convective
heat flux (equation (3)) for Ra = 107 with a model of aspect
ratio 4. The continental lid has a Biot number B = 10, and a
width (top) 1 or (bottom) 2.
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which yields a free loop and a forced loop regime,
respectively. For the latter regime, there is symmetry
between the cold and hot plumes, and the zone of
nonnegligible convective heat flux is restricted to narrow
zones whose width is of the same order as that of the thermal
plumes. This width where the convective heat flux is
nonzero then scales as Ra�1/3 [e.g., Turcotte and Schubert,
1982, 2002; Grigné et al., 2005]. For the free loop regime,
heat is carried under the lid not by one plume, but by a set of
hot plumes attracted toward the center of the model. This
creates a zone of nonzero convective heat flux which spreads
over the whole region where the vertical velocity is nonzero.
The width of this zone, denoted by l hereafter, depends
weakly on the Rayleigh number and is of the order of the half
depth of the model [Grigné et al., 2005].
[19] For the free loop regime, the total convective heat

flow for the hot zone under the lid is then

Ah 	 rCp Wh l Th � Tmð Þ; ð5Þ

where Wh is the time-averaged vertical velocity at middepth
under the lid, Th the mean temperature under the lid and Tm
the temperature in the well-mixed center of the convective
cell. The temperature anomaly (Th � Tm) is responsible for
the buoyancy force of each plume beneath the lid, denoted
by Fh, which reads

Fh 	 rag d Th � Tmð Þ; ð6Þ

where a is the coefficient of thermal expansion, g is the
gravitational acceleration, and d is the width of each
individual plume. It is to be noted that the width l of the
region of nonzero convective heat flux is different from the
width d of individual plumes, precisely because this region is
made up of the sum of contributions from all plumes. This is
opposite to what would be obtained in a classical loop model
of a convective cell, where the widths to consider for the
convective heat flux and for the buoyancy force are the same.
[20] The temperature anomaly (Th � Tm) can be elimi-

nated from equations (5) and (6) to give

WhFh 	
a g

Cp

d
l
Ah; ð7Þ

which is the scaling for the power of the buoyancy force.
We then write the equilibrium between the buoyancy force

and the viscous drag t = m @xw, where m is the dynamic
viscosity of the fluid. We previously showed [Grigné et al.,
2005] that the horizontal profile of vertical velocity was
such that @xw 	 Wh/l. With equation (7), the equilibrium
between the work of the buoyancy force and that of the
viscous drag (WhFh 	 mWh

2/l) gives

W 2
h 	 agl

mCp

d
l
Ah; ð8Þ

which, in a dimensionless form, reads

W*2
h 	 Ra d* A*h : ð9Þ

The convective heat flow A*h is responsible for the heat flow
out of the model, which is inversely proportional to the
thickness of the horizontal boundary layer, which is itself
proportional to the width d of the individual plumes,
yielding A*h 	 1/d*. We thus obtain

W*
h 	 Ra1=2: ð10Þ

[21] The fact that the time-averaged convective heat flux is
nonzero over a finite width larger than the width of the
individual plumes, due to the pattern of convection consisting
of a set of hot plumes moving toward the center of the lid,
thus leads to a vertical velocity that scales as Ra1/2, and not
Ra2/3 as is obtained for simple Rayleigh-Bénard convection,
where heat is carried out by single cold and hot plumes that
consequently have to move faster (see Figure 6).

3.3. Width of the Cellular Circulation and
Velocity of Plumes

[22] The driving force for the large horizontal circulation
generated by the lid is the horizontal thermal gradient that
exists between the abnormally hot zone under the continen-
tal lid and the normal fluid far from the lid. This cellular
circulation takes place in the form of cold small plumes
expelled far from the lid at the top of the model, and hot
plumes attracted toward the center of the box at the base of
the model. The upwelling zone is concentrated under the lid
because of the convergence of hot plumes coming from
both sides, while the downwelling takes place in a broader
zone since the width of the domain is larger than the
intrinsic size of the large-scale circulation. This flow pattern
can be seen in Figure 8: The vertical velocity at middepth

Figure 8. Horizontal profiles of the time-averaged vertical velocity at middepth and horizontal velocity
at the surface of the model for a model of aspect ratio 32, at Ra = 107, with a lid of width 1 with B = 10.
Only the right half of the model is presented. The center of the lid is located at x = 16. The vertical dotted
line shows the limit of the cellular circulation generated by the lid, as computed in Figure 4.
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peaks under the lid at x = 16 and is close to zero over a large
width, where the cellular circulation takes place. It should,
however, be noted that the cold plumes carry a nonnegli-
gible amount of mass downward, and the vertical velocity is
slightly negative in this zone. This feature is more clearly
visible in the profile of the horizontal velocity at the surface
also presented in Figure 8: This velocity decreases almost
linearly from the edge of the lid to the border of the
continental cell. To achieve mass conservation, it is then
required that the vertical velocity at middepth in the center
of the cellular circulation is negative. We call Wd this small
vertical negative velocity created by the descending cold
plumes. The model and the notations that we use for the
horizontal velocity profiles are presented in Figure 9.
[23] U denotes the maximum horizontal velocity, as

indicated in Figure 9. Mass conservation implies

Wd=d 	 U=L: ð11Þ

It also implies U/l 	 Wh/d, which yields U* 	 Ra1/2 with
equation (10). The velocity U is plotted in Figure 10,
showing the scaling U* 	 Ra1/2. DhT denotes the
temperature difference between the center of the model,
under the lid, and the normal fluid, starting at the position
x = L. The buoyancy force created by the horizontal
thermal gradient is

F 	 rga L DhT : ð12Þ

Figure 11 presents the horizontal profiles of time-averaged
temperature at middepth for different Rayleigh numbers.
The anomaly is spread more widely at higher Rayleigh
numbers, but its amplitude is smaller. In dimensionless
form, L*DhT* does not appear to depend on the Rayleigh
number to first order. Observing that L* 	 Ra1/4, this
implies DhT 	 Ra�1/4. This scaling is indeed observed, as
shown in Figure 12.
[24] The force opposing the horizontal circulation is

mostly the horizontal viscous shear stress applying on the
width L: t 	 m U/d. The equilibrium between the work of
the buoyancy force F and that of the viscous shear stress
integrated on the loop is then

WdFd 	 m
U2

d
L: ð13Þ

With equations (11) and (12), this leads to

rga LDhTð Þd3 	 mU L2; ð14Þ

or, in dimensionless form:

Ra L*DhT*ð Þ 	 U* L
2: ð15Þ

Noting that (L*DhT*) does not depend on Ra and that U* 	
Ra1/2, we finally obtain for the width L* in a dimensionless
form:

L* 	 Ra1=4: ð16Þ

Figure 9. Model used in this study for the time-averaged
vertical velocity at middepth and for the horizontal velocity
at the surface.

Figure 10. Maximum horizontal velocity U* at the surface
of models with a lid of width a = 1 and Biot number B = 10
(black squares) and time-averaged horizontal velocity of
cold plumes expelled from the lid (open triangles) and of
hot plumes attracted toward the center of the lid (open
circles). The dashed line is drawn using U* = 1.05 Ra1/2.

Figure 11. Time-averaged temperature at middepth of the
model at different Rayleigh numbers, presented for the right
half of the model. The center of the lid is at x = 16, and the
lid is of width 1 and Biot number 10. The vertical lines
represent the limit of the continental cell, as defined in
section 2.2.
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The scaling law L* = 0.1 Ra1/4 is plotted in Figure 5, and
fits well the observed widths L. The derivation of this
scaling law did not take into account the size of the lid a.
The purpose here was to understand the dependency of L*
on Ra and we used a small lid whose size can be neglected
compared to the size of the cellular circulation. However,
the latter also depends on the size of the lid, and for the case
of a strongly insulating lid, that is to say when it can be
considered that the cooling of the upper thermal boundary
layer effectively starts only after the edge of the lid, a good
empirical scaling is L* = 0.1 Ra1/4 + a*/2.
[25] As mentioned above, the large horizontal circulation

takes place in the form of cold plumes expelled from the lid
and hot plumes attracted toward the center of the continental
lid (see Figures 1 and 3). The positions of the plumes can be
detected at each time step, using for instance a measurement
of the boundary layer Rayleigh number Rad. The heat flux
at the surface of the model can be written [Howard, 1964;
Sotin and Labrosse, 1999]

q ¼ Ra

Rad

� �1=3

Tm � T0ð Þ4=3: ð17Þ

Knowing the distribution of the heat flux at the surface of
the model, we can compute Rad, which peaks above starting
cold downwellings. An example of the observed form of
this boundary layer Rayleigh number Rad at the surface of
the model is presented in Figure 13. The same method can
be applied at the base of the model to detect hot upwellings.
The positions of the plumes are then defined using a
threshold Rac for Rad. Different values of Rac were used,
and we observed that the choice of Rac within the range
30 < Rac < 500 does not significantly influence the results,
since Rad clearly peaks above cold plumes. We are then able
to follow the position of plumes over time and to derive
their horizontal velocity. Figure 10 presents the obtained
velocities as a function of Ra for experiments carried out
with a lid of width a = 1 and Biot number B = 10. It shows

that the plumes are transported by the large horizontal
circulation and have broadly the same velocity as the one
observed along the horizontal boundaries of the model,
scaling as Ra1/2.

4. Heat Flux Scaling

[26] Grigné et al. [2007] proposed the following scaling
law, in dimensionless form, for the heat flux out of a
convective cell partially covered by a perfectly insulating
lid:

Q ¼ 2

p

� �2=3
Ra1=3T4=3

m

L2 þ L
8l3

� �1=3
1� a

2L

� �1=2
; ð18Þ

where Tm is the mean temperature of the fluid obtained for
simple Rayleigh-Bénard convection, that is to say Tm = 0.5,
and L is the width of the convective cell. The asterisk is now
dropped for the sake of simplicity and all the parameters are
now dimensionless in the remainder of this paper. For
models of moderate aspect ratio, L is the half width of the
model. We showed that the agreement between this scaling
law and the observed heat flux was good for models with an
aspect ratio up to 4, that is to say convective cells not larger
than 2.
[27] However, if we apply this scaling law directly to

models in wide aspect ratio boxes, using for the width L of
the convective cells the width L of the cellular circulation
generated by the lid as defined in section 3.1, the heat flux
predicted by the model given by equation (18) is always too
low. The model given by equation (18) indicates a signif-
icant decrease of the heat flux with the size L of the
convective cells: For a given Rayleigh number and a fixed
size a = 1 of the lid, the predicted heat flux is for instance

Figure 12. Time-averaged difference of temperatureDhT =
Tc � Tm as a function of Ra, where Tc is the temperature
below the center of the lid (position x = 0 in Figure 11) and
Tm = 0.5. The dashed line is drawn usingDhT = 2.30 Ra�1/4.

Figure 13. Close up on a part of the temperature field
obtained at Ra = 107 under a perfectly insulating lid of
width a = 1, with its center at x = 16, and the corresponding
upper boundary layer Rayleigh number Rad. The vertical
dashed line indicates the position of the first detected cold
downwelling after the edge of the lid.
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almost 50% lower for a cell of width L = 8 than for a cell of
width L = 4. The observed heat flux in these two cases
actually differ only by around 10%.
[28] Snapshots of the temperature fields obtained in wide

aspect ratio boxes show that the circulation generated by the
lid is not a simple convective cell, but consists of a set of hot
plumes under the lid and cold plumes forming in the top
boundary layer and being pushed away from the lid (see
Figures 2 and 3). The model proposed by Grigné et al.
[2007] uses the assumption that the flow can be described
by a simple loop model [e.g., Turcotte and Schubert, 1982,
2002; Grigné et al., 2005] and that the heat flux at the
surface of the convective cells is, to first order, well
approximated by a model of cooling by conduction on a
half-space, with a heat flux decreasing away from the edge

of the lid due to the cooling and thickening of the upper
boundary layer.
[29] This assumption does not hold anymore for wide

aspect ratio models. Figure 14 presents the observed heat
flux obtained in a model of aspect ratio 32, with a perfectly
insulating lid of width 1 at Ra = 106. After some distance
from the edge of the lid, the observed heat flux clearly
differs from the half-space cooling model presented with a
dashed line, which corresponds to the following equation in
dimensionless form [see Grigné et al., 2007]:

qh xð Þ ¼ Ra1=3 Tm � T0ð Þ4=3

2p2ð Þ1=3 h2 þ h
8l3

� �1=3

h

x� a
2

� �1=2

; ð19Þ

where l, the width over which the vertical velocity is
nonnegligible, is observed to be close to the depth of the
model, or in dimensionless form l = 1 (whereas l = 0.5 in
small aspect ratio domains [Grigné et al., 2005]). h is the
distance at which the heat flux deviates from this expression.
This model is obtained by considering that the thermal
boundary layer starts to thicken after the edge of the lid,
located at x = a/2. The reason for the deviation after x = h is
the destabilization of the boundary layer and the onset of cold
plumes. The heat flux for x > h then stays broadly constant.
[30] This observation is similar to the familiar flattening

of the sea floor after ages larger than 80 Myr (see Jaupart et
al. [2007] for a review) except that, here, the whole
boundary layer is destabilized instead of the small active
boundary layer that exists under a stagnant lid caused by
temperature-dependent viscosity [e.g.,Davaille and Jaupart,
1994].We can then rely on the same approach as that used for
computing the total heat loss of the Earth [Jaupart et al.,
2007]: We use the half-space cooling equation (19)) for x <
h and a uniform heat flux for x > h (Figure 15). The heat
flux for x > h is not strictly uniform and small fluctuations

Figure 14. Observed time-averaged heat flux at the
surface of a model with a perfectly insulating lid of width
a = 1, with Ra = 106 (solid line), and heat flux given by the
model of cooling by conduction in a half-space (dashed
line), considering that the thermal boundary layer starts to
cool and thicken at the edge of the lid.

Figure 15. Scheme of the model used to compute the mean heat flux over the large-scale circulation of
width L generated by the lid.
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seen on Figure 14 are caused by the different plumes.
However, the averaged value is set by the stability of the
boundary layer and is equal to the standard value without a
lid.
[31] The mean heat flux Q over the cellular circulation of

width L can then be computed using

L Q ¼
Z h

x¼a=2

qh xð Þ dxþ L� hð Þqh x ¼ hð Þ: ð20Þ

With equation (19), this yields

Q ¼ 2

p

� �2=3
Ra1=3 Tm � T0ð Þ4=3

2L h2 þ h
8l3

� �1=3

h

h� a=2

� �1=2

Lþ h� að Þ:

ð21Þ

For each experiment carried out with an insulating lid, we
can compute the length h that gives Q hð Þ equal to the
observed heat flux. The results are plotted in Figure 16
using not directly h, but the length h � a/2, which we will
call ‘c. With the model used here, given by equation (19)
and Figure 15, this length ‘c can be seen as the critical
length, after the border of the lid, for the formation of a cold
downwelling. We showed that the width of the cellular
circulation depends on the Rayleigh number, with a
relationship scaling as L 	 Ra1/4, and this trend is clearly
visible in Figure 16. On the other hand, the length ‘c
appears to depend poorly on Ra and on the width a of the
lid, and stays broadly close to ‘c = 1.
[32] The position where the first cold plume forms on

each side of the lid can also be detected in each experiment
using the method described in section 3.3, based on the
boundary layer Rayleigh number Rad. The position x of the
first cold downwelling is defined so that Rad = Rac at x =
a/2 + ‘c. This method was used for 100 snapshots of the
heat flux distribution using Rac = 50 for experiments with
105 < Ra < 5.107 and 0.5 < a < 4, and the results are
presented in Figure 17. We obtained a mean value of ‘c
equal to 1.245 with a standard deviation of 0.482.
Figure 17 also presents the results obtained for a fixed
width a of the lid and for a fixed Rayleigh number. This
indicates that ‘c seems to depend slightly on both a and Ra,
with larger values of ‘c obtained for small Ra or large a.
[33] The mean value ‘c = 1.245 ± 0.482 is consistent with

what was obtained through the resolution of equation (21)
(see Figure 16), indicating that the approach that we used to
compute the mean heat flux, presented in Figure 15, is

Figure 16. Size of the cellular circulation L minus the half
width of the lid, obtained with perfectly insulating lids of
variable width, as indicated by the symbols, as a function of
the Rayleigh number. The open symbols are values obtained
using the criteria on the time-averaged stream function
described in section 3.1, while the solid symbols are the
lengths ‘c that give the observed heat flux with the heat flux
scaling given by equation (21). The dashed and dotted lines
are plotted using L = 0.1 Ra1/4 + a/2, with a = 1 and a = 4,
respectively.

Figure 17. Histograms of the observed length ‘c, for 100 snapshots in experiments carried out under a
perfectly insulating lid with various lid width a and Rayleigh numbers Ra. (a) Results for all the
experiments. (b) Results limited to a = 1 and a = 4 and (c) to Ra = 105 and Ra = 5.107. The mean and
standard deviation are indicated on top of each case.
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validated by the observation of the positions of the cold
plumes.
[34] The observed mean heat flux over the cellular

circulation of width L generated by the lid is plotted in
Figure 18. We also indicate some results for boxes of
smaller aspect ratios, and these results can be compared to
the scaling laws given by equation (18) from Grigné et al.
[2007], which are valid for models of aspect ratio up to 4,
that is to say cells of width up to 2 (dashed line), and to the
scaling law given by equation (21) derived above (solid
line). The discrepancy between the obtained heat flux and
the model given by equation (18) is clear for cells of width
larger than 2, and the heat flux for cells of moderate sizes
seem to undergo a transition toward the model proposed
here for large aspect ratio models (equation (21)). This latter
model fits nicely the results obtained in models of aspect
ratio 32.

5. Discussion and Implications for
Terrestrial Planets

[35] The presence of a lid of finite conductivity on top of
an isoviscous fluid heated from the bottom generates a
special pattern of convection, with one hot upwelling or a
set of hot plumes present beneath the lid, and large cellular
circulations on both sides of the lid. In experiments carried

out in boxes of small aspect ratios [Grigné et al., 2007], we
identified two regimes of convection, distinguishable by the
fact that the hot upwelling beneath the lid consists of one
single feature (forced loop) or of a set of small plumes (free
loop). In both regimes, the zone of cold downwelling stays
narrow and its position is imposed by the geometry of the
model. In the present paper, we used very wide models in
order to let this zone of cold downwelling adopt a free
behavior, and we obtained broad zones of downwellings
with small cold plumes forming at a certain distance from
the edge of the lid and being pushed away from the lid. We
showed that the distance ‘c at which the cold plumes start
forming was fairly independent of Ra and of the width a of
the lid, and is close to 1.25.
[36] We showed that the width L of the cellular circula-

tion generated by the lid scales to first order as L 	 Ra1/4.
This large horizontal circulation cannot be treated as simple
convective cells, and the scaling for the heat flux that we
built for small aspect ratio boxes, based on a loop model
approach [Grigné et al., 2007], does not apply for wide box
experiments. We proposed here a new scaling for these
cases, in which we separate the large cellular circulation
generated by the lid into two parts, one close to the lid
where a half-space cooling model can apply, and a second
zone starting where the first cold plumes appear in the upper
boundary layer, and for which the heat flux is broadly

Figure 18. Observed and predicted heat flux normalized on the heat flux obtained for a cell of width 1
in simple Rayleigh-Bénard convection, as a function of the size of the cellular circulation generated by
the lid, for different widths a of the lid. The solid circles are obtained in models of aspect ratio 32, while
the open squares are obtained in models of limited aspect ratios, up to 10. Results are obtained for 105 <
Ra < 5.107. The solid line is plotted using equation (21), with ‘c = 1.245, while the dashed line
corresponds to equation (18). The two dotted lines correspond to ‘c ± 0.482. The vertical dashed lines
indicate the limit of possible models for equation (18) (L > a/2), and the vertical dot-dashed lines indicate
the limit of possible models for equation (21) (L > ‘c + a/2).
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uniform. The fact that the cold boundary layer does not keep
thickening far from the lid, but is mobilized by the forma-
tion of cold plumes, implies that the mean heat flux does not
decrease with the width L of the cellular circulation, which
would be predicted with a simple convective cell in a loop
model, but is to first-order independent of L for L > 3.
[37] The observation that the oceanic heat flux is broadly

uniform for seafloor older than 80 Myr has been attributed
to the onset of small-scale convection under the lithosphere
[Parsons and McKenzie, 1978; Davaille and Jaupart, 1994;
Doin and Fleitout, 2000; Dumoulin et al., 2001; van Hunen
et al., 2003] which is well understood when computing the
Rayleigh number of a boundary layer thickening with time
[Howard, 1964]. The same physics applies here except that
the whole boundary layer is destabilized, instead of the small
low-viscosity sublayer in the more realistic temperature-
dependent viscosity case [Davaille and Jaupart, 1994]. The
scaling for the total surface heat flow has to account for this
destabilization since the heat flux in the unstable region is
significantly larger than the still decreasing extrapolation of
the half-space cooling expression. The situation is different
on Earth where the correction from the small-scale convec-
tion is small [Jaupart et al., 2007] because again only a
small part of the boundary layer is destabilized. This points
to the two main missing ingredients of the present model:
temperature dependence of the viscosity and a failure
mechanism to go from stagnant lid convection to plate
tectonics [e.g., Bercovici, 1998; Tackley, 2000b].
[38] The main effect of the destabilization of the bound-

ary layer is to limit the possible decrease of heat flux with
age of the seafloor. In the present isoviscous model this
effect is dramatic and this implies a rather small influence
on the global heat transfer characteristics. On Earth, only a
small sublayer is mobilized by these instabilities and only a

small enhancement of the heat flux is observed compared to
the case of a half-space cooling model for the whole
lithosphere [Jaupart et al., 2007]. In this case, if continents
play the same role of increasing the wavelength of convec-
tion as they do in isoviscous models, and there is no reason
why they would not, we expect a strong decrease of heat
transfer by mantle convection compared to a situation
without continents.
[39] Our models show the presence of a set of hot plumes

beneath the continental lid. It was proposed by Schubert et
al. [2004] that what is often described as superplumes could
be smaller structures not revealed by seismic resolution, and
that the so-called ‘‘superplumes’’ under the Pacific Ocean
and Africa could, in fact, be plume clusters. Although there
are evidences of a compositional origin for the hot upwell-
ing observed under Africa [Ishii and Tromp, 1999; Masters
et al., 2000; Ni et al., 2002; Trampert et al., 2004;
McNamara and Zhong, 2005], and although our models
account only for thermal convection, with no chemical
heterogeneities, it can be pointed out that the pattern of
convection consisting of a cluster of plumes appears natu-
rally in experiments where a part of the surface is thermally
insulating, and that it can be inferred that the presence of the
African continent may easily enhance the formation of hot
plumes.
[40] The number of plumes in such a plume cluster, from

our two-dimensional experiments, seems to increase with
the Rayleigh number (see Figure 3). Detecting plumes at the
base of the model with the method described in section 3.3,
using the boundary layer Rayleigh number (see
equation (17) and Figure 13), allows us to obtain a scaling
for the number of plumes observed under the continental lid
as a function of the Rayleigh number. Plume detection is
carried out for 106 � Ra � 108 in models of aspect ratio 32
with a lid of width a = 1 located at x = 16 and we sum the
number of plumes detected over the region 13 � x � 19.
This width corresponds broadly to the width of the conti-
nental cells at Ra = 106 (see Figures 3 and 5) and thus
allows to compare the number Np of plumes detected at
different Rayleigh numbers over a region where the dom-
inant dynamics is the attraction of hot plumes toward the
center of the lid. Figure 19 shows that we obtain a time-
averaged number of plumes Np so that Np 	 Ra1/6. Zhong
[2005] showed that in two-dimensional models the number
of plumes scales as Np 	 Ran, where n = 2b � n, with b
corresponding to the scaling for the heat flux (Q 	 Rab)
and v corresponding to the scaling for the horizontal
velocity (U 	 Ran). For classical Rayleigh-Bénard con-
vection, b = 1/3 and n = 2/3, so that n = 0, and Np does
not depend on Ra, meaning that the dominant horizontal
scale is broadly constant with Ra and close to the depth of
the domain. With a continental lid, we obtain a heat flux still
scaling as Ra1/3 (equation (21)), but we showed that the
horizontal velocity scales as U 	 Ra1/2 (see Figure 10), thus
implying n = 2/3 � 1/2 = 1/6. Figure 19 shows that we
observe this scaling Np 	 Ra1/6.
[41] We so far presented only two-dimensional experi-

ments. A few three-dimensional experiments were also
carried out, and an example is shown in Figure 20: The
pattern of convection is quite similar to the one obtained in
two-dimensional experiments, with clearly a set of small hot
plumes under the lid, and cold plumes forming in the upper

Figure 19. Time-averaged number of hot plumes Np

detected in two-dimensional models of aspect ratios 32,
with a continental lid of width a = 1 and Biot number B = 10.
The detection of plumes is done over the region between x =
13 and x = 19, with the continent center located at x = 16.
The dashed line is drawn using Np = 0.680 Ra1/6. The error
bars correspond to the standard deviation between the time-
averaged value of Np and instantaneous values.
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boundary layer away from the lid. It can also be noted that
the hot plumes attracted under the lid, as is observed in the
two-dimensional experiments, are bent by the large-scale
circulation generated by the lid, so that their traces at the
surface would be on the edge of the continents. This
bending can be proposed to explain the positions of some
hot spots around Africa, as an alternative to the model of
edge-driven small-scale convection proposed by King and
Anderson [1998] and King and Ritsema [2000].
[42] A large horizontal circulation is obtained in the

models, showing that a narrow continental lid can have a
broad effect on mantle flow. This effect is enhanced at high
Rayleigh number, and we showed that the width of the flow
affected by the presence of the lid scales as Ra1/4. This
feature can have important effects on the formation of
heterogeneities at the surface of a terrestrial planet. The
surface of Mars presents a clear dichotomy between high-
lands in the southern hemisphere and lowlands in the
northern hemisphere. The origin of this dichotomy can be
either exogenic (impact) or endogenic, and in the latter case,
it is usually believed that the pattern of convection inside of
Mars must be of degree 1 [Roberts and Zhong, 2006].
Obtaining such a pattern has remained challenging and
several parameters have been included in models to try to
reproduce this degree 1 mantle convection, such a phase
transition close to the bottom of the Martian mantle and/or a
depth-dependent viscosity [e.g., Harder and Christensen,
1996; Zhong and Zuber, 2001]. The results of the present
study suggest that continent-like heterogeneities at the
surface of the Martian mantle can also help generating
degree 1 mantle convection, especially in the early stages
of the cooling of Mars when the Martian mantle was
probably hotter, and thus had a lower viscosity and more
vigorous convection.
[43] The implications for the Earth are also important,

particularly in its early history: Models of convection trying
to generate plate tectonics in a self-consistent way [e.g.,
Moresi and Solomatov, 1998; Tackley, 2000a; Bercovici,
2003] show that plate tectonics is often stable only when a
long wavelength of mantle convection is attained. This long
wavelength often develops slowly in models with homoge-
neous boundary conditions, and we infer from our results
that the early presence of thermally insulating continent-like
heterogeneities at the surface of the mantle can help

generate a long-wavelength pattern of convection and
promote the onset of plate tectonics.
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Grigné, C., S. Labrosse, and P. J. Tackley (2005), Convective heat transfer
as a function of wavelength: Implications for the cooling of the Earth,
J. Geophys. Res., 110, B03409, doi:10.1029/2004JB003376.
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