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The FENE dumbbell polymer model: existence and

uniqueness of solutions for the momentum balance equation.

A.V. Busuioc, I.S. Ciuperca, D. Iftimie and L.I. Palade

Abstract

We consider the FENE dumbbell polymer model which is the coupling of the incompress-

ible Navier-Stokes equations with the corresponding Fokker-Planck-Smoluchowski diffusion

equation. We show global well-posedness in the case of a 2D bounded domain. We assume in

the general case that the initial velocity is sufficiently small and the initial probability den-

sity is sufficiently close to the equilibrium solution; moreover an additional condition on the

coefficients is imposed. In the corotational case, we only assume that the initial probability

density is sufficiently close to the equilibrium solution.

Keywords: Navier-Stokes equations; FENE dumbbell chains; Fokker-Planck-Smoluchowski

diffusion equation; existence and uniqueness of solutions.

AMS subject classification: Primary 76D05; Secondary 35B40

1 Introduction

The success of Kirkwood, and of Bird, Curtiss, Armstrong and Hassager (and their collabora-
tors) kinetic theory of macromolecular dynamics triggered a still on-going flurry of activity aimed
to providing molecular explanations for non-Newtonian and viscoelastic flow patterns. This can
be reckoned from [BAH87] and [Ött06], for example. The cornerstone is the so called diffusion
equation, a parabolic-type Fokker-Planck-Smoluchowski partial differential equation, the solution
of which is the configurational probability distribution function; the later is the key ingredient for
calculating the stress tensor.

The simplest polymer chain model of relevance to Bird et al. theory is that of a dumbbell, where
the beads are interconnected either rigidly or elastically. Although a crude representation of the
complicated dynamics responsible for the flow viscoelasticity, the now popular Bird and Warner’s
Finitely Extensible Nonlinear Elastic (FENE for the short; see [War72]) chain model is capable
in capturing many salient experimentally observable flow patterns of dilute polymer solutions.
It was therefore quite natural that many researchers took on exploring the fundamentals of this
relatively simple model (for more on this and related issues see for example [BE94] and [Sch06]).

The aim of this work is to take on studying the momentum-balance (or Navier-Stokes) equa-
tions together with the constitutive law for the FENE fluid. The latest is obtained by using
the so-called “diffusion equation”, practically a Fokker-Planck PDE, the solution of which is the
configurational probability density. Put it differently, we focus on a system of equations that
consists of a “macroscopical” motion PDE and a “microscopical” Fokker-Plank-Smoluchowski
(probability diffusion) PDE. More precisely, given a smooth bounded connected open set Ω ⊂ Rd

and some ball D(0, R) we will study the initial boundary value problem which consists in finding
u = u(t, x) : R+ × Ω → Rd, g = g(t, x, q) : R+ × Ω×D(0, R) → R and p = p(t, x) : R+ × Ω → R
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solutions of the two following coupled equations:

(1.1) ∂tu+ u · ∇u− γ

Re
△u+∇p = γ(1− γ)

ReWe2
∇x ·

(∫

D(0,R)

q ⊗ q

1− |q|2

R2

g(t, x, q)dq

)
on R+ × Ω

and

(1.2) ∂tg+ u · ∇xg+∇q · (σ(u)qg) =
1

2WeN
△qg+

1

2We
∇q

(
q

1− |q|2

R2

g

)
on R+ ×Ω×D(0, R).

Moreover, the vector field u must be divergence free and g must be a probability density in the q
variable:

(1.3) divx u = 0,

∫

D(0,R)

g dq ≡ 1, g ≥ 0.

The boundary conditions are

(1.4) u
∣∣
∂Ω
= 0

plus some boundary conditions for g on Ω × ∂D(0, R) which will be embedded in the function
spaces we will work with.

The constant γ belongs to (0, 1), Re and We are (respectively) the Reynolds and Weissenberg
numbers and N , R are some polymer related physical constants used to obtain dimensionless
quantities. We assume all these constants to be strictly positive and moreover that NR2 > 2.
The quantity σ(u) is a short-hand notation for either ∇u or ∇u − (∇u)t. In fact, the physical
significance is achieved when σ(u) = ∇u; we will call this the general case. The choice σ(u) =
∇u−(∇u)t is very close to being physical significant while having better mathematical properties;
we will call this the corotational case. Let

Z(q) =

(
1− |q|2

R2

)NR2/2

and Z =
Z∫

D(0,R)
Z
·

It is not hard to observe that the couple (0, Z) is a steady solution of (1.1)–(1.4).
The initial boundary value problem (1.1)–(1.4) was studied by several authors but mostly in

the case where Ω = R2 or R3. The results are different, depending on the model (general or
corotational). We start by describing the results where Ω = R2 or R3. We restrict ourselves to
the model described above, but we would like to mention that there are other results on closely
related problems (for example a model when the variable q lies in the full plane or full space, the
Hookean model, etc.). We refer to [Mas10] for a discussion of all these models.

Global existence and uniqueness of strong solutions of problem (1.1)–(1.4) is known in the
following situations:

• Ω = R
2 and corotational model if u0 ∈ Hs(R2) and g0 ∈ Hs(R2;H1

0 (D(0, R))), s > 2 (see
[LZZ08]). The regularity of g0 in the q variable was improved in [Mas08] to some Lp weighted
space for large p.

• Ω = R2 and general model or Ω = R3 and general or corotational model if u0 is small in
Hs(R2) and if

∥∥Z− 1
2‖g0 − Z‖Hs(R2)

∥∥
L2(D(0,R))

is small, where s > 1 + d
2
where d ∈ {2, 3} is

the space dimension (see [LZ08, Mas08]).
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Global existence (no uniqueness yet) of some weak solutions for rough and arbitrarily large
initial data was proved in both dimension 2 and 3, first in the corotational case by [LM07] and
quite recently in the general case by [Mas10], see also [BS10] for a slightly different version of the
system of equations.

Long time asymptotics of the general model were studied in [JLLO06] where a priori esti-
mates are obtained to prove formally the stability of the equilibrium solution. In [BSS05] the
authors studied a related model where a smoothing operator is acting on the velocity field and
the corresponding stress tensor.

As far as strong solutions on domains with boundaries are concerned, we are aware of two
works. One is [ZZ06] where local existence and uniqueness is proved if u0 ∈ H4(Ω) and if g0 is H

4

in x and has some weighted H3 regularity in the variable q. Another one is [KP10] where local
existence is shown if u0 ∈ W 1,p(Ω) and g0 is W

1,p in x and has some weighted Lp regularity in the
q variable and p > d.

The goal of this paper is to address the issue of existence and uniqueness of strong solutions
for the above mentioned initial boundary value problem on bounded domains Ω ⊂ R

2 with ho-
mogeneous Dirichlet boundary conditions. This is not a straightforward adaptation of the known
results in the full plane. Indeed, the proof of global existence results of solutions proved by [LZZ08]
uses heavily the Littlewood-Paley decomposition and paradifferential calculus; this is of course not
available on bounded domains. Even the global existence results for small data involve technical
difficulties that make necessary to assume an additional condition of the material coefficients,
more precisely we will need to assume (1.5). We refer to Section 6 for a detailed explanation why
this is necessary.

In the general case, we show the following global existence and uniqueness result for initial
data which is sufficiently close to the equilibrium solution (0, Z).

Theorem 1 (general case). Let s ∈ (1, 3
2
). Assume that u0 is divergence free, vanishes on ∂Ω and

belongs to Hs(Ω). Assume moreover that Z− 1
2‖g0‖Hs(Ω) ∈ L2(D(0, R)), g0 ≥ 0 and

∫
D(0,R)

g0dq ≡
1. There exists two positive constants K1 = K1(Ω, s) and K2 = K2(Ω, s, γ,Re,We, N,R) such that
if the fluid related coefficients verify the relation

(1.5)
1− γ

NWe
≤ K1

and if the initial data is sufficiently close to the equilibrium solution (0, Z)

‖u0‖Hs(Ω) ≤ K2 and
∥∥∥
‖g0 − Z‖Hs(Ω)√

Z

∥∥∥
L2(D(0,R)

≤ K2

then there exists a unique solution to system (1.1)–(1.4) such that

u ∈ L∞(R+;H
s(Ω)) ∩ L2(R+;H

s+1(Ω))

and

∥∥Z− 1
2‖g‖Hs(Ω)

∥∥
L2(D(0,R)

∈ L∞(R+),
∥∥Z 1

2‖∇q(g/Z)‖Hs(Ω)

∥∥
L2(D(0,R)

∈ L2(R+).

In the corotational case we improve the previous result in the following manner. Not only the
restriction on the material coefficients (1.5) is no longer required, but the initial velocity u0 is
arbitrarily large as well. More precisely, we have the following theorem.

Theorem 2 (corotational case). Let s ∈ (1, 3
2
). Assume that u0 is divergence free, vanishes

on ∂Ω and belongs to Hs(Ω). Assume moreover that ‖g0‖Hs(Ω)/
√
Z ∈ L2(D(0, R), g0 ≥ 0 and
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∫
D(0,R)

gdq ≡ 1. There exists a positive constant K3 = K3(Ω, s, γ,Re,We, N,R) such that if the

following smallness assumption holds true

∥∥∥
‖g0 − Z‖Hs(Ω)√

Z

∥∥∥
L2(D(0,R)

≤ exp
[
−K3(1 + ‖u0‖Hs(Ω))e

K3‖u0‖
4
s

L2(Ω)

]
,

then there exists a unique solution to system (1.1)–(1.4) such that

u ∈ L∞(R+;H
s(Ω)) ∩ L2(R+;H

s+1(Ω))

and

∥∥Z− 1
2‖g‖Hs(Ω)

∥∥
L2(D(0,R)

∈ L∞(R+),
∥∥Z 1

2‖∇q(g/Z)‖Hs(Ω)

∥∥
L2(D(0,R)

∈ L2(R+).

Compared to the result of [LZZ08] valid in the case of the full plane, we have an additional
condition on g0: it needs to be close to Z. As explained above, this is due to the fact that we
work with bounded domains and the methods of [LZZ08] do not work here. Nevertheless, we have
an improvement in the regularity assumptions. More precisely, we require a regularity in the x
variable which is Hs, 1 < s < 3

2
, while in [LZZ08, Mas08] it is necessary to assume that s > 2.

The regularity in the q variable is also improved, roughly from H1 to L2.
The paper is organized as follows. In Section 2 we reformulate the problem (1.1)–(1.4) and

introduce the notations. We construct next in Section 3 a sequence of approximate solutions. The
global existence of the approximate solutions is proved in Section 4. We show uniform estimates
for the approximate solutions and complete the proofs of Theorems 1 and 2 in Section 5. The last
section contains two final remarks on the hypothesis we have to assume.

2 Notations and functional framework

We start by making a change of functions allowing to rewrite the equations in a better form.
Notice first that

∇qg +N
q

1− |q|2

R2

g = Z∇q

( g
Z

)
.

If we set

q =
q

R
, M(q) = (1− |q|2)δ, f(t, x, q) = g(t, x, Rq)

and

α1 =
γ

Re
, α2 =

γ(1− γ)

ReWe2

(
2δ

N

)2

, α3 =
1

4δWe
, δ =

NR2

2
,

then the couple (u, f) must verify the following system of equations:

∂tu+ u · ∇u− α1△u+∇p = α2∇x ·
∫

D

q ⊗ q

1− |q|2f dq on R+ × Ω(2.1)

∂tf + u · ∇xf − α3∇q ·
[
M∇q

(
f

M

)]
+∇q · (σ(u)qf) = 0(2.2)

on R+ × Ω×D(0, 1)
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and

div u = 0,

∫

D(0,1)

f dq ≡ 1

R2
.

The boundary conditions are homogeneous Dirichlet conditions for the velocity u plus some bound-
ary conditions for f on Ω × ∂D(0, 1) which are implicit from the condition that f has the below
defined H1

M regularity in the q variable (we refer to [Mas08] for a discussion on the boundary con-
ditions verified by functions in H1

M). We also prescribe the initial data u
∣∣
t=0

= u0 and f
∣∣
t=0

= f0.

We recall now the usual spaces for the solutions of the Navier-Stokes equations:

H = {v ∈ (L2(Ω))2; ∇ · v = 0, v · ν = 0 on ∂Ω}

where ν is the outward normal to ∂Ω and

V = {v ∈ (H1
0 (Ω))

2; ∇ · v = 0}.

We will abbreviate in the following D = D(0, 1). We introduce next the following Banach spaces:

L2
M = L2(D,

1

M
dq) =

{
ϕ;

∫

D

ϕ2

M
dq <∞

}
,

L2
xL

2
M = L2(Ω×D,

1

M
dx dq) =

{
ϕ;

∫∫

Ω×D

ϕ2

M
dx dq <∞

}
,

L
2

xL
2
M = L2(R2 ×D,

1

M
dx dq) =

{
ϕ;

∫∫

R2×D

ϕ2

M
dx dq <∞

}
,

Hσ
xL

2
M =

{
ϕ : Ω×D → C; ‖ϕ‖Hσ

xL
2
M
:=
∥∥‖ϕ‖Hσ(Ω)

∥∥
L2
M

(D)
<∞},

H
σ

xL
2
M =

{
ϕ : R2 ×D → C; ‖ϕ‖Hσ

xL
2
M

:=
∥∥‖ϕ‖Hσ(R2)

∥∥
L2
M

(D)
<∞},

Hσ
x Ḣ

1
M =

{
ϕ : Ω×D → C; ‖ϕ‖Hσ

x Ḣ
1
M
:=
∥∥‖M∇q

( ϕ
M

)
‖Hσ(Ω)

∥∥
L2
M

(D)
<∞},

H
σ

xḢ
1
M =

{
ϕ : R2 ×D → C; ‖ϕ‖Hσ

xḢ
1
M
:=
∥∥‖M∇q

( ϕ
M

)
‖Hσ(R2)

∥∥
L2
M

(D)
<∞},

Hσ
xH

1
M = Hσ

xL
2
M ∩Hσ

x Ḣ
1
M .

The quantities (function spaces, vector fields, etc.) with a bar on top have the x variable in R2.

Below, all functions f and their different versions (fn, f̃n, gn, gn, etc.) are assumed to belong
to spaces which are H1

M in the q variable (which implies boundary conditions in the q variable).
We have the following Poincaré type inequality. If ϕ = ϕ(x, q) is such that

∫
D
ϕ dq ≡ 0, then

(2.3) ‖ϕ‖L2
xL

2
M

≤ C‖ϕ‖L2
xḢ

1
M
,

see [Chu10].
Let now denote by Λσx the Fourier multiplier 〈D〉σ, i.e. the operator of multiplication in the

Fourier space by (1 + |ξ|2)σ
2 . We will always apply this operator in the x variable (the functions

need to be defined on R
2 of course).

The divergence of a matrix is taken along rows: for A = (aij) we define divA = (
∑

j ∂jaij)i.
Scalar product of matrices is defined by A : B =

∑
i,j aijbij . The tensor product of two vectors x

and y is the matrix x⊗ y = (xiyj)ij.
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3 Construction of a sequence of approximate solutions

Clearly C∞
0 (D) is dense in L2

M and a positive function in L2
M can be approached by a sequence of

positive smooth functions (cut-off and convolution preserve the sign if the cut-off and convolution
functions are non-negative). Moreover, we can assume that the integral of each of the approximate
functions is equal to the integral of the limit function (otherwise we can normalize each of the
approximate function by multiplying with an appropriate constant). In the x variable, the usual
standard smoothing procedure is also achieved by cut-off and convolution and these operations
preserve the sign. Therefore, there exists fn0 ∈ C∞

0 (Ω×D), non-negative, such that

(3.1) fn0 → f0 in Hs
xL

2
M

and

(3.2)

∫

D

fn0 dq ≡ R−2.

Let us denote by P the Leray projector, i.e. the orthogonal projection operator from (L2(Ω))d

onto H , and by A the Stokes operator defined by A = −P∆. It is well known that A is a self-
adjoint operator on H with compact inverse and that D(Aσ/2) = (Hσ(Ω))2 ∩ V, ∀σ ∈ [1, 3

2
) and

D(Aσ/2) = (Hσ(Ω))d ∩H, ∀σ ∈ [0, 1
2
) with equivalent norms (see [FM70]).

Denote λ1, λ2, . . . , λn, . . . the sequence of eigenvalues of A and v1, v2, . . . , vn, . . . the corre-
sponding eigenvectors that form an orthonormal basis in H . Let Hn := L {v1, v2, . . . , vn} be the
vector space spanned by the first n eigenvectors of A, and Pn the orthogonal projection of L2(Ω)
onto Hn. We endow Hn with the L2 norm making it a Hilbert space. We observe that for any
σ ∈ [0, 1

2
) there exists some constant C(σ,Ω) independent of n such that for any g ∈ Hσ(Ω) we

have

(3.3) ‖Png‖Hσ(Ω) ≤ C(σ,Ω)‖g‖Hσ(Ω).

Indeed, it is well-known that P is bounded on Hσ(Ω). Then Pg ∈ Hσ(Ω) ∩ H = D(Aσ/2).
Moreover, Pn is an orthogonal projection in D(Aσ/2) so we can write the following sequence of
estimates:

‖Png‖Hσ(Ω) ≤ C‖Aσ/2
PnPg‖L2(Ω) = C‖PnAσ/2

Pg‖L2(Ω)

≤ C‖Aσ/2
Pg‖L2(Ω) ≤ C ′‖Pg‖Hσ(Ω) ≤ C ′′‖g‖Hσ(Ω),

which proves (3.3).
Letting P operate on relation (2.1) leads to

∂u

∂t
+ α1Au+ P(u · ∇u) = α2P

[
∇x ·

∫

D

q ⊗ q

1− |q|2f dq
]

We consider the following approximation problem: find (un, fn) with un ∈ C([0, T ], Hn), such
that

(3.4) ∂tu
n + α1Au

n + Pn(u
n · ∇un) = α2Pn

[
∇x ·

∫

D

q ⊗ q

1− |q|2f
n dq

]

and

(3.5) ∂tf
n + un · ∇xf

n − α3∇q ·
[
M∇q

(
fn

M

)]
+∇q · (σ(un)qfn) = 0

with respect to the initial conditions

(3.6) un
∣∣
t=0

= un0 ≡ Pnu0, fn
∣∣
t=0

= fn0 .

and such that fn has H1
M regularity in the q variable. We will later use that

(3.7) un0 → u0 in Hs(Ω).
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4 Global existence of the approximate solutions

Let us first remark that for any f ∈ Hn and any m ∈ N, one has

(4.1) ‖f‖Hm(Ω) ≤ C(Ω, m, n)‖f‖L2(Ω).

Indeed, if f =
∑n

i=1 αivi then

‖f‖Hm(Ω) ≤ C‖Am/2f‖L2(Ω) = C

(
n∑

i=1

α2
iλ

m
i

)1/2

≤ C max
i∈1,...n

λ
m/2
i ‖f‖L2(Ω).

Throughout this section C denotes a constant that depends on n, Ω, material coefficients and
other constants. It may change from one line to another.

The existence of the approximate solutions is granted by the following theorem:

Theorem 3. There exists a global solution (un, fn) to the problem (3.4)-(3.6), such that un ∈
C0(R+;Hn).

Proof. In this proof the various constants C, C1, C2, . . . may depend on n but are independent
of time. We fix an arbitrary finite time T > 0 and show that we can solve (3.4)-(3.6) up to time
T such that un ∈ C0([0, T ];Hn).

Suppose that un is an element of C0([0, T ];Hn). From (4.1) we deduce that

sup
t∈[0,T ]

‖un‖W 1,∞(Ω) < +∞.

Therefore one can construct the flow χn(t, y) of u
n as the unique solution to the equation

∂tχn(t, y) = un(t, χn(t, y)), χn(0, y) = y.

Since the Jacobian determinant of χn(t, ·) is equal to 1 we deduce that for any t ∈ [0, T ], χn(t, ·)
is a C∞ - diffeomorphism from Ω to Ω.

Let f̃n(t, y, q) = fn(t, χn(t, y), q). Clearly f
n solves (3.5)–(3.6) if and only if f̃n solves

(4.2)

{
∂tf̃

n +∇q · [σ(un) ◦ χn qf̃n]− α3∇q ·
[
M∇q

(
f̃n

M

)]
= 0

f̃n(0, y, q) = fn0 (y, q).

In the equation above, the variable y plays the role of a parameter only. The existence,
uniqueness and smoothness of a solution f̃n to (4.2) which is H1

M in q was proved in [Mas08]. This

allows to construct f̃n, and therefore fn, if un is given. We denote by S the operator that gives
fn in terms of un, fn = S(un).

Since un is smooth enough w.r.t. x we also deduce that f̃n is smooth enough w.r.t. y and the
same holds true for fn. Then fn satisfies (3.5) and (3.6). We observe moreover that

(4.3)

∫

D

fn dq ≡ 1

R2
.

Indeed, from (3.2) we know that the above relation is satisfied at time t = 0. If we integrate with
respect to q relation (3.5) we have that the quantity

∫
D
fn dq is transported by the vector field un

so it must be constant.
We conclude from the preceding observations that it suffices to show that there exists a global

solution un ∈ C0([0, T ];Hn) of the following equation

(4.4) ∂tu
n + Pn(u

n · ∇un) + α1Au
n = α2Pn

(
∇x ·

∫

D

S(un)F (q) dq

)
, un(0, x) = Pnu0

7



where F (q) is the following matrix:

F (q) =
q ⊗ q

1− |q|2 .

Indeed, if such an un is obtained, then the couple (un,S(un)) solves (3.4)–(3.6).
To solve (4.4) we will use a fixed point method. More precisely, we write (4.4) under the

following equivalent integral form:

(4.5) un(t) = e−α1tAPnu0 +

∫ t

0

eα1(s−t)APn

[
−un · ∇un + α2∇x ·

∫

D

S(un)F (q) dq
]
(s) ds

We search for un as a fixed point of the operator

B : C0([0, T0];Hn) → C0([0, T0];Hn), B(v) is given by the rhs of (4.5)

where the time T0 is to be chosen to ensure B is a contraction mapping. Recall that Hn is endowed
with the L2 topology. One has:

(4.6) ‖B(v)− B(v′)‖L2(Ω) ≤
∥∥∥∥
∫ t

0

eα1(s−t)APn(v · ∇v − v′ · ∇v′)
∥∥∥∥
L2(Ω)

+ α2

∥∥∥∥
∫ t

0

eα1(s−t)APn

[
∇x ·

∫

D

(S(v)− S(v′))F (q) dq
]∥∥∥∥

L2(Ω)

≡ I1 + I2.

Next:

I1 =
∥∥∥
∫ t

0

eα1(s−t)APn[(v − v′) · ∇v + v′ · ∇(v − v′)]
∥∥∥
L2(Ω)

≤
∫ t

0

‖(v − v′) · ∇v + v′ · ∇(v − v′)‖L2(Ω)

≤ C

∫ t

0

‖v − v′‖H2(Ω)(‖v‖H2(Ω) + ‖v′‖H2(Ω))

≤ Ct sup
[0,t]

‖v − v′‖L2(Ω)(sup
[0,t]

‖v‖L2(Ω) + sup
[0,t]

‖v′‖L2(Ω))

(4.7)

where we used relation (4.1). To bound I2, we observe first that we have the following inequality

‖Pn∇ · h‖2L2(Ω) =

n∑

i=0

|〈∇ · h, φi〉|2 =
n∑

i=0

|〈h,∇φi〉|2 ≤
n∑

i=0

‖h‖2L2(Ω)‖∇φi‖2L2(Ω) ≤ C(n)‖h‖2L2(Ω).

Therefore

I2 ≤ α2

∫ t

0

∥∥∥∥Pn
[
∇x ·

∫

D

(S(v)− S(v′))F (q) dq
]∥∥∥∥

L2(Ω)

≤ Ct sup
[0,t]

∥∥∥∥
∫

D

(S(v)− S(v′))F (q) dq

∥∥∥∥
L2(Ω)

≤ Ct sup
[0,t]

∥∥∥∥
S(v)− S(v′)√

M

∥∥∥∥
L2(Ω×D)

‖
√
MF‖L2(D)

≤ Ct sup
[0,t]

‖S(v)− S(v′)‖L2
xL

2
M
,

(4.8)
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where we used that δ > 1 to have ‖
√
MF‖L2(D) < ∞. Next, we remark that Φ ≡ S(v) − S(v′)

solves the equation

∂tΦ + (v − v′) · ∇xS(v) + v′ · ∇xΦ +∇q · [σ(v − v′)qS(v)]

+∇q · (σ(v′)qΦ)− α3∇q ·
[
M∇q

(
Φ

M

)]
= 0, Φ(0, x, q) = 0.

We multiply the above relationship by
Φ

M
and integrate in x and q to obtain, after some straight-

forward calculations that

d

dt
‖Φ‖2L2

xL
2
M
+ 2α3‖Φ‖2L2

xḢ
1
M

= 2

∫∫
(v′ − v) · ∇xS(v)

Φ

M
+ 2

∫∫
σ(v − v′) :

[
S(v)q ⊗∇q

(
Φ

M

)]

+ 2

∫∫
σ(v′) :

[
Φq ⊗∇q

( Φ

M

)]

≤2‖v − v′‖L∞(Ω)‖∇xS(v)‖L2
xL

2
M
‖Φ‖L2

xL
2
M
+ 2‖σ(v − v′)‖L∞(Ω)‖S(v)‖L2

xL
2
M
‖Φ‖L2

xḢ
1
M

+ 2‖σ(v′)‖L∞(Ω)‖Φ‖L2
xL

2
M
‖Φ‖L2

xḢ
1
M
.

As in (4.3) we have that
∫
D
Φdq ≡ 0 so the Poincaré inequality (2.3) holds true for Φ. We deduce,

using inequality (4.1), that:

(4.9)
d

dt
‖Φ‖2L2

xL
2
M
+ α3‖Φ‖2L2

xḢ
1
M

≤ C‖v − v′‖2L2(Ω)

[
‖∇xS(v)‖2L2

xL
2
M
+ ‖S(v)‖2L2

xL
2
M

]

+ C‖v′‖2L2(Ω)‖Φ‖2L2
xL

2
M
.

Recall that S(v) solves the equation

(4.10) ∂tS(v)+v·∇xS(v)+∇q·[σ(v)qS(v)]−α3∇q ·
[
M∇q

(
S(v)

M

)]
= 0, S(v)(0, x, q) = fn0 (x, q)

Multiplying the equation of S(v) by
S(v)

M
and integrating w.r.t. x, q, we obtain after similar

estimates the following relation:

(4.11)
d

dt
‖S(v)‖2L2

xL
2
M
+ α3‖S(v)‖2L2

xḢ
1
M

≤ C‖v‖2L2(Ω)‖S(v)‖2L2
xL

2
M
.

We will use in what follows several times the following simplified version of the Gronwall
inequality:

y′ ≤ a1y + a2, y(0) = y0

with a1, a2 positive constants, implies

y(t) ≤ (y0 + a2t)e
a1t.

From (4.11) it follows:

(4.12) ‖S(v)(t)‖2L2
xL

2
M

≤ R2
1

(
sup
t∈[0,T ]

‖v‖2L2(Ω)

)

where we denoted, for any z ∈ R:

R2
1(z) = ‖fn0 ‖2L2

xL
2
M
exp (CzT ).
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Similarly, differentiating (4.10) with respect to xi, multiplying by
∂xiS(v)

M
and summing over i,

gives after integration and some straightforward estimates that

d

dt
‖∇xS(v)‖2L2

xL
2
M
+ 2α3‖∇xS(v)‖2L2

xḢ
1
M

≤C‖∇v‖L∞(Ω)‖∇xS(v)‖2L2
xL

2
M
+ C‖σ(v)‖L∞(Ω)‖∇xS(v)‖L2

xL
2
M
‖∇xS(v)‖L2

xḢ
1
M

+ C‖∇σ(v)‖L∞(Ω)‖S(v)‖L2
xL

2
M
‖∇xS(v)‖L2

xḢ
1
M

≤α3‖∇xS(v)‖2L2
xḢ

1
M

+ C‖∇xS(v)‖2L2
xL

2
M
‖v‖L2(Ω)(1 + ‖v‖L2(Ω)) + C‖S(v)‖2L2

xL
2
M
‖v‖2L2(Ω)

Using (4.12) and the Gronwall lemma implies that

(4.13) ‖∇xS(v)(t)‖2L2
xL

2
M
≤ R2

2

(
sup
t∈[0,T ]

‖v‖2L2(Ω)

)

where
R2

2(z) =
[
‖∇xf

n
0 ‖2L2

xL
2
M
+ CzR2

1(z)T
]
exp (C(z + 1)T ).

From (4.9), (4.12) and (4.13) we get

‖S(v)− S(v′)‖2L2
xL

2
M
≤ CT‖v − v′‖2WT

[
R2

1

(
‖v‖2WT

)
+R2

2

(
‖v‖2WT

)]
exp

(
CT‖v′‖2WT

)

where we denoted
WT = C([0, T ];Hn).

Combining the above with (4.6), (4.7) and (4.8) yields

(4.14) ‖B(v)− B(v′)‖WT
≤ C1T‖v − v′‖WT

(‖v‖WT
+ ‖v′‖WT

)

+ C1T
3/2‖v − v′‖WT

[
R1(‖v‖2WT

) +R2(‖v‖2WT
)
]
exp (C1‖v′‖2WT

T )

By a procedure similar in nature to the one detailed right above, one gets:

(4.15) ‖B(v)‖WT
≤ ‖un0‖L2(Ω) + C2T‖v‖2WT

+ C2TR1(‖v‖2WT
)

Let now K0 be such that

max
(
‖un0‖L2(Ω), ‖fn0 ‖L2

xL
2
M
, ‖∇xf

n
0 ‖L2

xL
2
M

)
≤ K0.

Now taking a fixed s0 such that s0 > K0 (for example s0 = K0+1) we can choose a T0 sufficiently
small such that

K0 + C2T0s
2
0 + C2T0R1(s

2
0) ≤ s0

and
2C1T0s0 + C1T

3/2
0

[
R1(s

2
0) +R2(s

2
0)
]
exp(C1s

2
0T0) < 1

The above assumptions together with (4.14) and (4.15) show that the operator B is a contraction
from the closed ball B(0, s0) of WT0 onto itself. The fixed point theorem can therefore be applied
to grant the existence of a local in time solution on [0, T0]. Moreover, the local time existence T0
depends only on the bound K0 for the initial data un0 and S(v)(0) = fn0 . Starting from time T0,
the same argument can be applied to extend the solution, and so on. We justify now that T can
be reached in this way in a finite number of steps. When re-applying the fixed point argument
from time T0, the new time of existence depends only on max (‖un(T0)‖L2(Ω), ‖fn(T0)‖H1

xL
2
M
). But

the estimates shown in the next section imply that any solution (un(t), fn(t)) on a time interval
included in [0, T ] can be bounded in L2 ×H1

xL
2
M independently of t ∈ [0, T ]. Indeed, we will show

in particular some Hs(Ω) bounds on un. This implies L2(Ω) bounds on un and by estimates (4.12)
and (4.13) some H1

xL
2
M bounds on fn. This means that the time-existence T0 can be chosen the

same at each step, so the time T will be reached in a finite number of steps. This completes the
proof of Theorem 3.
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5 Uniform estimates for the sequence of approximate so-

lutions and end of the proof

Let us introduce the new function

ψn = fn − aM(q)

where

(5.1) a =
1

R2
∫
D
M(q) dq

=
δ + 1

πR2
.

It is not hard to check that the couple (un, fn) verifies (3.4)–(3.6) if and only if the couple
(un, ψn) verifies the system of equations (5.2)–(5.4) below:

(5.2) ∂tu
n + α1Au

n + Pn(u
n · ∇un) = α2Pn

[
∇x ·

∫

D

q ⊗ q

1− |q|2ψ
n dq

]

and

(5.3) ∂tψ
n + un · ∇xψ

n − α3∇q ·
[
M∇q

(
ψn

M

)]
+∇q · (σ(un)qψn) = −a∇q · [σ(un)qM ]

with respect to the initial conditions

(5.4) un
∣∣
t=0

= un0 , ψn
∣∣
t=0

= ψn0 ≡ fn0 − aM(q).

We observe that relation (3.1) can be rewritten as

(5.5) ψn0 → ψ0 ≡ f0 − aM in Hs
xL

2
M

as n→ ∞, while relation (4.3) is equivalent to

(5.6)

∫

D

ψn dq ≡ 0.

Remark 4. We observe that

∇q · (σ(un)qM) = ∇q · (σ(un)q)M + (σ(un)q) · ∇qM = (σ(un)q) · ∇qM.

We used above that tr[σ(un)] = 0 so ∇q · (σ(un)q) = 0. Since ∇qM is proportional to q we infer
that if σ(un) is skew-symmetric then

∇q · (σ(un)qM) = 0.

We conclude that in the corotational case the right-hand side of the equation of ψn given in relation
(5.3) vanishes.

We will show now some uniform (in n) estimates on the approximate solutions un and ψn

constructed above. In the calculations below, C is a generic notation for a constant that does not
depend on n and its numerical value changes from one calculation to another.
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L2 estimates in the corotational case. Our first bound is a L2 energy estimate on
un.

Lemma 5. We have that

‖un(t)‖2L2(Ω) + α1

∫ t

0

‖∇un‖2L2(Ω) ≤ ‖u0‖2L2(Ω) + α4‖ψ0‖2L2
xL

2
M

∀t ≥ 0,

where

α4 =
πα2

2

8δ4α1α3
.

Proof. This estimate is well-known in the case of domains without boundaries. We only have to
check that it goes through in the case of domains with boundaries, and also that it is compatible
with our approximation procedure. Moreover, we need to compute the precise best constants so
we will give a detailed proof.

Recall that σ(un) = ∇un − (∇un)t. Given that σ(un) is trace-free we have that

∇q · (σ(un)qψn) = σ(un)t : q ⊗∇qψ
n.

We multiply next (5.3) by ψn/M and integrate in x and q. After recalling that the right-hand
side of (5.3) vanishes in the corotational case, we obtain

1

2

d

dt
‖ψn‖2L2

xL
2
M
+ α3‖ψn‖2L2

xḢ
1
M

= −
∫∫

Ω×D

σ(un)t : q ⊗∇qψ
nψ

n

M

= −1

2

∫∫

Ω×D

σ(un)t : q ⊗∇q(|ψn|2)M

=
1

2

∫∫

Ω×D

σ(un)t : q ⊗∇qM |ψn|2

= 0.

(5.7)

since σ(un) is trace free and skew-symmetric and q ⊗∇qM is symmetric.
We multiply now (5.2) by un and integrate in space to obtain

1

2

d

dt
‖un‖2L2(Ω) + α1‖∇un‖2L2(Ω) = α2

∫

Ω

un∇x ·
∫

D

q ⊗ q

1− |q|2ψ
n dq dx

= −α2

∫∫

Ω×D

∇un :
q ⊗ q

1− |q|2ψ
n

(5.8)

Next,

−α2

∫∫

Ω×D

∇un :
q ⊗ q

1− |q|2ψ
n =

α2

2δ

∫∫

Ω×D

∇un : q⊗∇qM
ψn

M
= −α2

2δ

∫∫

Ω×D

∇un : q⊗∇q

(ψn
M

)
M

≤ α2

2δ
‖∇un‖L2(Ω)‖q

√
M‖L2(D)‖ψn‖L2

xḢ
1
M
≤ α1

2
‖∇un‖2L2(Ω) +

πα2
2

8δ4α1
‖ψn‖2

L2
xḢ

1
M

.

We used above that

(5.9) ‖q
√
M‖L2(D) =

√
π√

(δ + 1)(δ + 2)
≤

√
π

δ
.

We infer now from (5.8) that

d

dt
‖un‖2L2(Ω) + α1‖∇un‖2L2(Ω) ≤

πα2
2

4δ4α1
‖ψn‖2

L2
xḢ

1
M

.
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Integrating the above relation and (5.7) in time implies that

‖un(t)‖2L2(Ω) + α1

∫ t

0

‖∇un‖2L2(Ω) ≤ ‖un0‖2L2(Ω) +
πα2

2

8δ4α1α3
‖ψn0‖2L2

xL
2
M
.

This completes the proof of the lemma.

Remark 6. A similar L2 energy estimate holds true in the general case too, see [JLLO06].

Hs estimates for un. The next step is to prove Hs estimates for un.

Lemma 7. There exist a constant C1 > 0 depending only on Ω and s such that:

(5.10)
d

dt
‖A s

2un‖2L2(Ω) + α1‖A
1+s
2 un‖2L2(Ω) ≤ C1min

[
h(t)‖A s

2un‖2L2(Ω), ‖A
s
2un‖L2(Ω)‖A

s+1
2 un‖2L2(Ω)

]

+ C1
α2

δ2
‖A 1+s

2 un‖L2(Ω)‖ψn‖Hs
xḢ

1
M

where the function h is integrable on R+ and satisfies

(5.11)

∫ ∞

0

h(t) dt ≤ α
− 4

s

1

(
‖u0‖2L2(Ω) + α4‖ψ0‖2L2

xL
2
M

) 2
s

.

Proof. Let us take the scalar product in L2(Ω) of (5.2) with Asun. We get

1

2

d

dt
‖A s

2un‖2L2(Ω) + α1‖A
1+s

2 un‖2L2(Ω) = −
∫

Ω

A
s−1
2 Pn(u

n · ∇un) ·A s+1
2 un dx

+ α2

∫

Ω

A
s−1
2 Pn

[
∇x ·

∫

D

q ⊗ q

1− |q|2ψ
n dq

]
·A s+1

2 un dx.

Using that s ∈ (1, 3
2
) and relation (3.3) we infer that

(5.12)
d

dt
‖A s

2un‖2L2(Ω) + 2α1‖A
1+s
2 un‖2L2(Ω) ≤ C‖un · ∇un‖Hs−1‖A 1+s

2 un‖L2(Ω)

+ α2

∥∥A s−1
2 Pn

[
∇x ·

∫

D

q ⊗ q

1− |q|2ψ
n dq

]∥∥
L2(Ω)

‖A 1+s
2 un‖L2(Ω).

Standard product rules and interpolation in Sobolev spaces imply that

‖un · ∇un‖Hs−1 ≤ C‖un‖
H

s
2
‖un‖

H1+ s
2
≤ C‖un‖1−

s
2

L2 ‖un‖
s
2

H1‖un‖
s
2
Hs‖un‖1−

s
2

H1+s .

We infer that

C‖un · ∇un‖Hs−1‖A 1+s
2 un‖L2(Ω) ≤ C‖un‖1−

s
2

L2 ‖un‖
s
2

H1‖A
s
2un‖

s
2

L2‖A
1+s
2 un‖2−

s
2

L2

≤ α1‖A
1+s
2 un‖2L2 + Cα

1− 4
s

1 ‖un‖
4
s
−2

L2 ‖∇un‖2L2‖A
s
2un‖2L2 .

On the other hand, using again the product rules in Sobolev spaces we can also estimate

‖un · ∇un‖Hs−1 ≤ C‖un‖Hs‖∇un‖Hs−1 ≤ C‖un‖2Hs ≤ C‖A s
2un‖2L2 ≤ C‖A s

2un‖L2‖A s+1
2 un‖L2 .

Hence

(5.13) C‖un · ∇un‖Hs−1‖A 1+s
2 un‖L2(Ω) ≤ α1‖A

1+s
2 un‖2L2

+ Cmin
[
α
1− 4

s

1 ‖un‖
4
s
−2

L2 ‖∇un‖2L2‖A
s
2un‖2L2, ‖A

s
2un‖L2‖A s+1

2 un‖2L2

]
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To bound the last term in (5.12) we observe that

∇x ·
∫

D

q ⊗ q

1− |q|2ψ
n dq = − 1

2δ
∇x ·

∫

D

ψn

M
[∇q ⊗ (qM)] dq +

1

2δ
∇x ·

[
Id

∫

D

ψn

M
dq
]

=
1

2δ
∇x ·

∫

D

∇q

(ψn
M

)
⊗ qM dq +

1

2δ
∇x ·

[
Id

∫

D

ψn

M
dq
]

where Id denotes the identity matrix. The last term above is a gradient, so it belongs to the kernel
of Pn. Therefore, the last term in (5.12) may be estimated as follows

∥∥A s−1
2 Pn

[
∇x ·

∫

D

q ⊗ q

1− |q|2ψ
n dq

]∥∥
L2(Ω)

=
1

2δ

∥∥A s−1
2 Pn

[
∇x ·

∫

D

∇q

(ψn
M

)
⊗ qM dq

]∥∥
L2(Ω)

≤ C

δ
‖ψn‖Hs

xḢ
1
M
‖q
√
M‖L2(D)(5.14)

≤ C

δ2
‖ψn‖Hs

xḢ
1
M

where we used (5.9).
Relation (5.10) follows from relations (5.12), (5.13) and (5.14) if we set

h(t) = Cα
1− 4

s

1 ‖un‖
4
s
−2

L2 ‖∇un‖2L2

for some suitable constant C. Relation (5.11) is a consequence of Lemma 5 and this completes
the proof of the lemma.

Hs estimates for ψn. We need now estimates on ψn. For technical reasons, in order to
obtain these estimates we need to work in R2 for the x variable. Because there are no boundary
conditions for ψ in the x variable, it is possible to extend the equation of ψn to R

2 ×D.
Let E be a total extension operator from Ω to R2, i.e. a linear operator bounded from Hσ(Ω)

to Hσ(R2) for every σ ≥ 0 (in fact we only need it to be bounded for σ ∈ [0, 3], that is we only
need a 3-extension operator). The existence of such operators is well-known, see e.g. [Ada75,
Chapter 4].

We define now
ψ
n

0 = E(ψn0 )

so that ψ
n

0 ∈ H
s

xL
2
M and

(5.15) ‖ψn0‖Hs

xL
2
M
≤ C0‖ψn0 ‖Hs

xL
2
M
,

where C0 depends only on Ω. The way the extension operator is constructed in [Ada75] ensures
that the integral in the q variable is preserved:

(5.16)

∫

D

ψ
n

0 dq ≡ 0

since (5.6) holds true.
Next, we want to extend un to a smooth divergence free vector field defined on R2. In order to

preserve the divergence free condition, we need to introduce the stream function. For a divergence
free vector field v defined on Ω and vanishing on the boundary of Ω, it is well-known that there
exists a stream function, i.e. a scalar function J such that v = ∇⊥J. Moreover, since v vanishes
on ∂Ω we have that J is constant on each connected component of ∂Ω. Let Γ0 be such a connected
component. Since Ω is connected, we clearly have existence and uniqueness of J if we impose that
J vanishes on Γ0. In the sequel, we define J(v) as the unique stream function of v vanishing on
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Γ0. By the Poincaré inequality, we have that J is bounded from Hσ(Ω) ∩H1
0 (Ω) to H

σ+1(Ω) for
all σ ≥ 1.

We define now un = ∇⊥E(J(un)). Clearly un
∣∣
Ω
= un and

(5.17) ‖un‖Hσ(R2) ≤ C‖E(J(un))‖Hσ+1(R2) ≤ C‖J(un)‖Hσ+1(Ω) ≤ C‖un‖Hσ(Ω) ∀σ ≥ 1,

where C = C(Ω, σ).
We finally define ψ

n
as the unique solution in R2 ×D of the PDE

(5.18) ∂tψ
n
+ un · ∇xψ

n − α3∇q ·
[
M∇q

(
ψ
n

M

)]
+∇q ·

(
σ(un)qψ

n
)
= −a∇q · [σ(un)qM ] .

The existence and uniqueness of such a ψ
n
follows from the argument given at the beginning of

the proof of Theorem 3 (the variable x plays the role of a parameter only). By uniqueness of
solutions of (5.3) and (5.4), we have that ψ

n∣∣
Ω×D

= ψn. Moreover, given (5.16) we can prove as

for ψn that relation (5.6) holds true for ψ
n
:

(5.19)

∫

D

ψ
n
dq ≡ 0.

The following lemma gives our estimates on ψ
n
.

Lemma 8. There exist a constant C2 > 0 depending only on Ω and s such that

(5.20)
d

dt
‖ψn‖2

H
s

xL
2
M

+ 2α3‖ψ
n‖2

H
s

xḢ
1
M

≤ C2‖A
1+s
2 un‖L2(Ω)‖ψ

n‖Hs

xL
2
M
‖ψn‖Hs

xḢ
1
M

+
C2

R2
‖A 1+s

2 un‖L2(Ω)‖ψ
n‖Hs

xḢ
1
M

in the general case and

(5.21)
d

dt
‖ψn‖2

H
s

xL
2
M

+ 2α3‖ψ
n‖2

H
s

xḢ
1
M

≤ C2‖A
1+s
2 un‖L2(Ω)‖ψ

n‖Hs

xL
2
M
‖ψn‖Hs

xḢ
1
M
.

in the corotational case.

Proof. We apply the operator Λsx to (5.18), multiply by Λsxψ
n
/M and integrate in x and q to

obtain

1

2

d

dt
‖ψn‖2

H
s

xL
2
M

+ α3‖ψ
n‖2

H
s

xḢ
1
M

= −
∫∫

R2×D

Λsx(u
n · ∇xψ

n
)
Λsxψ

n

M
−
∫∫

R2×D

Λsx∇q ·
(
σ(un)qψ

n
) Λsxψ

n

M

− a

∫∫

R2×D

Λsx∇q · [σ(un)qM ]
Λsxψ

n

M

≡ I1 + I2 + I3.

We bound first I1. Let [Λ
s
x, u

n] be the standard commutator defined by [Λsx, u
n]f = Λsx(u

nf)−
unΛsxf . Using that un is divergence free, we can write

I1 = −
∫∫

R2×D

un·∇xΛ
s
xψ

nΛsxψ
n

M
−
∫∫

R2×D

divx[Λ
s
x, u

n]ψ
nΛsxψ

n

M
= −

∫∫

R2×D

divx[Λ
s
x, u

n]ψ
nΛsxψ

n

M

≤ ‖Λsxψ
n‖

L
2
xL

2
M

‖ divx[Λsx, un]ψ
n‖

L
2
xL

2
M

≤ ‖Λsxψ
n‖

L
2
xL

2
M

∥∥‖[Λsx, un]ψ
n‖H1(R2)

∥∥
L2
M

≤ C‖Λsxψ
n‖

L
2
xL

2
M

∥∥‖un‖Hs+1(R2)‖ψ
n‖Hs(R2)

∥∥
L2
M

= C‖un‖Hs+1(R2)‖ψ
n‖2

H
s

xL
2
M

≤ C‖A 1+s
2 un‖L2(Ω)‖ψ

n‖2
H

s

xL
2
M
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where we used the embedding Hs ⊂ L∞, the classical commutator estimates, see [Tay91, Section
3.6], and relation (5.17).

Next, we write

I2 =

∫∫

R2×D

Λsx

(
σ(un)qψ

n
)
· ∇q

(Λsxψ
n

M

)
≤ C‖ψn‖Hs

xḢ
1
M

∥∥‖σ(un)qψn‖Hs(R2)

∥∥
L2
M

≤ C‖ψn‖Hs

xḢ
1
M

∥∥‖σ(un)‖Hs(R2)‖ψ
n‖Hs(R2)

∥∥
L2
M

≤ C‖ψn‖Hs

xḢ
1
M
‖ψn‖Hs

xL
2
M
‖A 1+s

2 un‖L2(Ω).

We now make an integration by parts in I3 and bound as follows

I3 = a

∫∫

R2×D

Λsx [σ(u
n)qM ] · ∇q

(Λsxψ
n

M

)
≤ a‖Λsxσ(un)‖L2(R2)‖q

√
M‖L2(D)‖ψ

n‖Hs

xḢ
1
M

≤ C

R2
‖A 1+s

2 un‖L2(Ω)‖ψ
n‖Hs

xḢ
1
M

where we used (5.1) and (5.9).
From relation (5.19) we have that

∫
D
Λsxψ

n
dq ≡ 0. Relation (2.3) together withe the above

estimates imply (5.20). The corotational case (5.21) also follows since in this case I3 = 0.

Hs uniform bounds in the general case. We consider here the general case σ(u) =
∇u. Let us first state the following remark.

Remark 9. One can easily check that, given four strictly positive constants A1, A2, A3, A4 we have
the following property: there exists some ω > 0 such that

A1X
2 + ωA2Y

2 ≥ A3XY + ωA4XY ∀ X, Y

if and only if A1A2 ≥ A3A4. Moreover, if the later is true then one can choose ω = 2A1A2−A3A4

A2
4

which is of the same order as A1A2/A
2
4.

We impose now that the condition above holds true with constants

A1 =
α1

2
, A2 = α3, A3 = C1

α2

δ2
, A4 =

C2

R2
,

that is we impose that

(5.22) α1α3δ
2R2 ≥ 2C1C2α2.

Let ω be as in the previous remark, of the same order as α1α3R
4. Assume moreover that

(5.23) ‖A s
2un0‖2L2(Ω) + ω‖ψn0‖2Hs

xL
2
M

< min
( α2

1

16C2
1

,
α1α3

4C2
2

)
.

We multiply (5.20) by ω and add the result to (5.10). After using Remark 9 and recalling that
ψ
n∣∣

Ω×D
= ψn we obtain that

d

dt
(‖A s

2un‖2L2(Ω) + ω‖ψn‖2
H

s

xL
2
M

) +
α1

2
‖A 1+s

2 un‖2L2(Ω) + ωα3‖ψ
n‖2

H
s

xḢ
1
M

≤ C1‖A
s
2un‖L2(Ω)‖A

s+1
2 un‖2L2(Ω) + ωC2‖A

1+s
2 un‖L2(Ω)‖ψ

n‖Hs

xL
2
M
‖ψn‖Hs

xḢ
1
M
.
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Let T0 be the first time such that

(5.24) ‖A s
2un(T0)‖2L2(Ω) + ω‖ψn(T0)‖2Hs

xL
2
M

= min
( α2

1

16C2
1

,
α1α3

4C2
2

)
.

Then, for t ∈ [0, T0], we have that

‖A s
2un(t)‖ ≤ α1

4C1

so that
C1‖A

s
2un(t)‖L2(Ω)‖A

s+1
2 un(t)‖2L2(Ω) ≤

α1

4
‖A 1+s

2 un(t)‖2L2(Ω).

We also have that

‖ψn(t)‖Hs

xL
2
M
≤ 1

2C2

√
α1α3

ω

so

ωC2‖A
1+s
2 un‖L2(Ω)‖ψ

n‖Hs

xL
2
M
‖ψn‖Hs

xḢ
1
M
≤

√
α1α3ω

2
‖A 1+s

2 un‖L2(Ω)‖ψ
n‖Hs

xḢ
1
M

≤ α1

8
‖A 1+s

2 un‖2L2(Ω) +
ωα3

2
‖ψn‖2

H
s

xḢ
1
M

We deduce from the above relations that, for t ∈ [0, T0],

(5.25)
d

dt
(‖A s

2un‖2L2(Ω) + ω‖ψn‖2
H

s

xL
2
M

) +
α1

8
‖A 1+s

2 un‖2L2(Ω) +
ωα3

2
‖ψn‖2

H
s

xḢ
1
M

≤ 0

which implies that

‖A s
2un(T0)‖2L2(Ω) + ω‖ψn(T0)‖2Hs

xL
2
M

≤ ‖A s
2un0‖2L2(Ω) + ω‖ψn0‖2Hs

xL
2
M

< min
( α2

1

16C2
1

,
α1α3

4C2
2

)
.

This contradicts (5.24). Therefore the time T0 cannot exist, so

‖A s
2un(t)‖2L2(Ω) + ω‖ψn(t)‖2

H
s

xL
2
M

< min
( α2

1

16C2
1

,
α1α3

4C2
2

)
∀t ≥ 0

and relation (5.25) must hold true for all t ≥ 0.
We state the result proved in this paragraph in the following proposition.

Proposition 10. Suppose that σ(u) = ∇u and that the material coefficients verify relation (5.22).
Moreover assume that

(5.26) ‖u0‖2Hs(Ω) + C2
0ω‖ψ0‖2Hs

xL
2
M
< min

( α2
1

16C2
1

,
α1α3

4C2
2

)
.

Then the sequence un is uniformly bounded in the space L∞(R+;H
s(Ω)) ∩ L2(R+;H

s+1(Ω)) and
the sequence ψn is uniformly bounded in L∞(R+;H

s
xL

2
M) ∩ L2(R+;H

s
xḢ

1
M).

Proof. It suffices to show that (5.26) implies (5.23) for n sufficiently large. This follows at once
from (5.5), (3.7) and (5.15).
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Hs uniform bounds in the corotational case. We consider now the corotational
case σ(u) = ∇u− (∇u)t. Denoting

f1 = ‖A s
2un‖2L2(Ω), f2 = ‖A s+1

2 un‖2L2(Ω), g1 = ‖ψn‖2
H

s

xL
2
M

and g2 = ‖ψn‖2
H

s

xḢ
1
M

and recalling that ψ
n∣∣

Ω×D
= ψn, we have from relations (5.10) and (5.21) that

f ′
1 + α1f2 ≤ C1hf1 +

C1α2

δ2

√
f2g2

and that

g′1 + 2α3g2 ≤ C2

√
g1f2g2.

Using the following two bounds

C2

√
g1f2g2 ≤ α3g2 +

C2
2

4α3

g1f2 and
C1α2

δ2

√
f2g2 ≤

α1

2
f2 +

C2
1α

2
2

2α1δ4
g2

we infer that

f ′
1 +

α1

2
f2 ≤ C1hf1 +

C2
1α

2
2

2α1δ4
g2(5.27)

and that

g′1 + α3g2 ≤
C2

2

4α3
g1f2.(5.28)

Let ε be a small enough constant to be chosen later but such that

(5.29) g1(0) < ε.

Let T0 be the first time such that

(5.30) g1(T0) = ε.

We have that g1(t) < ε for all t ∈ [0, T0). Using this in (5.28) and integrating in time implies that
for all t ∈ [0, T0]

(5.31) g1(t) + α3

∫ t

0

g2 ≤ g1(0) +
C2

2ε

4α3

∫ t

0

f2.

Multiplying (5.27) by e−C1
∫ t

0
h and integrating in time results in

f1(t) +
α1

2

∫ t

0

f2(s)e
C1

∫ t

s
hds ≤ f1(0)e

C1

∫ t

0 h +
C2

1α
2
2

2α1δ4

∫ t

0

g2(s)e
C1

∫ t

s
hds

We use now the estimate (5.31) above. We infer

f1(t) +
α1

2

∫ t

0

f2 ≤
[
f1(0) +

C2
1α

2
2

2α1α3δ4
g1(0)

]
eC1

∫
∞

0 h +
C2

1C
2
2α

2
2ε

8α1α2
3δ

4
eC1

∫
∞

0 h

∫ t

0

f2.

We now add the following assumption on ε:

(5.32)
C2

1C
2
2α

2
2ε

8α1α
2
3δ

4
eC1

∫
∞

0
h ≤ α1

4
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Assuming that this is true, we further obtain that for all t ∈ [0, T0]

f1(t) +
α1

4

∫ t

0

f2 ≤
[
f1(0) +

C2
1α

2
2

2α1α3δ4
g1(0)

]
eC1

∫
∞

0
h.

Going back to (5.28), ignoring the second term on the left-hand side and using the Gronwall
lemma implies now that

(5.33) g1(t) ≤ g1(0) exp
{ C2

2

α1α3

[
f1(0) +

C2
1α

2
2

2α1α3δ4
g1(0)

]
eC1

∫
∞

0
h
}

for all t ∈ [0, T0]. If we further assume that

(5.34) g1(0) exp
{ C2

2

α1α3

[
f1(0) +

C2
1α

2
2

2α1α3δ4
g1(0)

]
eC1

∫
∞

0 h
}
< ε

then we observe that setting t = T0 in (5.33) contradicts (5.30). We conclude that under the
hypothesis (5.29), (5.32) and (5.34) the time T0 cannot exist, so all the previous relations hold
true for all times t ≥ 0. Clearly (5.29) is implied by (5.34). Recalling (5.11) we therefore observe
that there exists some ε verifying (5.29), (5.32) and (5.34) if we have that

(5.35) g1(0) exp
{ C2

2

α1α3

[
f1(0) +

C2
1α

2
2

2α1α3δ4
g1(0)

]
e
C1α

−
4
s

1

(
‖u0‖2

L2(Ω)
+α4‖ψ0‖2

L2
xL2

M

) 2
s}

<
2α2

1α
2
3δ

4

C2
1C

2
2α

2
2

exp
[
−C1α

− 4
s

1

(
‖u0‖2L2(Ω) + α4‖ψ0‖2L2

xL
2
M

) 2
s

]
.

We state the result proved in this paragraph in the following proposition.

Proposition 11. Suppose that σ(u) = (∇u − ∇u)t. There exists a constant C = C(Ω, s) such
that if

(5.36) ‖ψ0‖Hs
xL

2
M
exp
{ C

α1α3

[
‖u0‖2Hs(Ω) +

Cα2
2

α1α3δ4
‖ψ0‖2Hs

xL
2
M

]
e
Cα

−
4
s

1

(
‖u0‖2

L2(Ω)
+α4‖ψ0‖2

L2
xL2

M

) 2
s}

<
α2
1α

2
3δ

4

Cα2
2

exp
[
−Cα− 4

s

1

(
‖u0‖2L2(Ω) + α4‖ψ0‖2L2

xL
2
M

) 2
s

]

then the sequence un is uniformly bounded in the space L∞(R+;H
s(Ω)) ∩ L2(R+;H

s+1(Ω)) and
the sequence ψn is uniformly bounded in L∞(R+;H

s
xL

2
M) ∩ L2(R+;H

s
xḢ

1
M).

Proof. It suffices to show that (5.36) implies (5.35) for n sufficiently large. This follows at once
from (5.5), (3.7) and (5.15).

Remark 12. It is not difficult to see that there exists some constant K = K(Ω, s, α1, α2, α3, α4, δ)
such that condition (5.36) is implied by the following condition:

‖ψ0‖Hs
xL

2
M
≤ exp

[
−K(1 + ‖u0‖Hs(Ω))e

K‖u0‖
4
s

L2(Ω)

]
.

End of the proof. Clearly the hypothesis of Proposition 10 is implied by that of Theorem
1, and the hypothesis of Proposition 11 is implied by that of Theorem 2 (see also Remark 12).
Therefore, under the hypothesis of Theorem 1 in the general case and under the hypothesis of
Theorem 2 in the corotational case, we have that the sequence un is uniformly bounded in the space
L∞(R+;H

s(Ω))∩L2(R+;H
s+1(Ω)) and the sequence fn is uniformly bounded in L∞(R+;H

s
xL

2
M )∩
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L2(R+;H
s
xḢ

1
M). Using the equations of un and fn (3.4) and (3.5) this immediately implies some

time-derivative estimates for un and fn. A standard compactness argument allows to pass to the
limit and find a solution (u, f) of (2.1)–(2.2) such that u ∈ L∞(R+;H

s(Ω)) ∩ L2(R+;H
s+1(Ω))

and f ∈ L∞(R+;H
s
xL

2
M ) ∩ L2(R+;H

s
xḢ

1
M). We skip the details since this is very classical and

straightforward. Next, we clearly have that u is divergence free and tangent to the boundary.
Passing to the limit in (4.3) shows that that relation holds true with fn replaced by f . Finally,
the equation (3.5) preserves the sign if the initial data is single-signed so fn ≥ 0 which implies in
turn that f ≥ 0. This completes the proof of the existence of the solution.

The uniqueness of solutions is obvious and follows by making energy estimates on the difference
between two solutions. If (u1, f1) and (u2, f2) are two solutions with the same data, then we
multiply the difference of the equations of u1 and u2 by u1−u2 and the difference of the equations
of f1 and f2 by f1−f2

M
and add the two resulting relations. Uniqueness follows easily from the

Gronwall inequality using that u ∈ L2(R+;Lip) and the linearity in the q variable of the equation
of f . This is very standard so we skip the details. Remark that even though we show that (2.2)
holds true in the sense of distributions, i.e. (2.2) can be multiplied by test functions which are
compactly supported in the q variable, it can in fact be multiplied by functions which are H1

M in
the q variable. This follows from a density argument using that C∞

0 (D) is dense in H1
M(D) as was

proved in [Mas08]. This completes the proofs of Theorems 1 and 2.

6 Final remarks

First, we would like to explain here why the condition on the coefficients (1.5) is necessary in
the general case on bounded domains. We will observe that a certain cancellation that occurs in
the case without boundary does not work anymore in the presence of boundaries. When making
Hm estimates on u and Hm

x L
2
M estimates on ψ = f−aM we apply ∂α to the equation of u given in

(2.1) and multiply by ∂αu, we apply ∂α to the equation of ψ given in (5.3) (where we dropped the
superscript n) and multiply by ∂αψ

2δaM
and we add the two resulting relations. We get the following

right-hand side:
∫

Ω

[
∇x ·

∫

D

q ⊗ q

1− |q|2∂
α
x f dq

]
· ∂αxu−

1

2δ

∫∫

Ω×D

∇q · [∇∂αxu qM ]
∂αx f

M
.

In the case of a domain without boundary, making an integration by parts implies, after some
calculations, that the term above vanishes. But in the case of a domain with boundary, the
boundary terms do not vanish. Moreover, due to the presence of the pressure in the equation of
u, the first term above should have the Leray projector P in front of ∇x· making the validity of
this identity even more unlikely in presence of boundaries. Since the term above does not vanish
anymore, we need to be able to say that it is small (negligible compared to others) and this in
turn requires the smallness condition (1.5).

Second, we would like to explain why the restriction 1 < s < 3
2
is necessary. In order to be

able to control the equation on f we basically need Lipschitz regularity for u. If we assume that
the initial velocity belongs to Hs(Ω), then the standard regularity for u obtained through energy
estimates is L2

tH
s+1
x . To get Lipschitz regularity in x we therefore need to assume that s > 1. On

the other hand, when making the same Hs estimates on un we are led to applying the projector
Pn to the equation of un (4.4) and to estimate the right-hand side in Hs−1. This requires the
projection Pn to be bounded in Hs−1 which implies s − 1 < 1

2
so s < 3

2
. This explains why the

condition 1 < s < 3
2
is required. We would also like to point out that in dimension three, the first

requirement that u to be Lipschitz implies s > 3
2
while the second requirement does not change

leading to contradictory assumptions. This means that our approach does not work in dimension
three.
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43 bd. du 11 novembre, Villeurbanne Cedex F-69622, France.
Email: ciuperca@math.univ-lyon1.fr
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