
HAL Id: hal-00583704
https://hal.science/hal-00583704v2

Preprint submitted on 2 May 2011 (v2), last revised 4 Jul 2011 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conformal Galilei groups, Veronese curves, and
Newton-Hooke spacetimes

Christian Duval, Peter Horvathy

To cite this version:
Christian Duval, Peter Horvathy. Conformal Galilei groups, Veronese curves, and Newton-Hooke
spacetimes. 2011. �hal-00583704v2�

https://hal.science/hal-00583704v2
https://hal.archives-ouvertes.fr


Conformal Galilei groups,

Veronese curves, and

Newton-Hooke spacetimes

C. DUVAL‡
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1 Introduction

“Newton-Hooke” spacetimes provide solutions of the nonrelativistic gravitational

field equations with nonvanishing cosmological constant. They can be viewed as

deformations of their Galilean counterparts, to which they reduce when the cosmo-

logical constant is turned off. Remarkably, they may play a role in cosmology [1, 2, 3].

They also can be obtained as nonrelativistic limits of the de Sitter or anti-de Sitter

solutions of Einstein’s equations [1, 2, 3, 4, 5, 6].

Another way of constructing these nonrelativistic spacetimes is to first contract

the (anti-)de Sitter group to yield the “Newton-Hooke” group(s), and then factor

out the homogeneous part of the latter [3].

On the other hand, various conformal extensions of the Galilean Lie algebra

have attracted much recent attention [7, 9, 10, 11], and one may wonder about their

group structure and associated homogeneous spacetimes.
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This paper is devoted to studying this question.

The most common, and historically first, of such extensions, referred to as the

Schrödinger group [12, 13, 14], has been first discovered in classical mechanics [15],

and then also for the heat equation [16], before being forgotten for almost one

hundred years and then rediscovered as the maximal group of symmetries of the

free Schrödinger equation [17, 11]. In addition to those of the Galilei group, it

has two more generators given by their spacetime action (x, t) 7→ (x∗, t∗), namely

dilations

x∗ = ax, t∗ = a2t, (1.1)

with a ∈ R
∗, and expansions (also called inversions), viz.,

x∗ = Ω(t)x, t∗ = Ω(t) t, where Ω(t) =
1

ct+ 1
, (1.2)

with c ∈ R. These transformations span, along with Galilean time-translations:

x∗ = x, t∗ = t + b, with b ∈ R, the unimodular group SL(2,R). Note that the

dynamical exponent is z = 2; see (1.1). Schrödinger symmetry typically arises for

massive systems, as it combines with the one-parameter central extension of the

Galilei group.

The Conformal Galilei (CG) symmetry algebra1 [9, 10] was first found, and

then discarded, by Barut in his attempt to derive the by then newly (re)discovered

Schrödinger symmetry by contraction from the relativistic conformal Lie algebra

[18]. At the group level, this new symmetry also features an SL(2,R) subgroup

generated by time-translations augmented with modified dilations

x∗ = ax, t∗ = a t, (1.3)

and expansions

x∗ = Ω2(t)x, t∗ = Ω(t) t, (1.4)

with the same parameters and factor Ω(t) as above.

This second type of nonrelativistic conformal symmetry has dynamical exponent

is z = 1, and also contains accelerations

x∗ = x+B2t
2, t∗ = t, (1.5)

where B2 ∈ R
d (our notation will be justified below, see (4.11) and (4.13)). More-

over, this second type of conformal extension only allows for a vanishing mass [9].

It is rather difficult therefore to find physical systems which exhibit this kind of

symmetry [19].

1Henkel [7] refers to it as to “Alt1”.

3



Both types of nonrelativistic symmetries have been related to the geometric

“Newton-Cartan” structure of nonrelativistic spacetime [17, 20, 21, 22, 11].

Now, as recognized by Negro et al. [22], and by Henkel [23, 7], both infini-

tesimal Schrödinger and CG symmetry belong to a much larger, generally infinite

dimensional, class of Lie algebras with arbitrary, possibly even fractional, dynamical

exponent z; their “conformal nonrelativistic algebra” [22] is, however finite dimen-

sional for the particular values

z =
2

N
, N = 1, 2, . . . (1.6)

The terminology is justified by that, for all z as in (1.6), the algebra has an sl(2,R)

Lie subalgebra, highlighted by the dilation generator

X =
1

z
x ·

∂

∂x
+ t

∂

∂t
. (1.7)

Taking into account rotations, boosts, and translations yields, for z = 2, the

Schrödinger algebra; the CG algebra is obtained, for z = 1, after incorporating

also accelerations.

Let us emphasize that, for general z, the results known so far and summarized

here above only concern Lie algebras. However, for both N = 1 (Schrödinger) and

N = 2 (CG), the infinitesimal action integrates to a Lie group action. Our first new

result the derivation of the global group structure for all N as in (1.6).

A crucial observation for our purposes is the following: owing to the factor

Ω(t) = (ct + 1)−1 in (1.2) and (1.4), neither Schrödinger, nor Conformal Galilei

transformations are globally well-defined over ordinary Galilean spacetime. As ex-

plained in Sections 2.2 and 4, Galilei spacetime should be replaced by a “better

one”. Our investigations in Section 5 show indeed that the proper arena where

our conformal Galilei symmetry groups act is in fact provided by Newton-Hooke

spacetimes with quantized negative cosmological constant.

2 Nonrelativistic spacetimes

The Galilei spacetime is the affine space modeled on R
d+1, endowed with its cano-

nical flat affine connection Γ, and a Galilei structure (γ, θ) defined by a pair of

(covariantly) constant tensor fields: (i) a spatial “metric”, viz., the degenerate twice-

symmetric contravariant tensor field

γ =
d∑

i=1

∂

∂xi
⊗

∂

∂xi
(2.1)
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expressed in an affine coordinate system (x1, . . . , xd, xd+1), and (ii) a “clock” pro-

vided by the 1-form

θ = dt (2.2)

where t = xd+1 is an affine coordinate of the time axis, T ∼= R [25, 26, 27, 28].

Notice that θ spans ker(γ).

Generalized Galilei structures consist therefore of triples (M, γ, θ) where M is a

smooth (d+ 1)-dimensional spacetime manifold, γ a twice-symmetric contravariant

tensor field of M whose kernel is spanned by a nowhere vanishing closed 1-form θ,

the Galilei “clock”. Due to the lack of a canonical affine connection on a Galilei

structure, one is compelled to introduce Newton-Cartan (NC) structures as quadru-

ples (M, γ, θ,Γ) where (M, γ, θ) is a Galilei structure, and Γ a symmetric affine

connection compatible with (γ, θ). Upon introducing field equations (i) imposing

extra symmetries to the Riemann curvature tensor, and (ii) relating the Ricci tensor

to the mass-density, ̺, of the sources and the cosmological constant, Λ, viz.,

Ric = (4πG̺− Λ)θ ⊗ θ, (2.3)

the connection Γ is interpreted as the gravitational field in a purely geometric

generalization of Newtonian gravitation theory [25, 26, 27]. See [13] for a formulation

of Newton-Cartan theory in a Kaluza-Klein type (“Bargmann”) framework.

2.1 The Galilei group and its Lie algebra

The group of automorphisms of (Rd+1, γ, θ,Γ) is the Galilei group, Gal(d); it consists

of all diffeomorphisms g ∈ Diff(Rd+1) such that

g∗γ = γ, g∗θ = θ, g∗Γ = Γ. (2.4)

This is the group of symmetries that governs nonrelativistic physics in d spatial

dimensions. It clearly consists of (d+ 2)× (d+ 2) matrices of the form [24]

g =




A B1 B0

0 1 b
0 0 1


 ∈ Gal(d) (2.5)

where A ∈ O(d), and B0,B1 ∈ R
d stand respectively for a space translation and a

boost, and b ∈ R is a time translation.

The (affine) action of Gal(d) on spacetime R
d × R reads

gRd+1 :




x

t
1


 7→




Ax+B1t+B0

t+ b
1


 . (2.6)
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Because of the above definitions (2.4), Galilei transformations (2.6) preserve the

clock (2.2), i.e., they are thus necessarily orthochronous.

Infinitesimal Galilei transformations thus form a Lie algebra, gal(d), spanned

by all vector fields X ∈ Vect(Rd+1) such that

LXγ = 0, LXθ = 0, LXΓ = 0 (2.7)

(see [26, 20] for a generalization to (curved) NC structures); these vector field read

X =
(
ωi
jx

j + βi
1t+ βi

0

) ∂

∂xi
+ ε

∂

∂t
, (2.8)

where ω ∈ so(d), β0,β1 ∈ R
d, and ε ∈ R. Latin indices run in the range 1, . . . , d,

and Einstein’s summation convention is assumed throughout this article.

The Lie algebra gal(d) admits the faithful (d+2)-dimensional (anti-)representation

X 7→ Z where,

Z =




ω β1 β0

0 0 ε
0 0 0


 ∈ gal(d) (2.9)

with the above notation.

2.2 The Schrödinger group and its Lie algebra

Let us first discuss the Schrödinger group, Sch(d), which includes, in addition to the

standard Galilei generators, those of the projective group, PSL(2,R), of the time

axis. Up to a quotient that we will make more precise later on, the Schrödinger

group will be defined as the matrix group whose typical element reads [29, 20]

g =




A B1 B0

0 a b
0 c d



 ∈ Sch(d), (2.10)

where A ∈ O(d), B0,B1 ∈ R
d, and a, b, c, d ∈ R with ad − bc = 1. The projective

“action” of g ∈ Sch(d) on spacetime R
d × R takes the form

gRd+1 :




x

t
1



 7→




Ax+B1t+B0

ct+ d
at+ b

ct+ d

1




(2.11)

defined on the open subset of spacetime where ct+ d 6= 0.

6



It is an easy matter to check that the action (2.11) is consistent with the one

presented in the introduction; Schrödinger dilations (1.1) correspond to b = 0, c = 0,

and expansions (1.2) to a = 1, b = 0, d = 1.

The group structure is Sch(d) = (O(d)× SL(2,R))⋉ (Rd × R
d).

Now, in order to guarantee a well-behaved action of this group on spacetime,

one must demand that time be compactified, viz., T ∼= RP1. In fact, the Schrödinger

group does not act on “ordinary” Galilei spacetime, but rather on the Möbius man-

ifold

M =
(
R

d × (R2\{0})
)
/R∗ (2.12)

fibered above the projective line, RP1, as clear from (2.11). This point will be

further expounded in Section 5.1. See also [20].

Note that (2.12) can be recovered by factoring out the homogeneous subgroup

generated by rotations, expansions, dilations, and boosts,2

M = Sch(d)/H where H =
(
O(d)× Aff(1,R)

)
⋉ R

d. (2.13)

Note that, unlike to conformally compactified Minkowski spacetime (Sd × S1)/Z2,

only time, not space, is compactified here since

M ∼= (Rd × S1)/Z2. (2.14)

It will be shown in Section 5 that the Möbius manifold carries a nonrelativistic

Newton-Cartan structure; it is, in fact a Newton-Hooke spacetime with cosmological

constant Λ = −d, minus the dimension of space; see (5.35).

It has been emphasized [20, 13, 11] that the Schrödinger group can, indeed, be

defined in a geometric way — namely in the NC framework —, i.e., as the group,

Sch(d), of all (locally defined) diffeomorphisms g of Rd+1 such that

g∗(γ ⊗ θ) = γ ⊗ θ & g ∈ Proj(Rd+1,Γ), (2.15)

where Proj(Rd+1,Γ) denotes the set of all projective transformations of spacetime,

namely of all (local) diffeomorphisms which permute the geodesics of (Rd+1,Γ).

Let us stress that the conditions (2.15) imply, in particular, that the diffeo-

morphism g projects on the time axis as an element of PGL(2,R) which must also

preserve time-orientation defined by θ, namely an element of PSL(2,R). The general

solution of (2.15) is therefore given by (2.10), up to a covering; see also (2.11).

2Here, Aff(1,R) stands for the 2-dimensional group of lower-triangular matrices in SL(2,R),
generated by dilations and expansions.
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The Schrödinger Lie algebra, sch(d), is then the Lie algebra of those vector

fields X ∈ Vect(Rd+1) such that3

LX(γ ⊗ θ) = 0 & X ∈ proj(Rd+1,Γ). (2.16)

We easily find that X ∈ sch(d) iff

X =
(
ωi
j x

j + κtxi + λxi + βi
1t + βi

0

) ∂

∂xi
+
(
κt2 + 2λt+ ε

) ∂

∂t
, (2.17)

where ω ∈ so(d), β0,β1 ∈ R
d, and κ, λ, ε ∈ R. The Schrödinger dilation (or

homothety) generator is, indeed, (1.7) with the dynamical exponent z = 2.

Note that sch(d) is, in fact, the (centerless) Schrödinger Lie algebra. Physical

applications also involve a central extension associated with the mass; see, e.g.,

[20, 21, 12, 13, 14, 7, 11].

The Lie algebra sch(d) admits the faithful (d+2)-dimensional (anti-)representa-

tion X 7→ Z where

Z =




ω β1 β0

0 λ ε

0 −κ −λ


 ∈ sch(d) (2.18)

with the same notation as above.

2.3 Schrödinger symplectomorphisms

Let us recall here how Schrödinger symmetry arises in mechanics [11]. The space

of free motions of particle of mass m moving in Euclidean space R
d admits, as we

shall see, the group Sch(d) as a group of symplectomorphisms.

The (2d+1)-dimensional evolutions space V = TRd×R described by the triples

(x, v, t) ∈ R
d × R

d × R is endowed with the presymplectic 2-form

σ = mδijdv
i ∧ (dxj − vjdt). (2.19)

The leaves of the null foliation ker(σ) define the motions (or classical states) of the

particle, and organize themselves in a symplectic manifold (U, ω); here U ∼= T ∗
R

d,

and ω = dpi ∧ dqi with p = mv, and q = x− vt.

3In other words, LXΓλ
µν = δλµϕν + δλνϕµ for some 1-form ϕ of Rd+1 depending on X , and for all

λ, µ, ν = 1, . . . , d+ 1.
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The Schrödinger “action” (2.11) can be canonically lifted to V according to

gV : (x, v, t) 7→ (x∗, v∗, t∗) where

x∗ =
Ax+B1t +B0

ct+ d
, (2.20)

v∗ = (ct + d)(Av +B1 − cx∗), (2.21)

t∗ =
at + b

ct + d
, (2.22)

and a short calculation shows that g∗V σ = σ for all g ∈ Sch(d).

This group preserves the presymplectic form (2.19), hence its kernel, and there-

fore passes to the quotient U = V/ ker(σ) as a group of symplectomorphisms

of (U, ω). The neat outcome is that the Schrödinger group appears as a subgroup

of the affine-symplectic group of U ∼= R
2d, namely4

Sch(d) ⊂ Sp(d,R)⋉ R
2d; (2.23)

we indeed find that




p∗

q∗

1


 =




dA −mcA m(dB1 − cB0)

−
b

m
A aA aB0 − bB1

0 0 1







p

q

1


 (2.24)

and, moreover, dp∗i ∧ dqi
∗
= dpi ∧ dqi, proving the assertion [20]. Although the

Schrödinger group does not actually “act” on the affine Galilei spacetime where

the massive particle dwells, it nevertheless acts in a well-behaved fashion on the

symplectic space of motions.

3 Conformal Newton-Cartan transformations &

finite-dimensional conformal Galilei Lie algebras

In close relationship with the Lorentzian framework, we call conformal Galilei trans-

formation of a general Galilei spacetime (M, γ, θ) any diffeomorphism of M that

preserves the direction of γ. Owing to the fundamental constraint γ(θ) = 0, it fol-

lows that conformal Galilei transformations automatically preserve the direction of

the time 1-form θ.

4Imbedding the Schrödinger algebra into the affine-symplectic Lie algebra is the key for studying
supersymmetric extensions [30].
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In terms of infinitesimal transformations, a conformal Galilei vector field of

(M, γ, θ) is a vector field, X , of M that Lie-transports the direction of γ; we will

thus define X ∈ cgal(M, γ, θ) iff

LXγ = fγ hence LXθ = g θ (3.1)

for some smooth functions f, g of M , depending on X . Then, cgal(M, γ, θ) becomes

a Lie algebra whose bracket is the Lie bracket of vector fields.

The one-form θ being parallel-transported by the NC-connection, one has neces-

sarily dθ = 0; this yields dg ∧ θ = 0, implying that g is (the pull-back of) a smooth

function on T , i.e., that g(t) depends arbitrarily on time t = xd+1, which locally

parametrizes the time axis. We thus have dg = g′(t)θ.

3.1 Conformal Galilei transformations, cgal2/z(d), with dyna-

mical exponent z

One can, at this stage, try and seek nonrelativistic avatars of general relativistic

infinitesimal conformal transformations. Given a Lorentzian (or, more generally,

a pseudo-Riemannian) manifold (M, g), the latter Lie algebra is generated by the

vector fields, X , of M such that

LX(g
−1 ⊗ g) = 0 (3.2)

where g−1 denotes the inverse of the metric g : TM → T ∗M .

It has been shown [28] that one can expand a Lorentz metric in terms of the

small parameter 1/c2, where c stands for the speed of light, as

g = c2θ ⊗ θ − Uγ +O(c−2), g−1 = −γ + c−2U ⊗ U +O(c−4), (3.3)

with the previous notation. Here U is an “observer”, i.e., a smooth timelike vector

field of spacetime M , such that g(U, U) = c2, around which the light-cone opens up

in order to consistently define a procedure of nonrelativistic limit. The Galilei struc-

ture (γ, θ) is recovered via γ = − limc→∞ g−1, and θ = limc→∞(c−2g(U)). In (3.3)

the symmetric twice-covariant tensor field Uγ will define the Riemannian metric of

the spacelike slices in the limiting Galilei structure.

We can thus infer that the nonrelativistic limit of Equation (3.2) would be

LX limc→∞(c−2 g−1 ⊗ g) = 0, viz.

LX(γ ⊗ θ ⊗ θ) = 0. (3.4)
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More generally, we will consider

LX(γ
⊗m ⊗ θ⊗n) = 0 (3.5)

for some m = 1, 2, 3, . . ., and n = 0, 1, 2, . . ., to be further imposed on the vector

fields X ∈ cgal(M, γ, θ). This is equivalent to Equation (3.1) together with the extra

condition

f + q g = 0 where q =
n

m
. (3.6)

Indeed, LX(γ
⊗m ⊗ θ⊗n) = 0 implies LXγ = fγ and LXθ = g θ for some functions f

and g of M such that mf+ng = 0. Equation (3.4) plainly corresponds to the special

case m = 1, n = 2. From now on, we will call dynamical exponent the quantity

z =
2

q
(3.7)

where q is as in (3.6). This quantity will be shown to match the ordinary notion of

dynamical exponent; see, e.g., [14, 7] and [11].

We will, hence, introduce the Galilean avatars, cgal2/z(M, γ, θ), of the Lie al-

gebra so(d + 1, 2) of conformal vector fields of a pseudo-Riemannian structure of

signature (d, 1) as the Lie algebras spanned by the vector fields X of M satisfy-

ing (3.1), and (3.5). We will call cgal2/z(M, γ, θ) the conformal Galilei Lie algebra

with dynamical exponent z (see (3.7)). This somewhat strange notation will be

justified in the sequel.

The Lie algebra

sv(M, γ, θ) = cgal1(M, γ, θ) (3.8)

is the obvious generalization to Galilei spacetimes of the Schrödinger-Virasoro Lie

algebra sv(d) = sv(R × R
d, γ, θ) introduced in [14] (see also [7]) from a different

viewpoint in the case of a flat NC-structure. The representations of the Schrödinger-

Virasoro group and of its Lie algebra, sv(d), as well as the deformations of the latter

have been thoroughly studied and investigated in [31, 32].

Let us henceforth use the notation cgal2/z(d) = cgal2/z(R
d+1, γ, θ) with γ and θ

as in (2.1) and (2.2) respectively. Then an easy calculation shows [11] that X ∈

cgal2/z(d) iff

X =
(
ωi
j(t)x

j +
1

z
ξ′(t)xi + βi(t)

) ∂

∂xi
+ ξ(t)

∂

∂t
, (3.9)

where ω(t) ∈ so(d), β(t), and ξ(t) depend arbitrarily on time, t.

The Lie algebra cgal0(M, γ, θ) corresponding to the case z = ∞ is also inter-

esting; it is a Lie algebra of symplectomorphisms of the models of massless and

spinning Galilean particles [20, 11].
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3.2 The Lie algebra, cgalN(d), of finite-dimensional confor-

mal Galilei transformations

Our endeavor here is to show that our formalism leads to a natural definition of

a whole family of distinguished finite-dimensional Lie subalgebras of the conformal

Galilei Lie algebra cgal2/z(d) with prescribed dynamical exponent z, generated by

those vector fields in (3.9), where ω(t) ∈ so(d), β(t), and ξ(t) depend smoothly on

time, t.5

To that end, let us restrict our attention to vector fields X ∈ cgal2/z(d) that are

polynomials of fixed degree N > 0 in the variables x1, . . . , xd, t = xd+1. This entails

the following decompositions

ω(t) =
N−1∑

n=0

ωnt
n, β(t) =

N∑

n=0

βnt
n and ξ(t) =

N∑

n=0

ξnt
n, (3.10)

since the spatial components of X are already of first-order in x1, . . . , xd.

Bearing in mind that X 7→ ξ is a Lie algebra homomorphism, we claim that the

ξ = ξ(t)∂/∂t do span a polynomial Lie subalgebra of Vect(R), hence a Lie subalgebra

of sl(2,R) since, as a classic result, the latter (spanned by polynomial vector fields

of degree 2) is maximal in the Lie algebra, VectPol(R), of polynomial vector fields

of R. Indeed, the Lie bracket of two polynomial vector fields of degree k has degree

2k − 2, and so 2k − 2 ≤ k requires k ≤ 2. Hence

ξ(t) = κt2 + 2λt+ ε (3.11)

with κ, λ, ε ∈ R.

Condition (3.11) being granted, let us seek the conditions under which the Lie

bracket X12 = [X1, X2] of two such polynomial vector fields X1 and X2 is, itself,

polynomial of degree N . Straightforward calculation yields

ξ12 = ξ1ξ
′

2 − ξ2ξ
′

1 (3.12)

ω12 = [ω2, ω1] + ξ1ω
′

2 − ξ1ω
′

1 (3.13)

β12 = ω2β1 − ω1β2 + ξ1β
′

2 − ξ2β
′

1 −
1

z
(ξ′1β2 − ξ′2β1) . (3.14)

Condition (3.12) brings no further restriction in view of (3.11). From (3.13), we

discover that, necessarily, ω′

1 = ω′

2 = 0; this entails that ω ∈ so(d) is a constant

infinitesimal rotation in (3.9). At last, we readily find that the right-hand side

of Equation (3.14) turns out to be a polynomial of degree N + 1 in t, namely

5For the sake of a self-contained presentation, we reproduce here, with minor changes, some
previous results of ours [11].
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β12 =
∑N+1

n=0 (β12)nt
n. In order to acquire a closed Lie algebra of polynomial vector

fields of degree N > 0, we must have

(β12)N+1 =
(
N −

2

z

)
(κ1(β2)N − κ2(β1)N) = 0, (3.15)

enforcing the condition

z =
2

N
, (3.16)

consistently with [22]. At last, we have shown that, in Equation (3.9), there holds

β(t) = βN t
N + · · ·+ β1t+ β0 (3.17)

with βn ∈ R
d for all n = 0, 1, . . . , N = 2/z. We finally get

X =
(
ωi
jx

j +
N

2
ξ′(t)xi + βi(t)

) ∂

∂xi
+ ξ(t)

∂

∂t
∈ cgalPolN (d) (3.18)

with ω ∈ so(d), ξ(t) and β(t) as in (3.11) and (3.17) respectively.

The finite-dimensional Lie algebras cgalPolN (d) are isomorphic to the so-called

alt2/N (d) Lie algebras discovered by Henkel [14] in his study of scale invariance for

strongly anisotropic critical systems (with d = 1),

cgalPolN (d) ∼= alt2/N (d). (3.19)

From now on we will drop the superscript “Pol” as no further confusion can occur.

In the case N = 1, we recognize the Schrödinger Lie algebra cgal1(d)
∼= sch(d),

see (2.17),6 while for N = 2 we recover the “Conformal Galilei Algebra” (CGA)

cgal2(d), called cmil1(d) in [11].

It would be highly desirable to find a geometric definition of such Lie subalgebras

of the Lie algebra of conformal Galilei Lie algebras, cgal(M, γ, θ), in the most general

case of an arbitrary NC structure.

4 Conformal Galilei Groups with dynamical ex-

ponents z = 2/N

4.1 Veronese curves and finite-dimensional representations

of SL(2,R)

A Veronese curve is an embedding VerN : RP1 → RPN defined, for N ≥ 1 by

VerN(t1 : t2) = (tN1 : tN−1
1 t2 : · · · : t

N
2 ) (4.1)

6Strictly speaking, for the lowest level, N = 1, the vector fields generating cgal1(d) are poly-
nomials of degree 2 in the spacetime coordinates, although z = 2 holds true. The higher levels
N ≥ 2 duly correspond to the actual degree of the vector fields generating cgalN (d).
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where (u1 : u2 : · · · : uN+1) stands for the direction of (u1, u2, . . . , uN+1) ∈ R
N+1\{0},

that is a point in RPN ; see, e.g., [33]. With a slight abuse of notation, we will still

denote by VerN : R2 → R
N+1 the mapping (t1, t2) 7→ (u1, u2, . . . , uN+1), where

uk = tN−k+1
1 tk−1

2 (4.2)

for all k = 1, . . . , N + 1.

Put t = (t1, t2) ∈ R
2, and consider t∗ = Ct with

C =

(
a b
c d

)
∈ SL(2,R). (4.3)

The image u∗ of t∗ under the Veronese map is clearly a (N+1)-tuple of homogeneous

polynomials of degree N in t; it thus depends linearly on u = (u1, . . . , uN+1) ∈ R
N+1,

where the uk are as in (4.2). The general formula is as follows. If t∗1 = at1 + bt2,

t∗2 = ct1 + dt2, with ad − bc = 1, then VerN(Ct) = VerN(C)VerN(t) where VerN(C)

a nonsingular (N + 1)× (N + 1) matrix with entries

VerN(C)mm′ =

min(N−m+1,m′
−1)∑

k=max(0,m′−m)

(
N −m+ 1

k

)(
m− 1

m′ − k − 1

)
×

×aN−m−k+1bkcm−m′+kdm
′−k−1 (4.4)

for all m,m′ = 1, . . . , N +1. Our mapping provides us with a group homomorphism

VerN : SL(2,R) → SL(N + 1,R) (4.5)

which constitutes (up to equivalence) the well-known (N+1)-dimensional irreducible

representation of SL(2,R); see [34].

Let us introduce the sl(2,R) generators

ξ−1 =

(
0 1
0 0

)
, ξ0 =

(
1 0
0 −1

)
, ξ1 =

(
0 0
1 0

)
, (4.6)

interpreted physically as the infinitesimal generators of time translations ξ−1, dila-

tions ξ0, and expansions ξ1. Their images under the tangent map of of VerN at the

identity read then

verN (ξ−1) =
N+1∑

n=1

(N − n+ 1) un+1
∂

∂un

(4.7)

verN (ξ0) =

N+1∑

n=1

(N − 2n+ 2) un
∂

∂un
, (4.8)

verN (ξ1) =
N+1∑

n=1

(n− 1) un−1
∂

∂un

. (4.9)
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One checks that verN (ξa) is, indeed, divergence-free, and

[verN(ξa), verN(ξb)] = −verN([ξa, ξb] (4.10)

for a, b = −1, 0, 1, i.e., that verN : sl(2,R) → sl(N + 1,R) is a Lie algebra anti-

homomorphism.

4.2 Matrix realizations of the Conformal Galilei Groups

CGalN(d)

Just as in the case of the Schrödinger group, see (2.10), we will strive integrating the

conformal Galilei Lie algebras cgalN (d) within the matrix group GL(d+N + 1,R).

Let us, hence, introduce the Conformal Galilei Group with dynamical exponent

z = 2/N cf. (3.16), which we denote by CGalN(d); it consists of those matrices of

the form

g =

(
A BN · · · B0

0 VerN(C)

)
(4.11)

where A ∈ O(d), B0,B1, . . . ,BN ∈ R
d, and C ∈ SL(2,R).

We now prove that the Lie algebra of CGalN(d) is, indeed, cgalN(d) introduced

in Section 3. In fact, putting t = t1/t2 in (4.2), wherever t2 6= 0, we easily find that

the projective action gRd+1 : (x, t) 7→ (x∗, t∗) of CGalN(d) reads, locally, as


x∗

tN
∗

...
t∗

1




= R
∗ · g




x

tN

...
t
1




, (4.12)

which, with the help of (4.3) and (4.4), leaves us with

x∗ =
Ax+BN t

N + · · ·+B1t+B0

(ct+ d)N
, (4.13)

t∗ =
at + b

ct+ d
. (4.14)

These formulæ allow for the following interpretation for the parameters in (4.11),

A : orthogonal transformation,
B0 : translation,
B1 : boost ,
B2 : acceleration,

...
...

BN : higher-order “acceleration”,
C : projective transformation of time.

(4.15)
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Let us now write any vector in Lie(CGalN (d)) as

Z =

(
ω βN · · · β0

0 verN (ξ)

)
(4.16)

where we have used Equations (4.7)–(4.9) with

ξ =

(
λ ε

−κ −λ

)
∈ sl(2,R). (4.17)

Then, the infinitesimal form of the transformation laws (4.13) and (4.14) writes as

δx = δx∗|δg=Z,g=Id, together with δt = δt∗|δg=Z,g=Id, i.e.,

δx = ωx+ βN t
N + · · ·β1t + β0 +N(κt + λ)x, (4.18)

and

δt = κt2 + 2λt+ ε. (4.19)

At last, the vector field ZRd+1 = δxi ∂/∂xi + δt ∂/∂t associated with Z in (4.16) is

such that

ZRd+1 = X ∈ cgalN (d), (4.20)

where the vector field X is as in (3.18), proving our claim.

Let us notice that our terminology for the dynamical exponent is justified by

verifying that the dilation generator is (1.7) with z = 2/N .

The above definition of the conformal Galilei groups, see (4.11), yield their

global structure

CGalN (d) ∼= (O(d)× SL(2,R))⋉R
(N+1)d, (4.21)

and dim(CGalN(d)) = Nd+ 1
2
d(d+ 1) + 3.

• For N = 1, i.e., z = 2, we recover the Schrödinger group (2.10), and therefore

CGal1(d) ∼= Sch(d). (4.22)

• For N = 2, i.e., z = 1, in particular, we get

g =




A B2 B1 B0

0 a2 2ab b2

0 ac ad+ bc bd
0 c2 2cd d2


 ∈ CGal2(d) (4.23)

with A ∈ O(d), B0,B1,B2 ∈ R
d, a, b, c, d ∈ R with ad − bc = 1. In addition to the

usual space translations B0, and Galilei boosts B1, we also have extra generators,

namely accelerations B2 [9, 10]. It is an easy matter to check that the actions (1.3),

(1.4), and (1.5) of dilations, expansions, and accelerations, respectively, are recovered

by considering their projective action given by (4.12) with N = 2.
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The Lie algebra cgal2(d) of the Conformal Galilei Group, CGal2(d), is plainly

isomorphic to the (centerless) Conformal Galilei Algebra (CGA), cf. [11, 9, 10]. It

has been shown [9] that cgal2(d) admits a nontrivial 1-dimensional central extension

in the planar case, d = 2, only.

5 Conformal Galilei spacetimes & cosmological

constant

As mentioned in the Introduction, the physical spacetime can be recovered by posit-

ing some symmetry group — defining its geometry — and then by factoring out a

suitable subgroup. The simplest example is to start with the neutral component of

the Galilei group (2.5), namely

Gal+(d) = (SO(d)× R)⋉ R
2d, (5.1)

and factor out rotations and boosts to yield (ordinary) Galilei spacetime,

R
d × R = Gal+(d)/(SO(d)⋉R

d). (5.2)

Similarly, one can start instead with a deformation of the Galilei group called

Newton-Hooke group [1, 2, 3]

N+(d) =
(
SO(d)× SO(2)

)
⋉ R

2d, (5.3)

where SO(d) × SO(2) is the direct product of spatial rotations and translations

of (compactified) time acting on the Abelian subgroup R
2d of boosts and space-

translations. Then, quotienting N+(d) by the direct product of rotations and boosts

yields the Newton-Hooke spacetime [3]. The latter carry a non-flat nonrelativistic

structure and satisfies the empty space Newton gravitational field equations with

negative cosmological constant [3].7

Below, we extend the above-mentioned construction to our conformal Galilei

groups CGalN(d), at any level N ≥ 1.

7Starting with the group

N−(d) =
(
SO(d)× SO(1, 1)↑

)
⋉R

2d (5.4)

we would, similarly, end up with a spacetime with positive cosmological constant. Here we will
focus our attention to N+(d) in (5.3).

17



5.1 Conformal Galilei spacetimes

The conformal Galilei spacetimes MN , associated with z = 2/N where N = 1, 2, . . .,

are introduced by starting with the conformal Galilei groups CGal2/z(d), viz.,

MN = CGalN (d)/HN where HN = (O(d)× Aff(1,R))⋉ R
Nd. (5.5)

Explicitly, the projection πN : CGalN(d) → MN in (5.5) is defined by the direction

πN (g) = R
∗ · gd+N+1 (5.6)

of the last column-vector of the matrix, g, in (4.11). Therefore x = πN (g) gets

locally identified with 


x

tN

...
t
1




= R
∗ ·




B0

bN

...
bdN−1

dN .




. (5.7)

Intuitively, this amounts to factoring out O(d), dilations and expansions and

all higher-than-zeroth-order accelerations, and identifying space-time with “what is

left over”.

Then, the action g 7→ gMN
of CGalN (d) on spacetime MN is globally given by

gMN
(πN (h)) = πN (gh) and, in view of (5.7), retains the local form (4.13) and (4.14).

Now, by the very definition (4.11) of the conformal Galilei group at level N , we get

indeed the conformal Galilei spacetime

MN = (Rd ×VerN(R
2\{0}))/R∗, (5.8)

fibered above the Veronese curve VerN (RP
1) ⊂ RPN , interpreted as the time axis, T .

Besides, it may be useful to view the projective line as RP 1 ∼= S1/Z2, locally

parametrized by an angle ϑ related to the above-chosen affine parameter t via

t = tanϑ, (5.9)

highlighting that, in fact, ϑ ∼ ϑ+ π. This readily entails (see (5.8)) that

MN
∼= (Rd × VerN(S

1))/Z2. (5.10)

To summarize, we have the following diagram

CGalN(d)

HN

y

MN
∼= (Rd × VerN (S

1))/Z2
R
d

−−−→ T ∼= VerN(RP
1).

(5.11)
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Note that for N = 1 the Schrödinger-homogeneous spacetime M1, i.e., the

Möbius spacetime (2.12), is obtained.

We will from now on focus our attention to the new CGalN(d)-homogeneous

spacetimes MN .

Let us lastly provide, for the record, explicit formulæ for the projective action

(x, ϑ) 7→ (x∗, ϑ∗) of CGalN (d) on our Newton-Hooke manifold MN , in terms of the

angular coordinate introduced in (5.9). We will use the local polar decomposition

of any element in SL(2,R), viz.,

C =

(
cosα sinα

− sinα cosα

)(
a 0
0 a−1

)(
1 0
c 1

)
, (5.12)

where α ∈ R/(2πZ) is a “time-translation”, a ∈ R
∗ a dilation, and c ∈ R an

expansion. Then, Equations (4.13) and (4.14) yield

A : x∗ = Ax, ϑ∗ = ϑ,

BN : x∗ = x+BN tanNϑ, ϑ∗ = ϑ,

...
...

...

B1 : x∗ = x+B1 tanϑ, ϑ∗ = ϑ,

B0 : x∗ = x+B0, ϑ∗ = ϑ,

α : x∗ =
x cosNϑ

cosN(ϑ+ α)
, ϑ∗ = ϑ+ α,

a : x∗ = aNx, ϑ∗ = arctan(a2 tanϑ),

c : x∗ =
x

(c tanϑ+ 1)N
, ϑ∗ = arctan

(
tanϑ

c tanϑ+ 1

)
,

(5.13)

with the same notation as before.

These formulæ extend those derived before, at the Lie algebraic level, for N = 1,

and N = 2 [5, 42]. Those in [42], for example, are obtained from (5.13) by putting

N = 2l and introducing, in view of (5.7) and (5.9), the new coordinates

X = x cosNϑ, t = tanϑ. (5.14)

5.2 Galilean conformal Cartan connections

Let us recall, for completeness, the definition of a Cartan connection on aH-principal

fiber bundle P → M where H is a closed subgroup of a Lie group G, and where

dim(M) = dim(G/H). Put g = Lie(G) and h = Lie(H).
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Such a “connection” is given by a g-valued 1-form ω of P such that

1. ω(ZP ) = Z for all Z ∈ h

2. (hP )
∗ω = Ad(h−1)ω for all h ∈ H

3. kerω = {0}

where the subscript P refers to the group or Lie algebra (anti-)action on P .

These “connections” provide a means to encode the geometry of manifolds mod-

eled on homogeneous spaces, e.g., projective or conformal geometry.

We will show, in this section, that the homogeneous spacesMN (see (5.8)) indeed

admit, for all N = 1, 2, . . ., a conformal Newton-Cartan structure together with

a distinguished, flat, normal Cartan connection associated with CGalN(d).
8 The

general construction of the normal Cartan connection associated with a Schrödinger-

conformal Newton-Cartan structure has been performed in [20].

• The Galilei group Gal(d) can be viewed as the bundle of Galilei frames over

spacetime R
d × R = Gal(d)/(O(d) ⋉ R

d), cf. (5.2). Using (2.5), we find that the

(left-invariant) Maurer-Cartan 1-form ΘGal(d) = g−1dg reads

ΘGal(d) =




ω β1 β0

0 0 ε

0 0 0


 , (5.15)

where the 1-forms β0, and ε are interpreted as the components of the soldering 1-

form of the principal bundle Gal(d) → R
d × R. Then the Maurer-Cartan structure

equations dΘ + Θ ∧Θ = 0 read

0 = dω + ω ∧ ω, (5.16)

0 = dβ1 + ω ∧ β1, (5.17)

0 = dβ0 + ω ∧ β0 + β1 ∧ ε, (5.18)

0 = dε. (5.19)

Equations (5.16, 5.17) entails that the NC-connection 2-form (ω,β1) is flat, while

(5.18, 5.19) insure zero torsion.9 See, e.g., [27, 20].

8Since we are dealing here with homogeneous spaces G/H , it will naturally be given by the
(left-invariant) Maurer-Cartan 1-form of the corresponding groups G.

9We note that the Galilei structure is given by γ = δijAi ⊗ Aj , where A ∈ O(d) represents an
orthonormal frame (see (2.5)), together with the clock 1-form θ = ε.
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• Likewise, if N = 1, the Schrödinger group Sch(d) may be thought of as a

subbundle of the bundle of 2-frames of spacetime M1
∼= Sch(d)/H1, see (5.5).10

This time, Sch(d) is, indeed, interpreted as the bundle of conformal Galilei 2-frames

associated with the conformal class γ ⊗ θ of a Galilei structure (γ, θ) over M1 as

given by Equation (3.5) with m = n = 1. The Maurer-Cartan 1-form ΘSch(d) of this

group actually gives rise to the canonical flat Cartan connection on the H1-bundle

Sch(d) → M1. We refer to [20, 21] for a comprehensive description of Schrödinger

conformal Cartan connections.

Using the same notation as in (2.18), we find

ΘSch(d) =




ω β1 β0

0 λ ε

0 −κ −λ


 (5.20)

and, hence, the structure equations

0 = dω + ω ∧ ω, (5.21)

0 = dβ1 + ω ∧ β1 − β0 ∧ κ, (5.22)

0 = dβ0 + ω ∧ β0 + β1 ∧ ε− β0 ∧ λ, (5.23)

0 = dλ− ε ∧ κ, (5.24)

0 = dε− 2ε ∧ λ, (5.25)

0 = dκ− 2κ ∧ λ. (5.26)

Furthermore, a Galilei structure can be introduced on spacetime M1 viewed as

the quotient of (5.3). Our clue is that embedding SO(2) into SL(2,R) through

ϑ 7→

(
cos ϑ sinϑ

− sin ϑ cosϑ

)
, (5.27)

the group

New1(d) = (O(d)× SO(2))⋉ R
2d (5.28)

we will call the Newton-Hooke group of level N = 1 in what follows,11 becomes a

subgroup of the Schrödinger group,

New1(d) ⊂ Sch(d). (5.29)

Then, New1(d) can readily be identified with the bundle of Galilei frames of

M1
∼= New1(d)/(O(d)× Z2)⋉ R

d. (5.30)

10The bundle of 2-frames is called upon since the vector fields (2.17) spanning sch(d) are poly-
nomials of degree 2 in the spacetime coordinates.

11Its neutral component is N+(d) in (5.3).
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Introducing the pulled-back Maurer-Cartan 1-form, ΘNew1(d), we end up with

the previous structure equations (5.21)–(5.26) specialized to the case λ = 0, and

κ = ε. Comparison between the latter equations, and the (flat) Galilei structure

equations shows that both sets coincide except for the equations characterizing dβ1.

This entails that M1 acquires curvature through the 2-form [20]

Ω1 = β0 ∧ ε. (5.31)

Let us present, for completeness, a local expression of the NC-Cartan connection

on M1 generated by ΘNew1(d). Putting x = B0 defines, along with ϑ ∈ R/(2πZ)

introduced in (5.27), a coordinate system on spacetime M1. We readily find the

components of the soldering 1-form to be (β0 = A−1(dx − B1dϑ), ε = dϑ), while

those of the NC-connection write (ω = A−1dA,β1 = A−1(dB1 + x dϑ)). From the

last expression we infer that the only nonzero components of the Christoffel symbols

of the NC-connection are

Γi
ϑϑ = xi, i = 1, . . . , d. (5.32)

This entails that the nonzero components of curvature tensor R1, associated withΩ1,

are (R1)
i
jϑϑ = δij for all i, j = 1, . . . , d. The only nonvanishing component of the Ricci

tensor is therefore

(Ric1)ϑϑ = d. (5.33)

Hence, our NC-connection (ω,β1) provides us with a solution of the NC-field equa-

tions (2.3),

Ric1 + Λ̃1θ ⊗ θ = 0, (5.34)

where θ = dϑ; the “cosmological constant”

Λ̃1 = −d (5.35)

is therefore given by the dimension of space.

Now, the angular parameter ϑ being dimensionless, it might be worth intro-

ducing, at this stage, a (circular) time parameter

τ = H−1
0 ϑ, (5.36)

where H0 is a “Hubble constant” whose inverse would serve as a time unit.12 This

entails that (Ric1)ττ = H2
0d (compare (5.33)), and, hence, provides us with the

cosmological constant

Λ1 = −H2
0d. (5.37)

12Unlike in general relativity, no specific parameter such as the de Sitter spacetime radius is
available in our nonrelativistic framework; whence this somewhat arbitrary choice of a time unit.
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Now, cosmologists usually introduce the reduced cosmological constant, λ, in terms

of the cosmological constant, Λ, the Hubble constant, H0, and the dimension of

space, d, via

Λ = λH2
0d. (5.38)

In view of (5.37), our model therefore yields a reduced cosmological constant

λ1 = −1. (5.39)

• For the case N > 1, the Maurer-Cartan 1-form of CGalN(d) reads

ΘCGalN (d) =




ω βN βN−1 · · · β1 β0

0 Nλ Nε · · · 0 0

0 −κ (N − 1)λ · · · 0 0

...
...

. . .
. . . 0 0

0 0 · · · · · · 2ε 0

0 0 · · · · · · (1−N)λ ε

0 0 0 0 · · · 0 −Nκ −Nλ




(5.40)

with the same notation as before.

Then, the preceding computations can be reproduced, mutatis mutandis, for the

group CGalN (d) which serves as the bundle of conformal GalileiN -frames ofMN . At

that point, as a straightforward generalization of (5.28), we can define the Newton-

Hooke group at level N as

NewN (d) = (O(d)× SO(2))⋉ R
d(N+1) ⊂ CGalN (d). (5.41)

Much in the same manner as in the case N = 1, the NC-connection obtained

from the pull-back ΘNewN (d) of the Maurer-Cartan 1-form (5.40) can be computed.

It is easily shown that the curvature of the homogeneous spacetimes MN is now

given by

ΩN = NΩ1. (5.42)

This connection turns out to produce an exact solution of the vacuum NC-field

equations (2.3), the reduced cosmological constant at level N being now given by

λN = −N (5.43)

for all N = 1, 2, . . ..
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6 Conclusion and outlook

Our main results are two-fold: firstly, we have found that the infinite-dimensional Lie

algebra of infinitesimal conformal Galilei transformations with rational dynamical

exponent admits, in fact, finite dimensional Lie subalgebras provided the dynami-

cal exponent is z = 2/N , where N = 1, 2, . . . . Then, we have proposed a natural

construction devised to integrate, for each N , these Lie algebras into Lie groups,

named Conformal Galilei groups at level N , by means of the classic Veronese em-

beddings [33]. The values N = 1 and N = 2 correspond to the Schrödinger Lie

algebra, and to the CGA, respectively. Our results are somewhat unexpected in

that, starting with the symmetry problem in the Galilean context, we end up with

Newton-Hooke space-times and their symmetries.

Let us shortly list some of the applications beyond the by-now standard N = 1,

i.e., z = 2 Schrödinger symmetry.

The N = 2, i.e., z = 1 conformal extension of the [exotic] Galilean algebra was

studied in [8], and later extended so as to include also accelerations [9].

Newton-Hooke symmetry and spacetime have been considered in nonrelativistic

cosmology [1, 2, 3, 4, 5, 6]. It has been proved [35] that the N = 1 Galilean

Conformal algebra is isomorphic to the Newton-Hooke string algebra studied in

string theory [36].

The values N = 4, and N = 6, i.e., the dynamical exponents z = 1/2 and

z = 1/3 arise in statistical mechanics, namely for the spin-spin correlation function

in the axial next-nearest-neighbor spherical model at its Lifschitz points of first and

second order [23, 7].

Our Conformal Galilei groups, CGalN(d), which generalize the Schrödinger

(N = 1) and the Conformal Galilei (N = 2) cases to any integer N , do not act

regularly on ordinary flat Galilean spacetime, however; they act rather on manifolds

constructed from them, which are analogous to the conformal compactification of

Minkowski spacetime. Moreover, their group structure allows us to recover these

spacetimes as homogeneous spaces of the Newton-Hooke groups NewN(d) as defined

in (5.41), and generalizing to level N the Newton-Hooke group (5.3). These as-

sociated spacetimes MN are endowed with a (conformal) Newton-Cartan structure

by construction. Remarkably, they are identified as Newton-Hooke spacetimes with

quantized negative reduced cosmological constant, λN in (5.43).13

An intuitive way of understanding our strategy is to consider, say, Schrödinger

expansions in (1.2) [or in (2.11)] and observe that it is the denominator which

makes the group action singular. Our way of removing this “hole” is to pull out

13Spacetimes with positive cosmological constant would be obtained by replacing SO(2) by
SO(1, 1)↑ as in (5.4); see also [3].
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the denominator in front of the column vector as dictated by the projective action

in (4.12).

We would like to mention that a complete, general, construction of Cartan

connections for conformal Galilei structures, modeled on the CGalN(d)-homogeneous

manifolds MN , still remains to be undertaken in order to extend that of normal

Schrödinger-Cartan connections carried out in [21].

Let us now discuss the relationship of our procedures and technique to some

other work on the same subject, namely to conformal Galilean symmetries.

Gibbons and Patricot [3] derive the Newton-Cartan structure of Newton-Hooke

spacetime in the “Bargmann” framework of Ref. [13]. This null “Kaluza-Klein-

type” approach provides us indeed with a preferred way of defining a nonrelativistic

structure on spacetime, “downstairs”. Then the (mass-centrally extended) Galilei

and Newton-Hooke groups both appear as isometries, whereas their conformal ex-

tensions appear as conformal transformations of the respective Bargmann spaces.

The fact that both the “empty” and Newton-Hooke spaces carry a Schrödinger

symmetry [37] is then explained by the fact that their Bargmann manifolds are

(Bargmann-)conformally related [38]. This is also why the conformal extensions of

the different Galilei and the Newton-Hooke groups can be identical.

A similar explanation holds for the results in [40, 41], where motion in a homo-

geneous magnetic field is considered. The latter problem fits also into the Bargmann

framework, and provides us in fact with yet another example of a conformally flat

Bargmann spacetime all of which are listed in [39, 37]. See [43] for further details.

No central terms are considered in this paper: our Lie algebras are represented

by vector fields on (flat) Newton-Cartan spacetime. Central terms, and the mass in

particular, are important, though, and are indeed necessary for physical applications.

Henkel [23, 7] does actually consider mass terms: he works with operators with such

terms involving c−2, where c is the speed of light. In his approach, those appear in

the coefficients of powers of ∂/∂t. Considering higher-order terms in powers of ∂/∂t

goes beyond our framework, though. For finite c, Henkel’s boosts are Lorentzian,

not Galilean, however; our center-free Lie algebras with genuine Galilei boosts are

recovered as c → ∞, yielding also (N−1) accelerations in addition. At last, the mass

terms disappear, as they should: mass and accelerations are indeed inconsistent [9].

Central extensions of the conformal Galilei algebra have been considered in

[9, 41] in the planar case, d = 2, and in [22] for d = 3.

Let us finally mention a natural further program, in the wake of the present

study, namely the the determination of the group-cohomologies of our Conformal

Galilei groups. Also would it be worthwhile to classify all symplectic homogeneous

spaces [24] of the latter, likely to unveil new, physically interesting, systems.
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