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Abstract : We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities 
ranging from 5 to 20 µm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part 
remains spherical while their top (downstream) part narrows down and elongates along the direction 
of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the 
vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a 
thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle 
can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales 
as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η 
is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent 
with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape 
are deduced from the thermodynamic approach. 
 
1. Introduction 
 
The behavior of living cells submitted to an external force or a hydrodynamic flow is an important 
issue both for physiology and for in-vitro processing and manipulation. It has been much studied for 
cells and giant lipid vesicles. The latter are basic soft shells whose behavior is a physical reference for 
the cell ‘passive’ behavior. For instance, in a shear or an elongational flow, giant vesicles and red 
blood cells present a variety of motions and deformations whose commonalities and differences have 
been characterized and understood on the basis of the specificity of the mechanical properties of each 
particle [1, 2, 3]. Another example is the behavior of vesicle and cell membranes subjected to an 
external pulling point force. It is well known that there is a critical force for which a nanotube, called 
tether [4,5,6,7,8,9] is drawn from the vesicle/cell and coexists with the spherical body of the particle. 
In-vivo, tether formation is involved in many biological processes such as intracellular trafficking 
[10,11,12] or cell migration [13]. In-vitro, tethers extruded from the membrane (by pulling a small 
bead adhering on the membrane) are used as sensors to gain information on vesicle/cell mechanical 
properties (cortical tension, coupling energy between the membrane and the cytoskeleton) 
[14,15,16,17]. 
Highly surprising, the behavior of vesicles and cells suspended in a fluid and submitted to a 
gravitational force is not thoroughly documented. One theoretical study [18] predicts that sedimenting 
vesicles should deform and present either pear-like shapes or bean-like shapes, with no experimental 
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support. However, the question of the movement of deformable objects due to a body force in a 
viscous fluid, arises naturally in different situations such as centrifugation, magnetophoresis or cell 
sorting in microfluidics. For instance, recent observations of red blood cells during centrifugation 
show how the cells resume very peculiar pear-like shapes [19]. In a more general point on view, 
sedimentation and shape instability of simple viscous drops had also been observed. While a spherical 
drop remains spherical during sedimentation (the sphere is a steady solution to the Stokes equations 
[20]), non-initially spherical drops are unstable [21] and prolate shapes can develop long tails at their 
rear [22,23,24]. Initially spherical droplets can also be destabilized when surfactants are present. In 
this case, the flow gathers the surfactants at the rear of the droplet reducing drastically the local 
surface tension and leading to tip streaming [25].  
In this paper, we study the deformation of giant unilamellar vesicles (GUVs) sedimenting in a 
quiescent fluid. We deal with very deformable floppy vesicles. We show that, depending on their 
sedimentation velocity, the vesicles present either original pear-like shapes, or, above a critical 
hydrodynamic force, develop at a micro-size lipid tube, which coexists with a quasi-spherical shape. A 
striking point is that the tube extraction does not require the application of a point force. The 
distributed hydrodynamic stress, which is much weaker than point forces generally used to extract 
tethers, is however sufficient to pull micron-size tubes on floppy vesicles. We show that a free energy 
analysis describes such a behavior.  
We first detail the materials and method before describing the regimes of motion and the deformations 
of the vesicles. Then we show that vesicle velocities are similar to that of rigid spheres translating in a 
quiescent fluid. We propose an approach to describe and understand the formation of membrane tubes. 
Finally, we estimate and discuss the values of the surface tensions of sedimenting vesicles. 
 
2. Experimental 
 
2.1. Giant Unilamellar Vesicles (GUVs) preparation 
GUVs are prepared by the electroformation method [26]. Dioleoyl-phosphatidylcholine (DOPC, 
Sigma) dissolved in chloroform and methanol solutions (9:1 volume ratio) at 2mg/ml and 10 µl of the 
solution is spread on the conductive faces of two transparent glass plates coated with a film of indium 
tin oxide (ITO). After drying (2h under primary vacuum), about 2ml of a sucrose solution (with 
concentration 300mM) is injected in a chamber formed by the ITO plates facing each other, separated 
by Teflon spacers and connected to an AC generator (frequency 10 Hz). The potential is very slowly 
increased from 0.2 to 0.8 V and kept constant for one night. The frequency and the voltage are finally 
decreased to 4 Hz and 0.2 V to detach vesicles from the ITO plates.  
The suspension of vesicles we obtain is then diluted in a binary sucrose/glucose solution with the 
following protocol: 100 µl of the initial sucrose suspension of vesicles is diluted in 1 ml of the chosen 
binary sucrose/glucose solutions for 1 hour. Then, 100 µl of this suspension is rediluted in 1 ml of the 
binary sucrose/glucose solution for another hour. Finally 100 µl of this suspension is diluted again in 
450 µl in the binary sucrose/glucose solution and is gently introduced in the observation chamber 
(volume 0.550 ml). Only few vesicles are present in the observation chamber in order to limit 
hydrodynamic interactions. The characteristics of the vesicles are listed in Table 1 and Table 2. 
 
2.2. Method of observation 
We use a parallelepiped chamber from Hellma (Mullheim, Germany) which has four optically 
transparent faces (width x-direction:10 mm, length y direction: 55 mm, height z-direction: 1 mm). 
Sedimenting vesicles and their reflections on the bottom of the chamber are observed in the vertical y-
z plane, from a microscope (LEICA IRB) tipped to the horizontal [27]. We let the vesicles settle at the 
bottom of the chamber during 20 min. Then, we turn the chamber upside down and observe the 
sedimentation of one vesicle using a CCD camera (COHU 4910, 25 fps). In order to prevent vesicle 
adhesion on the chamber wall, we first incubated a casein solution in the chamber before introducing 
the vesicles. The vesicles were found to behave similarly in the chamber rinsed in Millipore water and 
in the chamber treated with casein. We therefore perform most experiments by simply using the 
chamber rinsed with Millipore water. 
Movies are saved using a digital videocassette recorder SONY DSR25. Vesicle tracking, contour and 
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center of gravity determinations as well as shape analysis are carried out with the software IDL. The 
volume V and area A of the vesicles are measured at rest from the shapes of the settled vesicles. The 
effective radius R is deduced as (3V/4π)1/3. 
 
3. Observations  
 
3.1. Full experiment 
Typical experiments are shown in figure 1. First, the vesicle departs from the top of the chamber and 
progressively elongates and deforms while its velocity increases. Then a stationary regime is reached: 
the vesicle, located halfway the observation chamber, has a constant velocity and a stable shape. 
Finally, upon approaching the bottom wall, the vesicle velocity decreases and its shape progressively 
changes (no more vertical elongation). Then, upon landing on the bottom of the chamber, the vesicle 
flattens down with a typical gravity-induced shape deformation. When a tube is observed at the top of 
the vesicle, it retracts and it is swallowed by the main body of the vesicle during the landing stage, as 
shown by the last images of each sequence represented in Fig. 1. 
 
 

 
 
Figure 1: Vesicle sedimentation a: vesicle (2.2), pear shape, full process from departing to landing, t= 
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0s, 0:57 s, 2:22 s, 4:46 s, 5:08 s, 6:28 s, shapes are fluctuating. b: vesicle (12.1), short tube, full 
process, t=0s, 0:24s, 1:04s, 1:49s, 2:51s, 4:38s, 6:14s. c: vesicle radius 6 µm, landing process from 
stationary shape to settled vesicle, t=4:40s, 5:32s, 7:04 s, 8:30s, 9:12s, 12:00s. d: departing of a vesicle 
(radius 49 µm) and tube growth (time between image = 1s) e) landing of the vesicle with tube 
retraction (60s, 76 s, 84s, 90s, 92s, 93s). 
 
3.2. Stationary shapes 
Vesicles, which do not present large excess area cannot significantly deform and thus remain spherical 
during their sedimentation. However, most vesicles are osmotically deflated and are therefore floppy 
and deformable. We now describe their stationary shape. The vesicles exhibit a spherical upstream 
(bottom) region and a vertically elongated downstream (top) part with a radius of curvature, r, smaller 
than the spherical part. Weakly deformable vesicles present an egg-shape. More deformable vesicles 
look like pears with, at their top, a spherical cap of radius r < R and an elongated region of length L≤ r 
(figure 2). Some vesicles present a spherical part, which coexists with a tube. The tube radius, r << R, 
ranges from less than one micron to 2-3 microns. It is slightly pinched at its basis and, as seen in 
figure 1b and in figure 2, a catenoid shape is observed at the junction between the spherical part and 
the tube. Its length L is longer than r. Most of these vesicles present large membrane undulations 
(figure 1a), disclosing that the tension is very low. Some vesicles, which are characterized by the 
highest sedimentation velocities, exhibit several tens of microns long pearling tubes of submicron 
radius (figure 1d).  
 

 
 
Figure 2 Typical stationary vesicle shapes. Top, pear-like shapes: (1.2) Radius 26 µm, (14.2) Radius 
13 µm, (6.2) Radius 32 µm ;  bottom, vesicles with tubes: (11.1) Radius 30 µm, (13.1) Radius 16 µm ; 
Radius 16 µm . 
 
When vesicles are submitted to two or three successive experiments of sedimentation, similar shape 
deformations and sedimenting velocities are retrieved. 
Finally it is worth noting that there is no lipid flow on the membrane surface as attested by small lipid 
aggregates bound to the membrane, which do not move relatively to the center of mass of the vesicle. 
Indeed, the driving force of the motion being vertical, the vesicles present a vertical axis of symmetry. 
This symmetry prevents the apparition of a lipid recirculation on its surface. Moreover, contrarily to a 
fluid drop, the two-dimensional confinement of lipid molecules and the symmetry of the experiment 
prevent any momentum transfer to the inner fluid and therefore no flow recirculation is observed. 
 
4. Velocities 
 
We show in this section that the velocity field around a sedimenting vesicle is given by the flow 
produced around a rigid sphere with a radius equal to the effective radius of the vesicle and shows that 
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at the leading order, the deformation of the vesicle does not modify the velocity field of the equivalent 
sphere.  
 

 
 
Figure 3 a : velocity versus time, the steady regime is reached in the middle of the chamber, b : 
velocity during () departing of the vesicle from the top substrate, () landing of the vesicle to the 
bottom substrate and  (⎯ ) equation 1; h is the distance between the vesicle membrane and the top wall 
(during departing) or between the vesicle membrane and the bottom wall (during landing). 
 
The evolution of the vertical velocity of the center of mass of the vesicles as a function of time is 
illustrated in figure 3a for one pear-like shape vesicle. The existence of the stationary regime is clearly 
observed (Fig. 3a). The two transient regimes correspond to the departing and to the landing of the 
vesicle and the associated velocities are represented in figure 3b as a function of the distance h to the 
departing or the landing wall of the chamber. In comparison, we also plot the sedimentation velocity U 
of the equivalent sphere given by the following law:  

€ 

U =
2g
9

Δρ R2

η 1+
R
h

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

,     (1) 

where Δρ is the difference of density between the inner fluid of the sphere and the outer suspending 
fluid and g is the gravitational acceleration. U is derived from the approximated expression of the drag 
force of a rigid sphere moving close to a wall perpendicular to the direction of the sphere motion [28]. 
One can clearly see that departing and landing velocities are pretty similar and are well described by 
(1). This result shows that the deviation of the vesicle shape from a sphere does not affect the velocity 
field around the particle.  
To confirm this result, we also plot the stationary velocity U observed far from the walls for all studied 
vesicles, whatever their shapes and for an spherical bead of agarose (R= 36 µm) as a function of 

€ 

g
9
Δρ R2

η
. All data lie on a single line as shown in figure 4. This result confirms that the vesicle 

behave like rigid spheres in a Stokes flow while its surface is an incompressible two-dimensional 
fluid. Because the lipids cannot leave the interface, the divergence of the velocity field is exactly zero. 
This strong constrain does not exist for a liquid drop where the molecules can leave the interface and 
transfer momentum to the volume even in an axisymmetric case. A liquid drop has therefore a lower 
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friction force than the fluid vesicle.  
 

 
 
Figure 4. Variation of the translation velocity observed for different vesicles in the steady state versus 
Δρ g R2 /η, square: velocity of an agarose rigid bead (R= 36 µm, Δρ=1.0466).  
 
As a consequence, we will consider in a first approximation, that the drag force that applies on a 
sedimenting vesicle far from the walls is equal to the Stokes drag acting on a rigid sphere of 
equivalent radius: 6 π η R U.  
 
5. Shape deformation: detailed description  
 
The sedimentation of a vesicle generates an excess pressure upstream and a lower pressure 
downstream, at its top. This difference of pressure is at the origin of the pear-shape deformation. The 
viscous forces exerted by the fluid on the vesicle membrane redistribute a part of the membrane excess 
area toward the top part of the vesicle and under some conditions are able to draw a membrane tube. 
Using the pressure field around a rigid translating sphere [29], we can express the variation of the 
pressure p on the surface of the vesicle at a distance R from the center of mass: 
 

  

€ 

p = p∞ −
3
2
η

 
U .  n 

R
,     (2) 

 
where p∞ is the pressure in the fluid far from the vesicle and   

€ 

 n  is the normal to the membrane. The 
difference of pressure between the top and the bottom part of the vesicle is therefore 3 η U/R, which is 
typically of the order of 10-3 Pa in our study.  
 
5.1 Hydrodynamic tube extrusion 
We consider the tube observed on the top of the vesicles in the stationary regime, i. e. when r <<R and 
L > r. We write the free energy of the tube membrane by using the approach developed by Waugh et 
al. [7,30,31], Evans et al. [32], Derényi et al. [33], Hochmuth et al. [16], Brochard-Wyart et al. [8] and 
Fournier [34]. It is based on the Helfrich Hamiltonian, which describes the membrane as a fluid, 
incompressible surface with a homogeneous surface tension σ and a bending rigidity κ. For a fixed 
tension and a fixed pressure, the tube free energy F of radius r and length L can be written as  
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€ 

F =
κ

2r 2
+σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 2π r L − Δp π r 2 L − f L ,    (3) 

 
 

where Δp is the pressure difference across the tube membrane and f is the pulling force, which 
elongates the tube on a length L.  
We consider that the thickness of the membrane is constant. Then, the area difference between the 
lipid inner monolayer and the outer monolayer of the membrane changes when a tether is pulled out. 
The change in area difference creates a spontaneous curvature of the membrane calculated in reference 
[35]. The energetic cost for this curvature was estimated in [36] to ≈	
  κ L2 /R2,	
  where R is the vesicle 
radius. This contribution is significant only for tube lengths of more than 100 microns so that we omit 
it in the free energy. 

The tube radius and the pulling force are calculated at equilibrium by taking 

€ 

∂F
∂r

= 0 and ∂F
∂L

= 0 . 

The first derivative gives the equilibrium Laplace law for a cylinder: 
 

€ 

σ
r
−
κ

2r 3
= Δp       (4) 

 
We estimate the pressure difference across the tube membrane by considering that the hydrostatic 
pressure out of the tube is roughly equal to the pressure upstream at the vesicle top: Δp = pin – (p∞ - 3 
η U/2R), where pin is the pressure within the vesicle. Here, the vesicles are initially tensionless since 
they have been deflated. In this case, the difference of pressure pin – p∞ ≈ 0 << 3 η U/2R. Therefore, 
(4) rewrites as 
 

€ 

σ
r
−
κ

2r 3
=
3ηU
2R

      (5) 

 
The surface tension of the vesicle is induced by the flow and is therefore of the order of the 
‘hydrodynamic’ tension σ ≈ ηU ≈ 10-8 N/m. The pressure term in the right-hand term of (5) is one 
order of magnitude  smaller (≈ 10-3), than the tension and the bending term (≈ 10-2) since tubes radii 
are much smaller (r ≈ 1 µm) than R. The right-hand term of pressure of (5) plays therefore only the 
role of a small corrective factor.  
If the vesicle is initially tense (σ >> ηU), the pressure terms in (5) are not dominant. One retrieves the 
classical frame [8,33,34] r= (κ/2σ)1/2, which yields a typical size for r of the order of 40 – 50 nm for a 
standard value of σ ≈ 10-5 N/m. 

The second derivative 

€ 

∂F
∂L

= 0 gives the classical value of the equilibrium pulling force exerted on the 

tube of radius r: 

€ 

fc =
3πκ
2r

+ π rσ      (6) 
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Figure 5 Schematic of a sedimenting vesicle. 
 
The combination of the two equations (5) and (6) sets the equilibrium radius r0 of the tube coexisting 
with a quasispherical vesicle and the associated equilibrium pulling force f0. 
In the case of a sedimenting vesicle, the force exerted on the vesicle surface is the drag force induced 
by the flow.  
The pulling force, which initiates the tube is exerted on the top of a spherical cap of area S: 
 

  

€ 

 
f H = −

3η
 

U 
2R

S .      (7) 

 
When this hydrodynamic force is equal to the extrusion force f0 it is possible to draw a tube. The 
condition fH = f0 is 
 

 

€ 

3ηU
2R

S =
3πκ
2r0

+ π r0σ      (8) 

 
 
Noteworthy, equation 8 compares the critical force of extraction at a tension and for hydrodynamic 
conditions that are not exactly the one of the stationary regime. However, since we see a tube 
emerging for a value of the velocity close to 90% of the stationary regime, we believe that our 
approximation is valid. 
We assume that the radius of this spherical cap is of the order of magnitude of the tube radius plus the 
crossover region that relates the quasi-spherical vesicle to the tube (red line in figure 5). As pointed 
out in [37] the crossover region is an exponentially damped sinusoid with a decay length of the order 
of r0. We therefore write S ≈ π (α r0)2  with α being the only adjustable parameter, close to 2. By using 
(5) and (8) to eliminate σ,  one obtains a relation for the equilibrium tube radius 

 

€ 

r 3 α 2 −1( ) =
4κ R
3ηU

     (9) 

 

Figure 6 shows a plot of the parameter 

€ 

r 3 as a function of 

€ 

4 R
3ηU

 measured for 13 vesicles of different 

sizes R (from 16 to 48.5 µm) and velocity U ranging from 4 to 12.5 µm/s. Data are fitted with (9) with  
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the slope, κ/(α2 -1), equal to 8.11 10-21 J. By setting that the bending rigidity κ ≈ 10 kT = 4 10-20 J, 
which is a value currently accepted for DOPC membranes, we find that α = 2.45, which is in good 
agreement with the prediction of the crossover region given in [37]..  
 
 
 

 
Figure 6: Variation of a parameter scaling as the cube of the tube radius versus the reduced variable 
4R/3ηU. The straight line is the theoretical prediction from (9) with a slope equal to 8.11 10-21 J. 
 
From the experimental measurements of the equilibrium tube radius and of the sedimenting velocity, 
we have estimated the tension of the 13 vesicles during their sedimentation from equations (5) and (8). 
They are very low (Table 2) as expected for floppy vesicles. Noteworthy, the force f0 required to draw 
a tube from a floppy vesicle is quite small, of the order of 10-13 N.  
For tensed vesicles, where the pressure term in equation (4) is neglectible, the same power law is 

retrieved, 
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κ R
6ηU
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and the tension scales as 
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2
3 . The velocity required to draw a 

tube from a vesicle of tension σ and bending energy κ is 
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R 2σ( )

3
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6η κ
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2
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In figure 7 we show the theoretical curves of variation of the ratio of the tube radius to the vesicle 
radius and of the adimensioned tension, σ R2/κ as a function of the adimensioned capillary number η 
U R2/κ for a vesicle drawing a tube.  
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Figure 7 Theoretical curves (small dots) of variation of the ratio of the tube radius to the vesicle radius 
and of the adimensioned tension, σ R2/κ as a function of the adimensioned capillary number η U R2/κ 
for a vesicle drawing a tube. Filled circles correspond to pearlike vesicles (Table 2) where the tension 
is calculated from equation 12. Squares correspond to vesicles drawing a tube (Table 1), where the 
tension is calculated from equation 5. The bending energy is set equal to 4 10-20 J 
 
In order to get an idea of the evolution of the vesicle tension during sedimentation, we measure its 
apparent surface area. When the tension increases, the apparent vesicle area A also increases unfolding 
the submicron thermal fluctuations of the membrane. We plotted in figure 8 the parameter RArea = 
(A/4π)1/2 as a function of time. While decelerating just before landing the vesicle reduces its area, 
which reaches a minimum, revealing a minimal surface tension. At this stage, the vesicle flattens and 
swallows the tube. Then, the area increases again when the vesicle settles onto the substrate and 
reaches a value similar to that observed during the steady sedimentation stage. Vesicle tensions falling 
steadily in a fluid or settled onto a substrate are similar. This is not a surprise since the vesicle is 
submitted in both cases to the same gravitational force. In one case the reaction is the drag force while 
in the other case it is the reaction of the substrate. The vesicle area and volume are similar in both 
cases but the repartition of the force is different, yielding different shapes. 
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Figure 8: Variation of (A/4π)1/2 () and the velocity (●) versus time. Top: pictures of the vesicle at 
various times of the sedimentation process.  
 
The tube comes from the change of the repartition of the volume and the surface area of the vesicle 
with respect to the shape of the vesicle settled at the bottom of the chamber. It is possible since the 
vesicle presents an excess of area. It is characterized by the reduced volume,  
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ν =
3V

4π A
4π
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
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3
2

  

defined as the ratio of the volume of the vesicle relatively to the volume of the sphere with the same 
surface area (ν ≤ 1, ν = 1 for a sphere), where V is the vesicle volume. It is deduced from azimuthal 
integration over the contour of the vesicle settled on the substrate by applying the Papus-Guldin 
theorem (assuming an axisymmetric shape) [38]. The length of the tube L can be then estimated by 
expressing the overall volume spherical part + the tube part as V= 4πR3/3 + π r2 L, and the surface 
area as A=4 πR2 + 2πrL and by replacing V and A in the expression of the reduced volume. This 
yields 
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After linearization, we obtain the expression of the tube length, 
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L=
4
3
R3(1−ν )
r (νR− r)

      (11) 

 

Figure 9 shows the plot of L measured as a function of the reduced parameter 

€ 

4
3
R3(1−ν )
r (νR− r)  

for the 13 

vesicles, which exhibit micron-size tubes. The agreement with the theoretical curve, without any 
adjustable parameter is quite good. 
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Figure 9 Experimental tube length versus a reduced parameter (see text). The straight line of slope 1 is 
the theoretical prediction. 
 
5.2. Egg and Pear-like shape vesicles 
When the sedimenting velocity of a vesicle is too small, the hydrodynamic force is smaller that the 
critical force required to extrude a tube. This happens for the couples (σ, ηU) located above the curves 
displayed in figure 7. The vesicle deforms but no tube is extruded at its rear. Because the external 
pressures at the bottom and at the top part of the vesicle are different, the curvature radii at the top and 
at the bottom of the vesicles are different, generating egg or pear-like shapes. 
We propose to calculate the tension of little extended objects like egg and pear-like vesicles. With a 
good approximation we can describe the bottom and the top of the vesicle by two spherical caps of 
radius R and rtop respectively. In this case, we can roughly estimate the vesicle surface tension by 
writing the Laplace law on both spherical parts: 
 pin - p∞ - 3 η U/2R = 2 σbot/R and pin - p∞ + 3 η U/2R = 2 σtop/ rtop. The	
  flow	
  imposes	
  a	
  pressure	
  gradient	
  
inside	
   the	
  membrane	
   surface,	
   which	
   compensates	
   the	
   applied	
   viscous	
   force	
   per	
   unit	
   area.	
   The	
   tension	
  
difference	
  between	
  bottom	
  and	
  top	
  endcaps	
   is	
  equal	
  to	
  3ηU: σbot  - σtop=3ηU, leading to the following 
relation between the velocity, the radii and the tension:	
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σ top =
9ηU rtop
2 R− rtop( )

      (12) 

 
We measured values of R and rtop on 18 egg and pear-like vesicles and we estimated the membrane 
surface tension of the vesicles, which are reported in Table 2.. 
In figure 7b, we plot the reduced tension of these vesicles as a function of the capillary number η U 
R2/κ to obtain a phase diagram. The domain of coexistence at equilibrium of a tube and a spherical 
vesicle is on the black curve. The pear like regime lies in the highest part of the diagram, above the 
curve of coexistence tube-vesicle. Below the coexistence curve, the vesicles are initially floppy and 
are not in equilibrium: a tube is initiated, which grows and increases the vesicle tension. The length of 
the tube stops when the tension reaches the equilibrium coexistence tension. In our case, most vesicles 
exhibit large excess area but are slightly tensed due to the gravity.  
 
Conclusion 
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We have shown that the drag force is able to draw a tube from the top of a vesicle sedimenting in a 
quiescent fluid while it is not a point force as usually described in the literature for membrane tethers 
extrusion. In our study we used vesicles, which were osmotically deflated before the experiments, and 
were characterized by very small (vanishing) surface tensions. In this case the critical force to extrude 
a tube is very small, of the order of 10-13N, and a vesicle moving at a few µm/s can develop tubes with 
micron-size radii. Noteworthy, no force barrier seems to exist for the formation of tubes, contrarily to 
the case of tube formation by application of a point force, where the force barrier grows linearly with 
the size of the area the force is exerted on 39. 
With a classic thermodynamic approach, we proposed a basic model, which predicts that the tube 

radius varies as 

€ 

r =
κ R
6ηU
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
3

consistently with reported experimental data. For large tensions, we 

predict that the velocity required to draw a tube increases with the power 1.5 of the surface tension. 
 
These results may be of importance when GUVs are subjected to centrifugation, as it is the case in the 
recent method called double emulsion used to prepare vesicles. In this case, the vesicle velocity can 
reach several hundreds of µm/s and can generate the formation of membrane tubes. 
Finally we hope that our work will stimulate numerical more detailed theoretical descriptions able to 
predict all the observed shapes of vesicles, from the existence of tubes to pearlike shapes, within a 
single frame. 
 
Acknowledgments: We want to thank J. B. Fournier and J. M. Allain for stimulating discussions. The 
labs belong to the CNRS consortium CellTiss. 
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Table 1 Characteristics of vesicles with a tube 

# 
Vesicle 
radius 
R (µm) 

Tube 
radius r  
(µm) 

Length 
tube 
(µm) 

Velocity 
U (µm.s-

1) 

Viscosity 
η (103 

Pa.s) 

Density 
Δρ  
(g.l-1) 

Reduced 
volume 
ν 

Calculated 
tension 
from eq. 5 
σ (108 
N.m-1)  

1.1 30.5 2.71 7 8.11 1.33 7.4 0.985 0.42 
2.1 25 3 11 5.48 1.33 7.4 0.96 0.35 
3.1 25.8 3.1 16.4 6.18 1.33 7.4 0.96 0.36 
4.1 29.5 3.6 18.9 4.93 1.36 4.4  0.28 
5.1 48.1 3.1 9 12.4 1.36 4.4 0.99 0.37 
6.1 48.5 3.3 11 10.2 1.37 3.2 0.99 0.33 
7.1 34 3.7 14.8 5.97 1.33 4.2 0.97 0.28 
8.1 28.6 2.7 12.6 12.4 1.29 11 0.97 0.5 
9.1 17.5 3.6 23.5 4 1.26 10  0.31 
10.1 30.3 3.6 17 5.87 1.33 4.2 0.959 0.29 
11.1 28.5 3.2 19.8 7.64 1.29 6.7 0.95 0.35 
12.1 25.3 3.6 13.5 5.3 1.36 4.4 0.95 0.3 
13.1 16 2.8 15 9.5 1.17 18 0.9 0.5 
 
 
Table 2 Characteristics of pear or egg like vesicles 
 
# Bottom 

radius R 
(µm) 

Top 
radius r  
(µm) 

Velocity 
U (µm.s-1) 

Viscosity 
η (103 Pa.s) 

Density 
Δρ  
(g.l-1) 

Calculated 
tension from 
eq. 12 
σ (108 N.m-1) 

4-1.2 25.4 8.5 10.63 1.29 11 3 
5-2.2 26.4 12.6 4.66 1.33 4.2 2.7 
6-3.2 27.2 14 4.8 1.33 4.2 3 
7-4.2 44.8 24.4 20.9 1.3 7 13.2 
8-5.2 23.5 15.5 4 1.31 4 4.5 
2-6.2 30 8.9 6.2 1.33 4.2 1.5 
10-7.2 24.3 22 5.6 1.33 7.4 33 
11-8.2 48 13 20.27 1.29 11 4.5 
13-9.2 25.7 18.2 10.7 1.29 11 15 
14-10.2 21 14.75 6.5 1.29 11 9 
18-11.2 10.7 2.2 2.9 1.17 18 0.3 
19-12.2 12.8 4 3.8 1.17 18 0.9 
20-13.2 13.7 3.8 6 1.17 18 1.2 
21-14.2 12.9 3.3 7.1 1.17 18 1.2 
23-15.2 23.8 8 15.6 1.17 18 4.2 
0522 V17 
16.2 

15 5 3.2 1.26 10 1.3 

0521 10 
17.2 

32.2 19.2 7.91 1.30 7 6.9 

070520 
5 18.2 

15 4 3 1.33 7.4 0.9 

 



 15 

                                                
1  Abkarian M and Viallat A 2008 Soft Matter 4 653 
2  Pozrikidis 2003  Modeling and Simulation of Capsules and biological Cells (Chapman & 
Hall/CRC Mathematical Biology and Medecine Series) 
3  Deschamps J , Kantsler V , Segre E  and Steinberg V 2009 PNAS 106, 28 11444 
4  Waug R 1982 Biophys. J.  38 29 
5  Hochmuth R M, Mohandas N and Blackshear P L 1973 Biophys. J.  13 747  
6  Hochmuth RM, Wiles H C, Evans E A and McTown J T 1982 Biophys. J.  39 83  
7  Bo L and Waugh R 1989 Biophys. J.  55 509  
8  Brochard-Wyart F, Borghi N and Nassoy P 2006 PNAS 103 7660 
9  Kremer S, Campillo C, Pepin-Donat B, Viallat A and Brochard-Wyart F 2008 Europhys. Lett. 
82 48002 
10  White J, Johannes J, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel, Echard A 
and Goud B 1999 J. Cell Biol. 147 743 
11  Cooper M, Cornell-Bell A, Chernjavsky A, Dani J and Smith S 1990 Cell 60 135 
12  Rustm A, Saffrich R, Markovic I, Walther P and Gerdes H H 2004 Science 303 1007 
13  Schmidtke D W and Diamond S L 2000 J. Cell. Biol. 149 719 
14  Waugh R and Bauserman R 1995 Ann. Biomed. Eng. 23 308 
15  Shao J-Y and Hochmuth R M 1996 Biophys. J. 71 2892 
16  Hochmutn R M , Shao J-Y, Dai J and Sheetz M P 1996 Biophys J. 70 358 
17  Li Z, Anvari B, Takashima M, Brecht P, Torres J H and Brownell W E 2002 Biophys. J. 82 
1386 
18  Kern N and Fourcade B 1999 Europhys. Lett., 46 (2) 262 
19  Hoffman J F and Inoué S 2006 PNAS 103 2971  
20  Batchelor G. K. 1967. An Introduction to Fluid Dynamics. Cambridge: Cambridge Univ. 
Press.  
21  Kojima M, Hinch E J and Acrivos A 1984 Phys. Fluids 27 19 
22  Koh C J and Leal L G 1989 Phys. Fluids A1 8 1309 
23  Koh C J and Leal L G 1990 Phys. Fluids A2 12 2103 
24  Pozrikidis, C. 1990. J. Fluid Mech. 210 1 
25  Johnson R A and A Bohran 2000 Phys. Fluids 12, 773 
26  Abkarian M, Lartigue C and Viallat A 2001 Phys. Rev. E., 63, 041906 
27  Abkarian M and A. Viallat, 2005 Biophys. J. 89 1055 
28  Guyon E, Hulin J P and  Petit L 2001 Hydrodynamique Physique, edp science 
29  Landau L D and Lifshitz E M 1987 Fluid Mechanics vol 6 (1rst ed.), Butterworth-
Heinemann, ISBN 978-0-080-33933-7. 
30  Waugh R and Hochmuth R 1987 Biophys. J. 52 391 
31  Waugh R, Song J, Svetina S and Zeks B 1992 Biophys. J. 61 974 
32  Evans E and Yeung A 1994 Chem Phys Liquids 73 39 
33  Derényi I, Jülicher F and Prost J 2002 Phys. Rev. Lett. 88 238101 
34  Fournier J B 2007 Soft Matter  3 883 
35  Bozic B, Svetina S, Zeks B and Waugh R 1992, Biophys. J. 61 963 
36  Borgi N 2006 PhD Thesis Université Paris 6, France 
37  Powers T R, Huber G  and Goldstein R E, 2002 Phys. Rev. E, 65 041901 
38  Abkarian M and Viallat A 2005 Biophys. J. ;  Kern W. F. and Bland. J. R. 1948 Theorem of 
Pappus. In Solid Mensuration with Proofs, 2nd Ed. Wiley, New York, NY. p 110 
39  Koster G, Cacciuto A, Derenyi I, Frenkel D and Dogterom M 2005 Phys. Rev. Lett., 94 
068101 


