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Weak solutions of backward stochastic differential

equations with continuous generator

Nadira Bouchemella and Paul Raynaud de Fitte

August 17, 2013

Abstract

This paper provides a simple approach for the consideration of
quadratic BSDEs with bounded terminal We prove the existence of
a weak solution to a backward stochastic differential equation (BSDE)

Yt = ξ +

∫
T

t

f(s,Xs, Ys, Zs) ds−

∫
T

t

Zs dWs

in a finite-dimensional space, where f(t, x, y, z) is affine with respect to
z, and satisfies a sublinear growth condition and a continuity condition.
This solution takes the form of a triplet (Y, Z, L) of processes defined
on an extended probability space and satisfying

Yt = ξ +

∫
T

t

f(s,Xs, Ys, Zs) ds−

∫
T

t

Zs dWs − (LT − Lt)

where L is a martingale with possible jumps which is orthogonal to
W . The solution is constructed on an extended probability space,
using Young measures on the space of trajectories. One component of
this space is the Skorokhod space D endowed with the topology S of
Jakubowski.

Keywords: Backward stochastic differential equation, weak solution,
martingale solution, joint solution measure, Young measure, Skorokhod
space, Jakubowski’s topology S, condition UT, Meyer-Zheng, pathwise unique-
ness, Yamada-Watanabe-Engelbert.

MSC: 60H10

1 Introduction

Aim of the paper Let (Ω,F , (Ft)t∈[0,T ],P) be a complete probability
space, where (Ft)t≥0 is the natural filtration of a standard Brownian motion
W = (Wt)t∈[0,T ] on R

m and F = FT .
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In this paper, we prove the existence of a weak solution (more precisely,
a solution defined on an extended probability space) to the equation

Yt = ξ +

∫ T

t
f(s,Xs, Ys, Zs) ds−

∫ T

t
Zs dWs − (LT − Lt)(1)

where f(t, x, y, z) is affine with respect to z, and satisfies a sublinear growth
condition and a continuity condition, W is an R

m-valued standard Brownian
motion, Y and Z and L are unknown processes, Y and L take their values
in R

d, Z takes its values in the space L of linear mappings from R
m to R

d,
ξ ∈ L2

Rd is the terminal condition, and L is a martingale orthogonal to W ,
with L0 = 0 and with càdlàg trajectories (i.e. right continuous trajectories
with left limits at every point). The process X = (Xt)0≤t≤T is (Ft)-adapted
and continuous with values in a separable metric space M. This process
represents the random part of the generator f and plays a very small role in
our construction. The space M can be, for example, some space of trajecto-
ries, and Xt can be, for example, the history until time t of some process ζ,
i.e. Xt = (ζs∧t)0≤s≤T .

Such a weak solution to (1) can be considered as a generalized weak
solution to the more classical equation

Yt = ξ +

∫ T

t
f(s,Xs, Ys, Zs) ds−

∫ T

t
Zs dWs.(2)

Historical comments Existence and uniqueness of the solution (Y,Z) to
a nonlinear BSDE of the form

Yt = ξ +

∫ T

t
f(s, Ys, Zs) ds −

∫ T

t
Zs dWs

have been proved in the seminal paper [30] by E. Pardoux and S. Peng, in
the case when the generator f is random with f(., 0, 0) ∈ L2(Ω× [0, T ]), and
f(t, y, z) is Lipschitz with respect to (y, z), uniformly in the other variables.
In [26], J.P. Lepeltier and J. San Mart́ın proved in the one dimensional case
the existence of a solution when f is random, continuous with respect to
(y, z) and satisfies a linear growth condition ‖f(t, y, z)‖ ≤ C(1 + ‖y‖+ ‖z‖).

Equations of the form (2), with f depending on some other process
X, appear in forward-backward stochastic differential equations (FBSDEs),
where X is a solution of a (forward) stochastic differential equation.

As in the case of stochastic differential equations, one might expect that
BSDEs with continuous generator always admit at least a weak solution, that
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is, a solution defined on a different probability space (generally with a larger
filtration than the original one). A work in this direction but for forward-
backward stochastic differential equations (FBSDEs) is that of K. Bahlali,
B. Mezerdi, M. N’zi and Y. Ouknine [3], where the original probability is
changed using Girsanov’s theorem. Let us also mention the works on weak
solutions to FBSDEs by Antonelli and Ma [2], and Delarue and Guatteri
[13], where the change of probability space comes from the construction of
the forward component.

Weak solutions where the filtration is enlarged have been studied by
R. Buckdahn, H.J. Engelbert and A. Răşcanu in [11] (see also [9, 10]), using
pseudopaths and the Meyer-Zheng topology [29]. Pseudopaths were invented
by Dellacherie and Meyer [14], actually they are Young measures on the
state space (see Subsection 3.4 for the definition of Young measures). The
success of Meyer-Zheng topology comes from a tightness criterion which
is easily satisfied and ensures that all limits have their trajectories in the
Skorokhod space D. We use here the fact that Meyer-Zheng’s criterion also
yields tightness for Jakubowski’s stronger topology S on D [21]. Note that
the result of Buckdahn, Engelbert and Răşcanu [11, Theorem 4.6] is more
general than ours in the sense that f in [11] depends functionally on Y , more
precisely, their generator f(t, x, y) is defined on [0, T ]×D×D. Furthermore,
in [11], W is only supposed to be a càdlàg martingale. On the other hand, it
is assumed in [11] that f is bounded and does not depend on Z (but possibly
on the martingale W ). In the present paper, f satisfies only a linear growth
condition, but the main novelty (and the main difficulty) is that f depends
(linearly) on Z. As our final setup is not Brownian, the process Z we
construct is not directly obtained by the martingale representation theorem,
but as a limit of processes Z(n) which are obtained from the martingale
representation theorem.

The existence of the orthogonal component L in our work comes from
the fact that our approximating sequence (Z(n)) does not converge in L2:
Actually it converges to Z only in distribution in L2

L
[0, T ] endowed with its

weak topology, thus the stochastic integrals
∫ t
0 Z

(n) dWs need not converge

in distribution to
∫ t
0 Z dWs. Let us mention here the work of Ma, Zhang and

Zheng [27], on the much more intricate problem of existence and uniqueness
of weak solutions (in the classical sense) for forward-backward stochastic
differential equations. Among other results, they prove existence of weak
solutions with different methods and hypothesis (in particular the generator
is assumed to be uniformly continuous in the space of variables) which ensure
that the approximating sequence Z(n) constructed in their paper converges
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in L2 to Z.
Let us also mention the recent paper [4] on the existence of an optimal

control for a FBSDE. This optimal control and the corresponding solutions
are obtained by taking weak limits of minimizing controls and the corre-
sponding strong solutions. The limit BSDE with the optimal control also
contains an orthogonal martingale component similar to ours.

In the case where the Brownian filtration needs to be enlarged, weak
solutions are solutions which cannot be constructed as functionals of the
sole Brownian motion W . It is natural for this construction to add some
randomness to W by considering Young measures on the space of trajectories
of the solutions we want to construct (let us denote momentarily Γ this
space), i.e. random measures ω 7→ µω on Γ which depend in a measurable
way on the Brownian motion. The weak solution is then constructed in the
extended probability space Ω = Ω × Γ with the probability µω ⊗ dP(ω).
Young measures have been invented many times under different names for
different purposes. In the case of the construction of weak solutions of SDEs
with trajectories in the Skorokhod space D, they have been (re-)invented by
Pellaumail [31] under the name of rules. In the present paper, we also
construct a weak solution with the help of Young measures on a suitable
space of trajectories.

Organization of the paper In Section 2, we give the main definitions
and hypothesis, in particular we discuss and compare possible definitions of
weak solutions. Using the techniques of T.G. Kurtz, we also give a Yamada-
Watanabe-Engelbert type result on pathwise uniqueness and existence of
strong solutions.

Section 3 is devoted to the main result, that is, the construction of a weak
solution: First, we construct a sequence (Y (n), Z(n)) of strong solutions to
approximating BSDEs using a Tonelli type scheme (Subsection 3.1), then we
prove uniform boudedness in L2 of these solutions (Subsection 3.2) and com-
pactness properties in the spaces of trajectories (Subsection 3.3). Here the
space of trajectories is DRd([0, T ])×L2

L
[0, T ]×DRd([0, T ]), where DRd([0, T ])

is endowed with Jakubowski’s topology S and L2
L
[0, T ] with its weak topol-

ogy. Finally, we obtain the solution by passing to the limit of an extracted
sequence, in Young measures topology (Subsection 3.4). The proof of the
main result, Theorem 3.1, is completed in Subsection 3.5.
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2 General setting, weak and strong solutions

2.1 Generalities, equivalent definitions of weak solutions

Notations and hypothesis For any separable metric space E, we denote
by CE[0, T ] (respectively DE[0, T ]) the space of continuous (resp. càdlàg)
mappings on [0, T ] with values in E. (The space DRd [0, T ] will sometimes
be denoted for short by D.) Similarly, for any q ≥ 1, if E is a Banach space,
and if (Σ,G,Q) is a measure space, we denote by Lq

E
(Σ) the Banach space of

measurable mappings ϕ : Σ → E such that ‖ϕ‖q
Lq

E

:=
∫ T
0 ‖ϕ(s)‖q dQ(s) <

+∞.
The law of a random element X of a topological space E is denoted by

L (X). The conditional expectation of X with respect to a σ-algebra G, if
it exists, is denoted by EG (X). The indicator function of a set A is denoted
by 1lA.

In the sequel, we are given a stochastic basis (Ω,F , (Ft)t∈[0,T ],P), the
filtration (Ft) is the filtration generated by an R

m-valued standard Brownian
motion W , augmented with the P-negligible sets, and F = FT . We are
also given an R

d-valued random variable ξ ∈ L2
Rd(Ω,F ,P) (the terminal

condition). The space of linear mappings from R
m to R

d is denoted by L.
We denote by M a separable metric space and by X a given (Ft)-adapted
M-valued continuous process. Finally we are given a measurable mapping
f : [0, T ] × M × R

d × L → R
d which satisfies the following growth and

continuity conditions (H1) and (H2) (which will be needed only in Section
3 for the construction of a solution):

(H1) There exists a constant Cf ≥ 0 such that ∀(t, x, y, z) ∈ [0, T ] × M ×
R
d × L, ‖f(t, x, y, z)‖ ≤ Cf (1 + ‖z‖).

(H2) f(t, x, y, z) is continuous with respect to (x, y) and affine with respect
to z.

Weak and strong solutions

Definition 2.1 A strong solution to (2) is an (Ft)-adapted, Rd × L-valued
process (Y,Z) (defined on Ω × [0, T ]) which satisfies

∫ T

0
‖Zs‖

2 ds < ∞ P -a.e.(3)

∫ T

0
‖f(s,Xs, Ys, Zs)‖ ds < ∞ P -a.e.(4)
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and such that the BSDE (2) holds true.

Remark 2.2 Similarly, a strong solution to (1) should be a triplet (Y,Z,L)
defined on Ω× [0, T ]) satisfying (3), (4), and (1), and such that L is a càdlàg
martingale orthogonal to W and L0 = 0, but this notion coincides with that
of a strong solution to (2), because then L would be an (Ft)-martingale,
hence L = 0.

Remark 2.3 The process X is given and (Ft)-adapted, and the final con-
dition ξ is given and FT -measurable. By a well known result due to Doob
(see [15, page 603] or [14, page 18]), there exists thus a Borel-measurable
mapping F : CRm [0, T ] → CM[0, T ] × R

d such that (X, ξ) = F (W ) a.e. In
other words, the law L (W,X, ξ) of (W,X, ξ) is supported by the graph of
F . The fact that X is (Ft)-adapted is a property of F : it means that, for
every t ∈ [0, T ], the restriction of X to [0, t] only depends on the restriction
of W to [0, t].

We now give three equivalent definitions of a weak solution:

Definition 2.4
1) A weak solution to (1) is a stochastic basis (Ω,F , (F t)0≤t≤T , µ) along

with a list (Y ,Z,L,W ,X) of processes defined on Ω × [0, T ], and adapted
to (F t), and a random variable ξ defined on Ω, such that:

(W1) The processes W and X are continuous with values in R
m and M

respectively, ξ takes its values in R
d, and the law of (W,X, ξ) on

CRm [0, T ] × CM[0, T ] × R
d is that of (W,X, ξ).

(W2) W is a standard Brownian motion with respect to the filtration (F t).

(W3) The processes Y and L are R
d-valued and càdlàg, and Z is L-valued,

with E
∫ T
0 ‖Zs‖

2 ds < ∞, the process L is a square integrable mar-
tingale with L0 = 0, and L is orthogonal to W .

(W4) Condition (4) and the BSDE (1) hold true, replacing Y,Z,L,W,X, ξ
by Y ,Z,L,W ,X, ξ.

We then say that (Y ,Z,L,W ,X, ξ) is a weak solution defined on (Ω,F , (F t), µ).

2) Following the terminology of [17, 16, 25], and with the preceding nota-
tions, the probability measure L

(
Y ,Z,L,W ,X, ξ

)
on DRd [0, T ]×L2

L
[0, T ]×

DRd [0, T ]×CRm [0, T ]×CM[0, T ]×R
d is called a joint solution measure to (1)

generated by (Ω,F , (F t)t, µ) and (Y ,Z,L,W ,X, ξ). (Here the Borel subsets
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of DRd [0, T ] are generated by the projection mappings πt : x 7→ x(t) for
t ∈ [0, T ]; we shall see later that these sets are the Borel sets of the topology
S of A. Jakubowski [21].)

3) An extended solution to (1) consists of a stochastic basis (Ω,F , (F t)0≤t≤T , µ)
along with a triplet (Y,Z,L) of processes defined on Ω such that:

(E1) There exists a measurable space (Γ,G), and a filtration (Gt) on (Γ,G)
such that

Ω = Ω × Γ, F = F ⊗ G, F t = Ft ⊗ Gt for every t,

and there exists a probability measure µ on (Ω,F) such that µ(A×Γ) =
P(A) for every A ∈ F .

Note that every random variable ζ defined on Ω can then be identi-
fied with a random variable defined on Ω, by setting ζ(ω, γ) = ζ(ω).
Furthermore, F can be viewed as a sub-σ-algebra of F by identifying
each A ∈ F with the set A× Γ. Similarly, each Ft can be considered
as a sub-σ-algebra of F t. We say that (Ω,F , (F t)t, µ) is an extension
of (Ω,F , (Ft)t,P).

(E2) The process (Wt)0≤t≤T is a Brownian motion on (Ω,F , (F t)t, µ) (where
W (ω, γ) := W (ω) for all (ω, γ) ∈ Ω),

(E3) The processes Y , Z and L are (F t)-adapted, Y and L are R
d-valued

and càdlàg, and Z is L-valued, with E
∫ T
0 ‖Zs‖

2 ds < ∞, and L is a
square integrable martingale with L0 = 0, and L is orthogonal to W .

(E4) Condition (4) and the BSDE (1) hold true.

Obviously, an extended solution is a weak solution, and a weak solution
generates a joint solution measure. Actually, these concepts are equivalent
in the sense that:

Proposition 2.5 Given a joint solution measure ν to (1), there exists an
extended solution to (1) which generates ν.

Before we give the proof of Proposition 2.5, let us give an intrinsic charac-
terization of joint solution measures. Let us first observe that:

1. It is easy to check (see the proof of Lemma 3.3) that, if Y,Z,L,W,X, ξ
are defined on a stochastic basis (Ω,F , (F t), µ), then (1) is equivalent to

Yt = EFt

(
ξ +

∫ T

t
f(s,Xs, Ys, Zs) ds

)
(5)
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∫ t

0
Zs dWs + Lt = EFt

(
ξ +

∫ T

0
f(s,Xs, Ys, Zs) ds

)

− EF0

(
ξ +

∫ T

0
f(s,Xs, Ys, Zs) ds

)
.(6)

2. If (Y ,Z,L,W ,X, ξ) is a weak solution defined on a stochastic basis
(Ω,F , (F t), µ), it is still a weak solution if we reduce the filtration (F t)
to a filtration (F ′

t) such that F ′
t ⊂ F t for every t and (Y ,Z,L,W ,X)

remains adapted to (F ′
t). Furthermore, conditions (W1) to (W4) remain

unchanged if we augment (F ′
t) with the µ-negligible sets. So, if ν is a joint

solution measure, there exists (Y ,Z,L,W ,X, ξ) defined on a stochastic basis
(Ω,F , (F t)0≤t≤T , µ) such that

(W0) ν = L
(
Y ,Z,L,W ,X, ξ

)
and (F t) = (FY ,Z,L,W

t ), where (FY ,Z,L,W
t )

is the filtration generated by (Y ,Z,L,W ), augmented with the µ-
negligible sets.

Now, Condition (W1) is clearly a condition on ν. Let us rewrite Condi-
tions (W2)-(W4), under Assumption (W0) on (Y ,Z,L,W,X, ξ) and (Ω,F ,
(F t)0≤t≤T , µ) . We use here techniques of Kurtz [25].

• By Lévy’s characterization of Brownian motion, (W2) is satisfied if and

only if W is an (F t)-martingale and
[
W [i],W [j]

]
t

= δijt for all t ∈ [0, T ],

where δij is the Kronecker symbol and W [i] is the ith coordinate of W . The
latter condition is satisfied if W has the same law as W , thus it is implied
by (W1). We can thus replace (W2) by

(W2’) W is an (FY ,Z,L,W
t )-martingale.

But (W2’) is equivalent to

(7) E
(
(WT −W t) h(Y .∧t, Z .∧t, L.∧t,W .∧t)

)
= 0

for every t ∈ [0, T ] and every bounded Borel measurable function h defined
on DRd [0, T ] × L2

L
[0, T ] × DRd [0, T ] × CRm [0, T ].

• By (W0), Y and L have their trajectories in DRd [0, T ] and Z in L2
L[0, T ],

and we have L0 = 0. Thus we can replace (W3) by

(W3’) L is a square integrable (FY ,Z,L,W
t )-martingale and L is orthogonal to

W .
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The second part of (W3’) means that L(i)W (j) is a martingale for every
i ∈ {1, . . . , d} and every j ∈ {1, . . . ,m}, where L(i) and W (j) denote the
coordinate processes. Thus (W3’) can be expressed as

E

((
LT − Lt

)
h(Y .∧t, Z .∧t, L.∧t,W .∧t)

)
= 0(8)

E

((
L
(i)
T W

(j)
T − L

(i)
t W

(j)
t

)
h(Y .∧t, Z .∧t, L.∧t,W .∧t)

)
= 0(9)

for every t ∈ [0, T ] and every bounded Borel measurable function h defined
on DRd [0, T ] × L2

L
[0, T ] × DRd [0, T ] × CRm [0, T ].

• Under (W0), Equations (5) and (6) amount to

Y t = EF
(Y ,Z,L,W )
t

(
ξ +

∫ T

t
f(s,Xs, Y s, Zs) ds

)

∫ t

0
Zs dW s + Lt = EF

(Y ,Z,L,W )
t

(
ξ +

∫ T

t
f(s,Xs, Y s, Zs) ds

)

− EF
(Y ,Z,L,W )
0

(
ξ +

∫ T

t
f(s,Xs, Y s, Zs) ds

)
.

Thus Condition (W4) is equivalent to

∫ T

0
‖f(s,Xs, Y s, Zs)‖ ds < ∞ P-a.e.(10)

E




(
Y t − ξ −

∫ T

t
f(s,Xs, Y s, Zs) ds

)
h(Y .∧t, Z .∧t, L.∧t,W .∧t)


 = 0(11)

(12) E




(∫ t

0
Zs dW s + Lt

− ξ −

∫ T

0
f(s,Xs, Y s, Zs) ds + E

(
ξ +

∫ T

0
f(s,Xs, Y s, Zs) ds

))

× h(Y .∧t, Z .∧t, L.∧t,W .∧t)


 = 0

for every bounded measurable function h defined on DRd [0, T ] × L2
L[0, T ] ×

DRd [0, T ] × CRm [0, T ].
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Clearly, Equations (7), (8), (9), (10), (11), and (12) only depend on
the probability measure ν = L

(
Y ,Z,L,W ,X, ξ

)
. We have thus proved

the following lemma, which is actually a characterization of joint solution
measures:

Lemma 2.6 Let Y ,Z,L,W ,X be stochastic processes defined on a stochas-
tic basis (Ω,F , (F t)0≤t≤T , µ), with trajectories respectively in DRd [0, T ], L2

L[0, T ],
DRd [0, T ], CRm [0, T ], and CM[0, T ], and let ξ be an R

d-valued random vari-
able defined on Ω. Assume that (F t) is the filtration generated by (Y ,Z,L,W ),
possibly augmented with µ-negligible sets. Then (Y ,Z,L,W ,X, ξ) is a weak
solution to (1) defined on (Ω,F , (F t)0≤t≤T , µ) if and only if (W1) and Equa-
tions (7), (8), (9), (10), (11), and (12) are satisfied.

Corollary 2.7 Let ν be a joint solution measure to (1). Let (Y ,Z,L,W ,X, ξ)

and (Ω,F , (F t)0≤t≤T , µ) as in Lemma 2.6. Assume that L
(
Y ,Z,L,W ,X, ξ

)
=

ν. Then (Y ,Z,L,W ,X, ξ) is a weak solution to (1) defined on (Ω,F , (F t)0≤t≤T , µ).

In particular, if ν is a joint solution measure to (1), the canonical process
on the space DRd [0, T ] × L2

L[0, T ] × DRd [0, T ] × CRm [0, T ] × CM[0, T ] × R
d

endowed with the probability ν is a weak solution to (1).
Before we give the proof of Proposition 2.5, let us give a definition which

will be used several times. Let µ be a probability measure on a product
(Ω × Γ,F ⊗ G) of measurable spaces such that Γ is a Polish space (or more
generally, a Radon space) and G is its Borel σ-algebra. Let P denote the
marginal measure of µ on Ω, that is, P(A) = µ(A × Γ) for all A ∈ F .
Then there exists a unique (up to equality P-a.e.) family (µω)ω∈Ω such that
ω 7→ µω(B) is measurable for every B ∈ G, and

(13) µ(ϕ) =

∫

Ω
µω(ϕ(ω, .)) dP(ω)

for every F⊗G-measurable nonnegative function ϕ : Ω×Γ → R, see e.g. [36].

Definition 2.8 The family (µω) in (13) is called the disintegration of µ with
respect to P. It is convenient to denote

µ = µω ⊗ dP(ω).

Proof of Proposition 2.5 Let Γ = DRd [0, T ] × L2
L
[0, T ] × DRd [0, T ]. Let

G be the Borel σ-algebra of Γ, and, for each t ∈ [0, T ], let Gt be the σ-
algebra generated by the projection of Γ onto DRd[0, t]×L2

L
[0, t]×DRd [0, t].
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Let F : CRm [0, T ] 7→ CM[0, T ] × R
d be as in Remark 2.3. Then, with

slight abuses of notations, ν is the image of a probability measure λ on
Γ × CRm [0, T ] × CM[0, T ] × R

d by the mapping

{
Γ × CRm [0, T ] → Γ × CRm [0, T ] × CM[0, T ] × Rd

(y, z, l,w) 7→ (y, z, l,w, F (w)).

Let (λw)w∈CRm [0,T ] be the disintegration of λ with respect to L (W ), that is,
(λw)w∈CRm [0,T ] is a family of probability measures on (Γ,G) such that, for
every bounded measurable ϕ : Γ × CRm [0, T ] → R,

λ(ϕ) =

∫

CRm [0,T ]

(∫

Γ
ϕ(y, z, l,w) dλw(y, z, l)

)
dL (W ) (w).

Now, let

Ω = Ω × Γ, F = F ⊗ G, F t = Ft ⊗ Gt (t ∈ [0, T ]),

and let µ = λW (ω)⊗ dP(ω), i.e. µ is the probability measure on (Ω,F) such
that

µ(ϕ) =

∫

Ω

(∫

Γ
ϕ(ω, y, z, l) dλW (ω)(y, z, l)

)
dP(ω)

for every bounded measurable ϕ : Ω → R. We define the random variables
Y , Z, L, W , X and ξ on Ω by

Y (ω, y, z, l) = y, Z(ω, y, z, l) = z, L(ω, y, z, l) = l,

W (ω, y, z, l) = W (ω), X(ω, y, z, l) = X(ω), ξ(ω, y, z, l) = ξ(ω).

Then F t = F
(Y,Z,L,W )
t for every t ∈ [0, T ], where (FY,Z,L,W

t ) is the filtration
generated by (Y,Z,L,W ) augmented with the P-negligible sets. Further-
more, we have L (Y,Z,L,W,X, ξ) = ν, thus, by Corollary 2.7, as ν is a joint
solution measure to (1), (Y,Z,L,W,X, ξ) is a weak solution to (1) defined
on (Ω,F , (F t), µ).

Remark 2.9 The extension which generates ν in Proposition 2.5 is not
unique. The one we construct in Section 3 is based on a different construc-
tion of the auxiliary space Γ.

We now give a criterion for an extended probability space to preserve
martingales. The equivalence (ii)⇔(iii) in the following lemma is contained
in Lemma 2.17 of [19].
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Lemma 2.10 Let (Ω,F , (F t), µ) = (Ω×Γ,F ⊗G, (Ft⊗Gt), µ) be an exten-
sion of (Ω,F , (Ft),P). Let (µω) be the disintegration of µ with respect to P.
The following are equivalent:

(i) W is an (F t)-Brownian motion under µ,

(ii) Every (Ft)-martingale is an (F t)-martingale under µ1,

(iii) For every t ∈ [0, T ] and every B ∈ Gt, the mapping ω 7→ µω(B) is
Ft-measurable.

Proof Assume (i). Let M be an (Ft)-martingale with values in R
k for

some integer k. Assume first that M is square integrable. By the martin-
gale representation theorem, there exists an (Ft)-adapted process H with

E
∫ T
0 H2

s ds < +∞ such that Mt = M0 +
∫ t
0 Hs dWs. By (i), M is an (F t)-

martingale. In the general case, denote, for every integer N ≥ 1,

MN
T =

{
MT

‖MT ‖ if ‖MT ‖ > N

MT if ‖MT ‖ ≤ N,

and set MN
t = EFt

(
MN

T

)
for 0 ≤ t ≤ T . Then, for any A ∈ F t, using

Lebesgue’s dominated convergence theorem, we have

E ( 1lA (MT −Mt)) = lim
N→∞

E
(

1lA
(
MN

T −MN
t

))
= 0

which proves that Mt = EFt (MT ). Thus (ii) is satisfied.
Assume (ii), and let B ∈ Gt. For u : Ω → R and v : Γ → R we denote

by u⊗ v the function defined on Ω× Γ by u⊗ v(ω, x) = u(ω)v(x). For each
bounded F-measurable random variable K, we have

E (K µ.(B)) = µ (K ⊗ 1lB) = µ
(
EFt (K ⊗ 1lB)

)
= µ

(
EFt (K) ⊗ 1lB

)

= E
(
EFt (K) µ.(B)

)
= E

(
EFt (K) EFt (µ.(B))

)

= E
(
K EFt (µ.(B))

)
,

which yields µ.(B) = EFt (µ.(B)). Thus µ.(B) is Ft-measurable, which
proves (iii).

1According to Jacod and Mémin’s terminology [19, Definition 1.7], this means that
(Ω,F , (F t)t, µ) is a very good extension of (Ω,F , (Ft)t,P). A similar condition is called
compatibility in [25].
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Assume (iii). To prove (i), we only need to check that W has independent
increments under µ. Let t ∈ [0, T ], and let s > 0 such that t + s ∈ [0, T ].
Let us prove that, for any A ∈ F t and any Borel subset C of Rm, we have

(14) µ (A ∩ {Wt+s −Wt ∈ C}) = µ(A)µ{Wt+s −Wt ∈ C}.

Let B = {ω ∈ Ω; Wt+s(ω) −Wt(ω) ∈ C}. We have

µ (A ∩ (B × Γ)) =

∫

Ω×Γ
1lA(ω, γ)) 1lB(ω) dµ(ω, γ)

=

∫

Ω
µω( 1lA(ω, .)) 1lB(ω) dP(ω)

=

∫

Ω
µω( 1lA(ω, .)) dP(ω) P(B)

= µ(A)µ(B × Γ),

which proves (14). Thus Wt+s −Wt is independent of F t.

2.2 Pathwise uniqueness and strong solutions

One easily sees that, under hypothesis (H1) and (H2), Equation (2) may
have infinitely many strong solutions. For example, let d = m = 1, ξ = 0,
and f(s, x, y, z) =

√
|y|. Then, for any t0 ∈ [0, T ], we get a solution by

setting Z = 0 and

Yt =

{
1
4 (t0 − t)2 if 0 ≤ t ≤ t0

0 if t0 ≤ t ≤ T.

Following the usual terminology, let us say that pathwise uniqueness
holds for Equation (1) if two weak solutions defined on the same probability
space, and with respect to the same (W,X, ξ), necessarily coincide. Thus,
in our setting, pathwise uniqueness does not necessarily hold.

T. G. Kurtz [25] has proved a very general version of the Yamada-
Watanabe and Engelbert theorems on uniqueness and existence of strong
solutions to stochastic equations, which includes SDEs, BSDEs and FBS-
DEs, but without z in the generator. His results are based on the convexity
of the set of joint solution-measures when the trajectories lie in a Polish
space.

We can consider here that DRd [0, T ] is equipped with Skorokhod’s topol-
ogy J1, which is Polish (actually, in Section 3, we will use Jakubowski’s
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topology S on DRd [0, T ], which is not Polish, but this topology has the same
Borel subsets as J1). Thus the space Γ = DRd [0, T ] × L2

L[0, T ] ×DRd [0, T ] is
Polish. In particular, Theorem 3.15 of [25] applies to our framework.

Proposition 2.11 (Yamada-Watanabe-Engelbert à la Kurtz) Assume
that pathwise uniqueness holds for Equation (1). Then every weak solution
to (1) is a strong solution. Conversely, if every solution to (2) is strong,
(equivalently, by Remark 2.2, if every solution to (1) is strong), then path-
wise uniqueness holds for Equation (1).

Proof In order to apply [25, Theorem 3.15], we only need to check that
the set of joint solution measures to (1) is convex. (Theorem 3.15 in [25]
supposes that µ ∈ SΓ,C,ν in the notations of [25], but a joint solution measure
is exactly an element of SΓ,C,ν.) We check this convexity by an adaptation
of [25, Example 3.17].

The set M of laws of joint solution measures to (1) is the set of proba-
bility laws of random variables (Y ,Z,L,W ,X, ξ) with values in DRd [0, T ]×

L2
L[0, T ]×DRd [0, T ]×CRm [0, T ]×CM[0, T ]×R

d, satisfying the conditions of
Lemma 2.6. But each of these conditions is a convex constraint on M.

For example, to show that Equation (12) is a convex constraint on M,
let us prove that the map L (Z,M) 7→ L

(∫ .
0 Zs dMs

)
preserves convex com-

binations of probability laws. More precisely, let M1,+ (X) denote the set
of all probability laws on a measurable space X. Let C be the subset of
M1,+

(
L2
L
[0, T ] × CRm [0, T ]

)
consisting of laws of processes (Z,M) such that

M is a standard R
m-valued Brownian motion and Z is L-valued and M -

adapted. We show that the mapping

{
C → M1,+ (CRd [0, T ])
L (Z,M) 7→ L

(∫ .
0 Zs dMs

)

preserves convex combinations of probability laws. Indeed, Let µ1, µ2 ∈ C,
and let p ∈ [0, 1]. Let (Z1,M1) and (Z2,M2) be adapted processes defined
on stochastic bases (Ω1,F

1, (F1
t ),P1) and (Ω2,F

2, (F2
t ),P2) with laws µ1

and µ2 respectively, such that M1 (respectively M2) is an (F1
t )-Brownian

motion (resp. (F2
t )-Brownian motion). Let A be a random variable taking

the values 1 with probability p and −1 with probability 1 − p, defined on a
probability space (Ω0,F

0,P0). We define a stochastic basis (Ω̃, F̃ , (F̃t), P̃)
by

Ω̃ = Ω0 × Ω1 × Ω2, F̃ = F0 ⊗F1 ⊗F2, F̃t = F0 ⊗F1
t ⊗F2

t ,
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P̃ = P0 ⊗P1 ⊗P2 .

For (ω0, ω1, ω2) ∈ Ω̃, set

(Z,M)(ω0, ω1, ω2) =

{
(Z1,M1)(ω1) if A(ω0) = 1

(Z2,M2)(ω2) if A(ω0) = −1.

Then L (Z,M) = pµ1 + (1− p)µ2 ∈ C, the process M is (F̃t)-Brownian, and
∫ .

0
Zs dMs = 1l{A=1}

∫ .

0
Z1
s dM

1
s + 1l{A=−1}

∫ .

0
Z2
s dM

2
s ,

thus

L

(∫ .

0
Zs dMs

)
= pL

(∫ .

0
Z1
s dM

1
s

)
+ (1 − p)L

(∫ .

0
Z2
s dM

2
s

)
.

The same technique can be applied to show that Equations (7), (8), (9),
(10), (11), and (12) are convex constraints on M. Thus M is convex.

3 Construction of a weak solution

Theorem 3.1 Assume that f satisfies hypotheses (H1) and (H2). Then
Equation (1) admits a weak solution.

This section is entirely devoted to the proof of Theorem 3.1, by con-
structing an extended solution to (1) in the terminology of Definition 2.4.

In Subsections 3.1 to 3.4, we only assume that f is measurable and
satisfies the growth condition (H1). Condition (H2) will be needed only in
Subsection 3.5, for the final part of the proof of Theorem 3.1.

Note that the counterexample given by Buckdahn and Engelbert in [9]
does not fit in our framework, and we do not know any example of a BSDE
of the form (2) or (1) under hypothesis (H1) and (H2) which has no strong
solution.

3.1 Construction of an approximating sequence of solutions

Approximating equations The proof of Lemma 3.3 will show that (2)
amounts to the following equations (15) and (16):

Yt = EFt

(
ξ +

∫ T

t
f(s,Xs, Ys, Zs) ds

)
(15)
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∫ t

0
Zs dWs = EFt

(
ξ +

∫ T

0
f(s,Xs, Ys, Zs) ds

)

− E

(
ξ +

∫ T

0
f(s,Xs, Ys, Zs) ds

)
.(16)

We can now write the approximating equations for (15) and (16):

Y
(n)
t = EFt

(
ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)
(17)

∫ t

0
Z(n)
s dWs = EFt

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

− E

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)
.(18)

Here and in the sequel,

• f is extended by setting f(t, x, y, z) = 0 for t > T ; similarly, for any
function or process v defined on [0, T ], we set v(t) = 0 for t > T ,

• we denote Z̃
(n)
s = EFs

(
Z

(n)
s+1/n

)
.

Proposition 3.2 The system (17)-(18) admits a unique strong solution

(Y (n), Z(n)). Furthermore, for every n ≥ 1, Y
(n)
t ∈ L2

Rd(Ω) for each t ∈ [0, T ]

and Z(n) ∈ L2
L(Ω × [0, T ]).

Proof Let Tk = T − k
n , k = 0, . . . , ⌈nT ⌉, where ⌈nT ⌉ is the integer part of

nT . Observe first that for each k, (18) amounts on the interval ]Tk+1, Tk] to

(19)

∫ t

Tk+1

Z(n)
s dWs = EFt

(
ξ +

∫ T

Tk+1

f(s,Xs, Y
(n)
s , Z̃(n)

s ) ds

)

− EFTk+1

(
ξ +

∫ T

Tk+1

f(s,Xs, Y
(n)
s , Z̃(n)

s ) ds

)
.

Now, the construction of (Y (n), Z(n)) is easy by backward induction: For

T1 ≤ t ≤ T = T0, we have Y
(n)
t = EFt (ξ) and (Z

(n)
t )T1≤t≤T is the unique

predictable process such that E
∫ T
T1

(
Z

(n)
t

)2
ds < +∞ and
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∫ t

T1

Z(n)
s dWs = EFt

(
ξ +

∫ T

T1

f(s,Xs, Y
(n)
s , 0) ds

)

− EFT1

(
ξ +

∫ T

T1

f(s,Xs, Y
(n)
s , 0) ds

)
.

Suppose (Y (n), Z(n)) is defined on the time interval ]Tk, T ], with k < ⌈nT ⌉,
then Y (n) is defined in a unique way on ]Tk+1, Tk] by (17) and then Z(n) on
the same interval by (19). Furthermore, we get by induction from (19) that
Z(n) ∈ L2

L(Ω× [0, T ]). Then, using this latter result in (17), we deduce that

Y
(n)
t ∈ L2

Rd(Ω) for each t ∈ [0, T ].

The following result links (17) and (18) to an approximate version of (2):

Lemma 3.3 Equations (17) and (18) are equivalent to

Y
(n)
t = ξ +

∫ T

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds −

∫ T

t
Z(n)
s dWs − U

(n)
t(20)

with Y (n) adapted and

U
(n)
t = EFt

(∫ t+1/n

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)
.

Proof Assume (17) and (18). Denoting

M
(n)
t = EFt

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)
= M

(n)
0 +

∫ t

0
Z(n)
s dWs,

we get

M
(n)
t = EFt

(
ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

+

∫ t

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds + U
(n)
t .

By (17), this yields

M
(n)
t = Y

(n)
t +

∫ t

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds + U
(n)
t ,
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that is,

Y
(n)
t = M

(n)
t −

∫ t

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds − U
(n)
t

= M
(n)
0 +

∫ t

0
Z(n)
s dWs −

∫ t

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds − U
(n)
t .

In particular,

Y
(n)
T = ξ = M

(n)
0 +

∫ T

0
Z(n)
s dWs −

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

thus

Y
(n)
t − Y

(n)
T = −

∫ T

t
Z(n)
s dWs +

∫ T

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds − U
(n)
t ,

which proves (20).

Conversely, assume (20) and that Y (n) is adapted. Denote V
(n)
t =∫ t

0 Z
(n)
s dWs. We have

Y
(n)
t = EFt

(
Y

(n)
t

)

= EFt

(
ξ +

∫ T

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds −

∫ T

t
Z(n)
s dWs

−

∫ t+1/n

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

= EFt

(
ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)
− EFt

(
V

(n)
T − V

(n)
t

)

= EFt

(
ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)
,

which proves (17).
Now, using (17) and (20), we have

EFt

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

= EFt

(
ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

+

∫ t

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds + U
(n)
t
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= Y
(n)
t +

∫ t

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds + U
(n)
t

= ξ +

∫ T

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds−

∫ T

t
Z(n)
s dWs − U

(n)
t

+

∫ t

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds + U
(n)
t

= ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds−

∫ T

t
Z(n)
s dWs.

In particular,

E

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

= ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds−

∫ T

0
Z(n)
s dWs.

Thus

∫ t

0
Z(n)
s dWs =

∫ T

0
Z(n)
s dWs −

∫ T

t
Z(n)
s dWs

=

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds− E

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

))

−

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds − EFt

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

))

= EFt

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)
− E

(
ξ +

∫ T

0
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

which proves (18).

3.2 Boundedness and continuity results

In this part, we show some results that will be useful to prove the relative

compactness in distribution of the sequence
(
Y (n),

∫ T
. f(s,Xs, Y

(n)
s , Z̃

(n)
s ) ds,∫ T

. Z
(n)
s dWs, Z

(n)
)

in some properly chosen state space.

Lemma 3.4 Let

Ỹ
(n)
t = Y

(n)
t + U

(n)
t = ξ +

∫ T

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds −

∫ T

t
Z(n)
s dWs.
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There exist constants a, b > 0 such that, for all t such that 0 ≤ t ≤ T ,

(21) E

∫ T

t

∥∥∥Z(n)
s

∥∥∥
2
ds ≤ aE

∫ T

t

∥∥∥Ỹ (n)
s

∥∥∥
2
ds + b.

Proof Using Proposition 3.2, we have, for each n ≥ 1,

(22) E

(
sup

t∈[0,T ]

∥∥∥Ỹ (n)
t

∥∥∥
2
)

≤ 3 E ‖ξ‖2+3C2
f E

∫ T

0

(
1+
∥∥∥Z(n)

s

∥∥∥
)2
ds+3 E

(
sup

t∈[0,T ]

∥∥∥∥
∫ T

t
Z(n)
s dWs

∥∥∥∥
2
)

< +∞.

Applying Itô’s formula to the semi-martingale
∥∥∥Ỹ (n)

t

∥∥∥
2
, taking expectation of

both sides and using the fact that t′ 7→
∫ t′

t

〈
Ỹ

(n)
s , Z

(n)
s dWs

〉
is a martingale

(thanks to (22) and Proposition 3.2), we get

E
∥∥∥Ỹ (n)

t

∥∥∥
2

= E ‖ξ‖2 + 2 E

∫ T

t
Ỹ (n)
s .f(s,Xs, Y

(n)
s , Z̃(n)

s )ds−E

∫ T

t

∥∥∥Z(n)
s

∥∥∥
2
ds.

Thus

E

∫ T

t

∥∥∥Z(n)
s

∥∥∥
2
ds ≤ E ‖ξ‖2 + 2 E

∫ T

t

∥∥∥Ỹ (n)
s

∥∥∥ .
∥∥∥f(s,Xs, Y

(n)
s , Z̃(n)

s )
∥∥∥ ds.

From (H1), this entails

E

∫ T

t

∥∥∥Z(n)
s

∥∥∥
2
ds ≤ E ‖ξ‖2 + 2Cf E

∫ T

t

∥∥∥Ỹ (n)
s

∥∥∥ (1 +
∥∥∥Z̃(n)

s

∥∥∥) ds.

Using that, for a ≥ 0, b ≥ 0, and λ 6= 0, we have 2ab ≤ a2λ2 + b2/λ2, we get

2 E

∫ T

t

∥∥∥Ỹ (n)
s

∥∥∥ (1 +
∥∥∥Z̃(n)

s

∥∥∥) ds

≤ λ2 E

∫ T

t

∥∥∥Ỹ (n)
s

∥∥∥
2
ds + 2(T − t)/λ2 + 2/λ2 E

∫ T

t

∥∥∥Z̃(n)
s

∥∥∥
2
ds

≤ λ2 E

∫ T

t

∥∥∥Ỹ (n)
s

∥∥∥
2
ds + 2(T − t)/λ2 + 2/λ2 E

∫ T

t

∥∥∥Z(n)
s

∥∥∥
2
ds.

Thus, taking λ2 > 2Cf ,

(1 − 2Cf/λ
2) E

∫ T

t

∥∥∥Z(n)
t

∥∥∥
2
ds ≤ E ‖ξ‖2 + Cf

(
2T/λ2 + λ2 E

∫ T

t

∥∥∥Ỹ (n)
t

∥∥∥
2
ds

)

which yields (21).
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Proposition 3.5 Let Ỹ
(n)
t = Y

(n)
t + U

(n)
t be as in Lemma 3.4. The fam-

ilies (Ỹ
(n)
t )0≤t≤T, n≥1, (Y

(n)
t )0≤t≤T, n≥1 and (U

(n)
t )0≤t≤T, n≥1 are bounded in

L2
Rd(Ω).

Proof We have

Ỹ
(n)
t = Y

(n)
t + U

(n)
t

= EFt

(
ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s )

)
+ EFt

(∫ t+1/n

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

= EFt

(
ξ +

∫ T

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)
.

We deduce the following inequalities, where C denotes some constant which
is not necessarily the same at each line but does not depend on n:

E
∥∥∥Ỹ (n)

t

∥∥∥
2

= E

∥∥∥∥EFt

(
ξ +

∫ T

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)∥∥∥∥
2

≤ C E

(
‖ξ‖2 +

∫ T

t
(1 +

∥∥∥Z(n)
s

∥∥∥
2
) ds

)

≤ C

(
1 +

∫ T

t
E
∥∥∥Ỹ (n)

s

∥∥∥
2
ds

)
.

The last inequality is a consequence of Lemma 3.4. Let g(t) = E
∥∥∥Ỹ (n)

T−t

∥∥∥
2
.

The preceding inequalities yield

g(t) ≤ C

(
1 +

∫ t

0
g(s) ds

)
.

Thus, by Gronwall’s Lemma,

g(t) ≤ C

(
1 + C

∫ t

0
eC(t−s) ds

)
≤ C

(
1 + C

∫ T

0
eC(T−s) ds

)

which proves that (Ỹ
(n)
t )0≤t≤T, n≥1 is bounded in L2

Rd(Ω).
Now, we have, using again Lemma 3.4,

E

(∥∥∥Y (n)
t

∥∥∥
2
)

= E

∥∥∥∥∥EFt

(
ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)∥∥∥∥∥

2
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≤ C E

(
‖ξ‖2 +

∫ T

t+1/n
(1 +

∥∥∥Z(n)
s

∥∥∥
2
) ds

)

≤ C

(
1 +

∫ T

t+1/n
E
∥∥∥Ỹ (n)

s

∥∥∥
2
ds

)

which proves that (Y
(n)
t )0≤t≤T, n≥1 is bounded in L2

Rd(Ω).

The boundedness in L2
Rd(Ω) of (U

(n)
t )0≤t≤T, n≥1 follows immediately from

that of (Ỹ
(n)
t )0≤t≤T, n≥1 and (Y

(n)
t )0≤t≤T, n≥1.

Corollary 3.6 The sequences (Z(n))n≥1 and (Z̃(n))n≥1 are bounded in L2
L(Ω×

[0, T ]), and we have

(23) sup
n≥1

E

(
sup

0≤t≤T

∥∥∥∥
∫ T

t
Z(n)
s dWs

∥∥∥∥
2
)

< +∞.

Proof The boundedness of (Z(n))n≥1 and (Z̃(n))n≥1 is a direct consequence
of Lemma 3.4 and Proposition 3.5. Then (23) follows by Itô’s isometry,
Doob’s inequality, and the fact that

∥∥∥∥
∫ T

t
Z(n)
s dWs

∥∥∥∥ ≤

∥∥∥∥
∫ T

0
Z(n)
s dWs

∥∥∥∥+

∥∥∥∥
∫ t

0
Z(n)
s dWs

∥∥∥∥ .

Lemma 3.7 Let 1 ≤ q < 2. We have

(24) lim
n→∞

E

(
sup

0≤t≤T

∥∥∥U (n)
t

∥∥∥
q
)

= 0.

Proof For each n, we can find an FT -measurable time τn such that

sup
0≤t≤T

∫ t+1/n

t

(
1 +

∥∥∥Z(n)
s

∥∥∥
)q

ds =

∫ τn+1/n

τn

(
1 +

∥∥∥Z(n)
s

∥∥∥
)q

ds.

Let M2 = supn E
∫ T
0

(
1 +

∥∥∥Z(n)
s

∥∥∥
)2

ds. By Corollary 3.6, we have M2 <

+∞. Let q′ such that q < q′ < 2. Using the growth condition (H1) and
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Doob’s inequality applied to the martingale EFt

(∫ τn+1/n
τn

(
1 +

∥∥∥Z(n)
s

∥∥∥
)q

ds
)

,

we get

E

(
sup

0≤t≤T

∥∥∥U (n)
t

∥∥∥
q
)

≤ Cq
f E

(
sup

0≤t≤T
EFt

(∫ t+1/n

t

(
1 +

∥∥∥Z(n)
s

∥∥∥
)q

ds

))

≤ Cq
f E

(
sup

0≤t≤T
EFt

(∫ τn+1/n

τn

(
1 +

∥∥∥Z(n)
s

∥∥∥
)q

ds

))

≤ Cq
f


E


 sup

0≤t≤T
EFt

(∫ τn+1/n

τn

(
1 +

∥∥∥Z(n)
s

∥∥∥
)q

ds

)q′/q





q/q′

≤
q′

q′ − q
Cq
f

(
E

(∫ τn+1/n

τn

(
1 +

∥∥∥Z(n)
s

∥∥∥
)q′

ds

))q/q′

≤
q′

q′ − q
Cq
f

(
1

n

)(2−q′)/2
((

E

∫ T

0

(
1 +

∥∥∥Z(n)
s

∥∥∥
)2

ds

)q′/2
)q/q′

=
q′

q′ − q
Cq
f

(
1

n

)(2−q′)/2(
E

∫ T

0

(
1 +

∥∥∥Z(n)
s

∥∥∥
)2

ds

)q/2

≤
q′

q′ − q
Cq
f M

q/2
2

(
1

n

)(2−q′)/2

,

which proves (24).

Lemma 3.8 We have

sup
n≥1

E

(
sup

0≤t≤T

∥∥∥Y (n)
t

∥∥∥
2
)

< +∞.

Proof Using (20), we get

sup
0≤t≤T

∥∥∥Y (n)
t

∥∥∥
2
≤ An + Bn + Cn

where

An = 3 sup
0≤t≤T

∥∥∥∥∥ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

∥∥∥∥∥

2

,
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Bn = 3 sup
0≤t≤T

∥∥∥∥
∫ T

t
Z(n)
s dWs

∥∥∥∥
2

,

Cn = 3 sup
0≤t≤T

∥∥∥U (n)
t

∥∥∥
2
.

By Corollary 3.6, (Z(n))n≥1 is bounded in L2
L(Ω × [0, T ]), thus using the

growth condition (H1), we get

sup
n

E

(
sup

0≤t≤T

(
‖ξ‖2 + C2

f

∫ T

t+1/n

(
1 +

∥∥∥Z(n)
s

∥∥∥
)2

ds

))
< +∞

which entails supn E(An) < +∞. On the other hand, V
(n)
t :=

∫ t
0 Z

(n)
s dWs

is a martingale, so, using again Corollary 3.6,

sup
n

E (Bn) ≤ C sup
n

E
∥∥∥V (n)

T

∥∥∥
2
< +∞.

Finally from (H1) and the boundedness of (Z(n))n≥1 in L2
L(Ω × [0, T ]) (see

Corollary 3.6), we have

sup
n

E (Cn) ≤ 3 sup
0≤t≤T

C2
f E

(∫ T

0

(
1 +

∥∥∥Z(n)
s

∥∥∥
)2

ds

)
< +∞.

3.3 Compactness results

Lemma 3.9 The sequence (
∫ T
. f(s,Xs, Y

(n)
s , Z̃

(n)
s ) ds)n≥1 is tight in CRd [0, T ].

Proof Let us denote Σ(n) =
∫ T
. f(s,Xs, Y

(n)
s , Z̃

(n)
s ) ds. By a criterion of

Aldous [1, 18], we only need to prove that

(A) ∀ǫ > 0, ∃R > 0,∀n ≥ 1, P

(
sup

0≤t≤T

∥∥∥Σ
(n)
t

∥∥∥ ≥ R

)
≤ ǫ

(B) ∀ǫ > 0,∀η > 0, ∃δ > 0 : ∀n ≥ 1, sup
σ,τ∈T

0≤|τ−σ|≤δ

P
(∥∥∥Σ(n)

τ − Σ(n)
σ

∥∥∥ ≥ η
)
≤ ǫ
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where T denotes the set of stopping times with values in [0, T ]. We are going
to prove the slightly stronger properties

sup
n≥1

E

(
sup

0≤t≤T

∥∥∥Σ
(n)
t

∥∥∥
)

< +∞,(25)

∀ǫ > 0, ∃δ > 0 : sup
n≥1

sup
σ,τ∈T

|τ−σ|≤δ

E
∥∥∥Σ(n)

τ − Σ(n)
σ

∥∥∥ < +ǫ.(26)

As

Σ
(n)
t = Y

(n)
t − ξ +

∫ T

t
Z(n)
s dWs + U

(n)
t ,

we can, for example, deduce (25) from Corollary 3.6, Lemma 3.7, and Lemma
3.8.

Now, let σ, τ ∈ T, with |τ − σ| ≤ δ. We have E
∥∥∥Σ

(n)
τ − Σ

(n)
σ

∥∥∥ =

E
∥∥∥Σ

(n)
σ∨τ − Σ

(n)
σ∧τ

∥∥∥. Thus we can assume without loss of generality that σ ≤ τ .

Then

E
∥∥∥Σ(n)

τ − Σ(n)
σ

∥∥∥ = E

∥∥∥∥
∫ τ

σ
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

∥∥∥∥

≤ (E(τ − σ))1/2
(

E

∫ T

0

∥∥∥f(s,Xs, Y
(n)
s , Z̃(n)

s )
∥∥∥
2
ds

)1/2

≤ δ1/2Cf

(
E

∫ T

0
(1 +

∥∥∥Z(n)
s

∥∥∥)2 ds

)1/2

and (26) follows from Corollary 3.6.

The topology S and Condition UT In order to prove the tightness of
(Y (n))n≥1, we will use Meyer-Zheng criterion [29] and Jakubowski’s topology
S [21] on the space D := DRd [0, T ]. First, we need some definitions.

Let V ⊂ D be the subspace of elements of D which have finite variation.
The topology S on D is defined by its convergent sequences: A sequence (xn)
in D converges for S to a limit x ∈ D if, from any subsequence of (xn), one
can extract a further subsequence (x′n) such that, for every ǫ > 0, there exist
a sequence (vn,ǫ) of elements of V and vǫ ∈ V (depending on the subsequence
(x′n)) such that

(i) supn supt∈[0,T ] ‖x
′
n(t) − vn,ǫ(t)‖ ≤ ǫ and supt∈[0,T ] ‖x(t) − vǫ(t)‖ ≤ ǫ,
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(ii) limn→∞

∫ T
0 f(t) dvn,ǫ(t) =

∫ T
0 f(t) dvǫ(t) for every continuous function

f defined on [0, T ].

We denote DS the space D endowed with S. The topology S is coarser than
Skorokhod’s topology J1, which is Polish, thus S is Lusin (see [33] on prop-
erties of Lusin spaces). In particular, by [33, Corollary 2 page 101], S has
the same Borel sets as J1, thus the Borel subsets of S are generated by
the projection mappings πt : x 7→ x(t) for t ∈ [0, T ]). Furthermore, S is
finer than the Meyer-Zheng topology [29], which is the topology on VRd in-
duced by L0

Rd([0, T ], dt). In particular, S is (separably) submetrizable, that
is, there exists a (separable) metrizable topology which is coarser than S.
Equivalently, one can find a countable set of S-continuous real-valued func-
tions which separate the points of D. This implies that S is Hausdorff and
that the compact subsets of DS are metrizable.

Another important feature of S is that the addition (x, y) 7→ x + y is
S-sequentially continuous on DS × DS.

A criterion of tightness on DS is the so-called condition UT (see [21,
Theorem 4.2]): Let H denote the set of elementary real valued predictable
processes bounded by 1, i.e. processes of the form

Ht = 1l[t0,t1](t)H0 + 1l]t1,t2](t)H1 + · · · + 1l]tn−1,tn](t)Htn−1

where 0 = t0 ≤ · · · ≤ tn ≤ T and each Hi is bounded by 1 and Fti -
measurable. Let (Kα)α∈A be a family of D-valued processes. We say that
(Kα) satisfies Condition UT if the family of all stochastic integrals

∫
H dKα,

where α ∈ A and H ∈ H, is uniformly tight. Condition UT was considered
for the first time by Stricker [35], to prove compactness in the Meyer-Zheng
topology. Discussions on this condition can be found in [22, 28].

We now consider a stronger condition, proposed by Meyer and Zheng
[29]: Let K be an adapted process defined on the time interval [0, T ], with
values in R

d. For any finite partition π = (t0, . . . , tn) of [0, T ], let us denote

Nπ (K) = E ‖KT ‖ +
n−1∑

i=0

∥∥EFti

(
Kti+1 −Kti

)∥∥,

and define the conditional variation N (K) of K by

N (K) = sup
π

Nπ (K) .

By [35, Théorème 3], if a family (Kα) of adapted D-valued processes satisfies

sup
α

N (Kα) < ∞,
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then Condition UT holds for (Kα).
An adapted stochastic process K such that N (K) < ∞ is called a

quasimartingale. Let us mention that, if the quasimartingale K is right-
continuous in probability, then it has a càdlàg adapted version (assuming
the right-continuity of (Ft)), see [8, Theorem 4.1].

Proposition 3.10 The sequences (Y (n))n≥1 and (
∫ T
. Z

(n)
s dWs)n≥1 are tight

sequences of D-valued random variables, for the topology S.

Proof First, we need to check that, for each integer n ≥ 1, the process

(27) Y
(n)
t = EFt

(
ξ +

∫ T

t+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

has a D-valued version. Let us prove that it is continuous in L1 and a
quasimartingale. As (Ft) is a Brownian filtration, the martingale

t 7→ EFt

(
ξ +

∫ T

r+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)

has a continuous version for each fixed r ∈ [0, T −1/n], thus it is continuous
in L1, i.e. the mapping

(28)

{
[0, T ] × [0, T − 1/n] → L1

(t, r) 7→ EFt

(
ξ +

∫ T
r+1/n f(s,Xs, Y

(n)
s , Z̃

(n)
s ) ds

)

is continuous in the variable t. On the other hand, we have, for fixed t ∈
[0, T ] and for 0 ≤ r1 ≤ r2 ≤ T − 1/n such that r2 − r1 ≤ 1/n,

∥∥∥∥∥EFt

(∫ r2+1/n

r1+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

)∥∥∥∥∥

≤ Cf EFt

(∫ r2+1/n

r1+1/n
(1 +

∥∥∥Z̃(n)
s

∥∥∥) ds

)

≤ (r2 − r1)1/2Cf

(
EFt

(∫ T

0
(1 +

∥∥∥Z̃(n)
s

∥∥∥)2 ds

))1/2

.

Therefore, by Corollary 3.6, the mapping (28) is continuous in r uniformly
with respect to t, thus it is jointly continuous, which proves the continuity
in L1 of the process (27) for each n ≥ 1.
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Now, we have, for any subdivision π = (t0, . . . , tm) of [0, T ],

sup
n

Nπ(Y (n)) = sup
n

E

(
‖ξ‖ +

m−1∑

i=0

∥∥∥EFti

(
Y

(n)
ti+1

− Y
(n)
ti

)∥∥∥
)

≤ sup
n

E

(
‖ξ‖ +

m−1∑

i=0

∥∥∥∥∥

∫ ti+1+1/n

ti+1/n
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds

∥∥∥∥∥

)

≤ sup
n

E

(
‖ξ‖ +

∫ T

0

∥∥∥f(s,Xs, Y
(n)
s , Z̃(n)

s )
∥∥∥ ds

)
.

This estimation does not depend on π, thus, using Corollary 3.6,

sup
n

N(Y (n)) ≤E (‖ξ‖) + sup
n

E

(∫ T

0
Cf (1 +

∥∥∥Z̃(n)
s

∥∥∥) ds

)

≤E (‖ξ‖) + sup
n

Cf

(
T + T 1/2

(
E

(∫ T

0

∥∥∥Z̃(n)
s

∥∥∥
2
) ds

))1/2
)

< + ∞.

This proves that each Y (n) is a quasimartingale, and that the sequence
(Y (n))n≥1 satisfies Condition UT. Furthermore, for each n ≥ 1, as Y (n) is
right-continuous in L1, it has a càdlàg version, thanks to [8, Theorem 4.1].
Thus, by [21, Theorem 4.2], the sequence (Y (n))n≥1 is tight in DS.

Similarly,

sup
n

Nπ

(∫ .

0
Z(n)
s dWs

)

= sup
n

E

(∥∥∥∥
∫ T

0
Z(n)
s dWs

∥∥∥∥+
m−1∑

i=0

∥∥∥∥EFti

(∫ ti+1

ti

Z(n)
s dWs

)∥∥∥∥
)

= sup
n

E

∥∥∥∥
∫ T

0
Z(n)
s dWs

∥∥∥∥ ,

thus

sup
n

N

(∫ .

0
Z(n)
s dWs

)
= sup

n
E

∥∥∥∥
∫ T

0
Z(n)
s dWs

∥∥∥∥ < +∞.

Thus (
∫ .
0 Z

(n)
s dWs)n≥1 satisfies Condition UT. Again by [21, Theorem 4.2],

this proves that (
∫ .
0 Z

(n)
s dWs)n≥1 is tight in DS. Finaly, it is straightforward
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to check that the mapping

{
D → D

u 7→ u(T ) − u

is sequentially continuous for the topology S, thus (
∫ T
. Z

(n)
s dWs)n≥1 is tight

in DS.

3.4 Construction of a weak limit process

This part of the construction of a weak solution follows the same lines as in
[23], with some complications due to the processes Z(n).

Young measures Let us recall the definition and main properties of
Young measures, see [37, 7] for introductions to the topic, and [12] for the
setting of nonnecessarily regular topological spaces, which we need here. Let
E be a Suslin topological space (i.e. E is a Hausdorff topological space and
there exists a Polish space S and a continuous surjective mapping from S

onto E, see [33] for the properties of Suslin spaces, or [12, Chapter 1] for
a survey without proofs). Let B (E) be the Borel σ-algebra of E. A Young
measure µ with basis P on E is a probability measure on Ω × E, such that
for any set A ∈ F , µ(A × E) = P(A). The space of Young measures with
basis P is denoted by Y(Ω,F ,P;E). It is very useful to describe a Young
measure µ by its disintegration (µω) with respect to P (see Definition 2.8).
The space L0(Ω,F ,P;E) of measurable functions from Ω to E is embedded
in Y(Ω,F ,P;E) in the following way: we identify every u ∈ L0(Ω,F ,P;E)
with the Young measure δu(ω)⊗ dP(ω), where δu(ω) denotes the Dirac mass
at u(ω). In other words, u is identified with the unique Young measure µ
whose support is the graph of u. The set Y(Ω,F ,P;E) is endowed with a
topology defined as follows: A generalized sequence2 (µα) of Young mea-
sures converges to a Young measure µ if, for each bounded measurable
Φ : Ω × E → R such that Φ(ω, .) is continuous for all ω ∈ Ω, the gener-
alized sequence (µα(Φ)) converges to µ(Φ). In this case, we say that (µα)
converges stably, or F-stably, to µ (this terminology stems from Rényi [32]).

Note that the restriction of the topology of stable convergence to L0(Ω;E)
is the topology of convergence in probability, see [37, 12].

2see [24] on generalized sequences, also called nets, however we do not need them in
the sequel, because we use sequential compactness results. Note also that, when E is
metrizable, the space Y(Ω,F ,P;E) is metrizable too, and we can characterize its topology
using convergent sequences instead of convergent generalized sequences.
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We say that a subset K of Y(Ω,F ,P;E) is tight if, for each ǫ > 0, there
exists a compact subset K of E such that infµ∈K µ(Ω × K) ≥ 1 − ǫ. In
the case when K ⊂ L0(Ω,F ,P;E), this is the usual tightness notion for
random variables. By [12, Theorem 4.3.5], if the compact subsets of E are
metrizable, and if K is tight, then K is relatively compact and relatively
sequentially compact in Y(Ω,F ,P;E). The converse is true if E has the
Prohorov property.

We will need a result on convergence of Young measures with respect to
sequentially continuous integrands:

Lemma 3.11 Assume that E is a Suslin submetrizable topological space.
Let (µn) be a tight sequence in Y(Ω,F ,P;E) which stably converges to a
Young measure µ. Let f : Ω×E → R be a bounded measurable function such
that f(ω, .) is sequentially continuous for each ω ∈ Ω. Then limn µ

n(f) =
µ(f).

Proof By Balder’s extension of Komlós Theorem for Young measures [5, 6]
which is valid for Hausdorff spaces with metrizable compact subsets [12,
Lemma 4.5.4], we can extract from every subsequence of (µn) a further
subsequence (which we still denote by (µn) for simplicity of notations), which
K–converges to µ, that is, for each subsequence (νn) of (µn), we have

(29) lim
n

1

n

n∑

k=1

νnω = µω a.e.

where the limit is taken in the narrow convergence, i.e. limn
1
n

∑n
k=1 ν

n
ω(g) =

µω(g) for every bounded continuous g : E → R. Let us denote λn =
1
n

∑n
k=1 ν

n, and let us prove that

(30) lim
n

∫

E

f(ω, x) dλn
ω(x) =

∫

E

f(ω, x) dµω(x) a.e.

Let ω be in the almost sure set on which the convergence in (29) holds. As E
admits a coarser separable metrizable topology, we can apply Jakubowski’s
extension of Skorokhod’s representation theorem [20]: for every subsequence
of (λn

ω), we can find a further subsequence (λnk
ω ) (which depends on ω), a

probability space (Ω′,F ′,P′), and random E-valued variables X1, . . . ,Xk, . . .
and X defined on Ω′ such that the law of Xk is λnk

ω for each k, the law of
X is µω, and (Xk) converges P′-a.e. to X. For such an ω, we have, by the
dominated convergence theorem,
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lim
k

∫

E

f(ω, x) dλnk
ω (x) = lim

k

∫

Ω′

f(ω,Xk) dP′

=

∫

Ω′

f(ω,X) dP′ =

∫

E

f(ω, x) dµω(x).

Thus, for ω in the almost sure set of (29), every subsequence of (λnk
ω ) has

a further subsequence for which the convergence in (30) holds. This proves
(30). We deduce that, for any subsequence of (µn) we can extract a further
subsequence (νn) such that

(31) lim
n

1

n

n∑

k=1

νn(f) = µ(f),

which proves the lemma.

The following technical lemma will be useful for limits of integrals of
unbounded integrands with respect to Young measures.

Lemma 3.12 Let E be a Suslin submetrizable topological space, and let (Xn)
be a sequence of E-valued random variables defined on Ω. Assume that (Xn)
stably converges to a Young measure µ ∈ Y(Ω,F ,P;E) (where each Xn is
identified with the Young measure δXn(ω) ⊗ dP(ω)). Let Φ : Ω × E → R be
measurable such that

(i) Φ(ω, .) is sequentially continuous for all ω ∈ Ω,

(ii) The sequence (Φ(.,Xn)) is uniformly integrable.

Then Φ is µ-integrable, and

lim
n

E Φ(.,Xn) =

∫

Ω×E

Φ dµ.

Proof We only need to prove Lemma 3.12 in the case when Φ ≥ 0, the
general result comes from Φ = Φ+ − Φ−.

For each N ≥ 0, we have

(32) lim
N→+∞

sup
n

E
(
Φ(.,Xn) 1l{Φ(.,Xn)≥N}

)
= 0.

Set

ΦN =

{
Φ if Φ ≤ N

N if Φ ≥ N.
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From the definition of stable convergence and Lemma 3.11, we have, for each
N ,

(33) lim
n→+∞

E ΦN (.,Xn) = µ(ΦN ).

Furthermore, by (32), the convergence in (33) is uniform with respect to N .
We thus have, with the help of Beppo Levi’s lemma:

µ(Φ) = sup
N

µ(ΦN ) = lim
N

µ(ΦN )

= lim
N

lim
n

E ΦN (.,Xn)

= lim
n

lim
N

E ΦN (.,Xn)

= lim
n

E Φ(.,Xn).

Construction of the extended probability space: the processes Y , V

and Z Recall that V (n) =
∫ .
0 Z

(n)
s dWs. By Proposition 3.10, the sequence

(Y (n), V (n)), seen as a sequence of random variables with values in DS ×DS,
is tight. Let us denote H = L2

L([0, T ]), and let Hσ be the space H endowed
with its weak topology (note that this topology has the same Borel sets as
the strong topology). Each Z(n) can be considered as a random variable
with values in Hσ. Furthermore, by Corollary 3.6, the sequence (Z(n)) is
tight in Hσ: Indeed, the closed balls are compact in Hσ, and we have

sup
n

P
{∥∥∥Z(n)

∥∥∥
H

≥ R
}
≤ sup

n

1

R2
E

∫ T

0

∥∥∥Z(n)
s

∥∥∥
2

L2
L
[0,T ]

ds

→ 0 when R → ∞.

Thus (Y (n), V (n), Z(n)) is a tight sequence of DS ×DS×Hσ-valued variables.
We now consider the space Y(Ω,F ,P;DS × DS × Hσ), which we de-

note for simplicity by Y. By Prohorov’s sequential compactness criterion
for Young measures [12, Theorem 4.3.5], we can extract a subsequence
of (Y (n), V (n), Z(n)) (for simplicity, we denote this extracted sequence by
(Y (n), V (n), Z(n))) which converges stably to some µ ∈ Y, that is, for ev-
ery measurable bounded mapping Φ : Ω × DS × DS × Hσ 7→ R such that
Φ(ω, ., ., .) is continuous for all ω, we have
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(34) lim
n→∞

∫

Ω
Φ
(
ω, Y (n)(ω), V (n)(ω), Z(n)(ω)

)
dP(ω)

=

∫

Ω

∫

D×D×H

Φ(ω, y, v, z) dµω(y, v, z) dP(ω).

In particular, (Y (n), V (n), Z(n)) converges in law to the image of µ by the
canonical projection of Ω × DS × DS ×Hσ on DS × DS ×Hσ.

Let us denote by D the Borel σ-algebra of D (recall that S has the
same Borel subsets as Skorokhod’s J1 topology), and, for each t ∈ [0, T ], let
Dt be the sub-σ-algebra of D generated by the projection onto DRd([0, t]).
Similarly, let H denote the Borel σ-algebra of Hσ, and, for each t ∈ [0, T ],
let Ht be the sub-σ-algebra of H generated by the projection onto L2

L([0, t]).
We define a stochastic basis (Ω,F , (F t)t, µ) by

Ω = Ω × D× D×H, F = F ⊗D ⊗D ⊗H, F t = Ft ⊗Dt ⊗Dt ⊗Ht,

and we define a process (Y, V, Z) on Ω by

Y (ω, y, v, z) = y, V (ω, y, v, z) = v, Z(ω, y, v, z) = z.

Clearly, (Y, V, Z) is (F t)–adapted. Furthermore, the law of (Y, V, Z) is the
marginal measure of µ on D×D×H, in particular (Y (n), V (n), Z(n)) converges
in law to (Y, V, Z) on DS×DS×Hσ. By [21, Theorem 3.11], we can (and will)
furthermore choose the extracted sequence such that, there exists a countable

set N ⊂ [0, T [ such that, for every t ∈ [0, T ] \ N , the sequence (Y
(n)
t , V

(n)
t )

converges in law to (Yt, Vt).
Now, the random variables (Y (n), V (n), Z(n)) can be seen as random el-

ements defined on Ω, using the notations, for n ≥ 1:

Y (n)(ω, y, v, z) := Y (n)(ω),

V (n)(ω, y, v, z) := V (n)(ω),

Z(n)(ω, y, v, z) := Z(n)(ω).

Furthermore, (Y (n), V (n), Z(n)) is (F t)–adapted for each n. Likewise, we set
W (ω, y, v, z) = W (ω).

Lemma 3.13 The process W is an (F t)–standard Brownian motion under
the probability µ.

Proof By Balder’s result on K-convergence [5, 6], which is valid for Haus-
dorff spaces with metrizable compact subsets [12, Lemma 4.5.4], each subse-
quence of (Y (n), V (n), Z(n)) contains a further subsequence (Y (nk), V (nk), Z(nk))
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which K–converges to µ, that is, for each subsequence (Y (n′

k
), V (n′

k
), Z(n′

k
))

of (Y (nk), V (nk), Z(nk)), we have

lim
n

1

n

n∑

k=1

δ
(Y

(n′

k
)
(ω),V

(n′

k
)
(ω),Z

(n′

k
)
(ω))

= µω a.e.

where δ(y,v,z) denotes the Dirac measure on (y, v, z) and the limit is taken
in the narrow convergence. This entails that, for every B ∈ Dt ⊗ Dt ⊗Ht,
the mapping ω 7→ µω(B) is Ft–measurable. The result follows from Lemma
2.10.

Properties of the processes Y and V

Lemma 3.14 Let H and K be R
d-valued random variables defined on Ω.

Let t ∈ [0, T ]. In order that H and K have the same conditional expectation
with respect to F t, it is sufficient that

(35)

∫

Ω

∫

D×D×H

Φ(ω, y, v, z)H(ω, y, v, z) dµω (y, v, z) dP(ω)

=

∫

Ω

∫

D×D×H

Φ(ω, y, v, z)K(ω, y, v, z) dµω(y, v, z) dP(ω)

for every bounded F t-measurable function Φ : Ω → R such that Φ(ω, ., ., .)
is continuous for all ω ∈ Ω.

Proof Let C be the set of functions Φ : Ω → R which are F t-measurable
and such that Φ(ω, ., ., .) is continuous for all ω ∈ Ω. The set C is stable by
multiplication of two functions and generates F t. Assume that (35) holds
for every Φ ∈ C, and let E be the vector space of bounded F t-measurable
functions ϕ defined on Ω such that

∫

Ω

∫

D×D×H

ϕ(ω, y, v, z)H(ω, y, v, z) dµω (y, v, z) dP(ω)

=

∫

Ω

∫

D×D×H

ϕ(ω, y, v, z)K(ω, y, v, z) dµω (y, v, z) dP(ω).

The space E contains C. Furthermore, E contains the constant functions
and is stable under monotone limits of uniformly bounded sequences. By
the monotone class theorem (see [34, Appendix A0] and [14, Theorème 21,
page 20]), E contains all bounded F t-measurable functions.
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Lemma 3.15 The process V is a martingale with respect to (Ω,F , (F t)t, µ).

Proof Let t ∈ [0, T ], and let s ∈ [0, T − t]. By Lemma 3.14, in order to
prove that EFt (Vt+s) = Vt, we only need to show that, for each bounded
F t-measurable Φ : Ω → R such that Φ(ω, ., ., .) is continuous for all ω ∈ Ω,
we have

(36) E (Φ × Vt+s) = E (Φ × Vt) .

Let us denote, for any r ∈ [0, T ], any v ∈ D and any δ > 0

(37) πr(v) = v(r) and πr,δ(v) =
1

δ

∫ r+δ

r
v(s) ds.

The mapping πr : D → Rd is not continuous for the topology S, but πr,δ is
S-continuous, and we have

lim
δ→0

πr,δ(v) = πr(v).

Let δ > 0. Let

φ(ω, y, v, z) = Φ(ω, y, v, z) (πt+s,δ(v) − πt,δ(v)) .

By Corollary 3.6, the sequence (φ(ω, Y (n), V (n), Z(n))) is bounded in L2
Rd(Ω),

thus it is uniformly integrable. We can thus apply Lemma 3.12 to the
integrand φ. Using the definition of V and the fact that each V (n) is a
martingale, we get

E

(
Φ ×

(
1

δ

∫ t+s+δ

t+s
Vu du−

1

δ

∫ t+δ

t
Vu du

))

=

∫

Ω

∫

D×D×H

Φ(ω, y, v, z) (πt+s,δ − πt,δ) (v) dµω (y, v, z) dP(ω)

= lim
n→∞

∫

Ω
Φ
(
ω, Y (n)(ω), V (n)(ω), Z(n)(ω)

) 1

δ

∫ t+δ

t

(
V

(n)
u+s(ω) − V (n)

u (ω)
)
du dP(ω)

= lim
n→∞

∫

Ω
Φ
(
ω, Y (n)(ω), V (n)(ω), Z(n)(ω)

)
EFt

(
1

δ

∫ t+δ

t

(
V

(n)
u+s − V (n)

u

)
du

)
dP

= 0.

We deduce that
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E (Φ × (Vt+s − Vt))

= lim
δ→0

E

(
Φ ×

(
1

δ

∫ t+s+δ

t+s
Vu du−

1

δ

∫ t+δ

t
Vu du

))
= 0

by boundedness in L2
Rd(Ω,F , µ) of (Vr)0≤r≦T .

Lemma 3.16 Let V̂t =
∫ t
0 Zs dWs. The martingale L := V −V̂ is orthogonal

to W .

Proof Let us denote the coordinates processes as in the following examples:

V = (V [i])1≤i≤d, Z
(n)
t = (Z

(n),[i,k]
t )1≤i≤d,1≤k≤m, Zt = (Z

[i,k]
t )1≤i≤d,1≤k≤m,

Wt = (W [k])1≤k≤m.
Let i ∈ {1, . . . ,m} and j ∈ {1, . . . , d}. Let us denote by [P,Q] the

quadratic cross variation of two semimartingales P and Q. For each n, let

N
(n),[i,j]
t = W

[i]
t V

(n),[j]
t −

[
W [i], V (n),[j]

]
t

= W
[i]
t

m∑

k=1

∫ t

0
Z(n),[j,k]
r dW [k]

r −

∫ t

0
Z(n),[j,i]
r dr

N̂
[i,j]
t = W

[i]
t V̂

[j]
t −

[
W [i], V̂ [j]

]
t

= W
[i]
t

m∑

k=1

∫ t

0
Z [j,k]
r dW [k]

r −

∫ t

0
Z [j,i]
r dr.

As W is continuous, the processes N (n),[i,j] and N̂ [i,j] are continuous mar-
tingales. Let Φ : Ω → R be a bounded F t-measurable function such that
Φ(ω, ., ., .) is continuous for all ω ∈ Ω. Observe that, from the stable con-
vergence of V (n) to V , we have, for any τ ∈ [0, T ] and any δ > 0,

(38) lim
n

E
(
πτ,δ(W

[i]V (n),[j])Φ
(
., Y (n), V (n), Z(n)

))

= E
(
πτ,δ(W

[i]V [j])Φ
)

using Lemma 3.12 with the integrand φ(ω, y, v, z) = πτ,δ(W
[i](ω)v(n),[j])Φ(ω, y, v, z),

where πτ,δ is defined as in (37). Similarly, from the stable convergence of
(V (n), Z(n)) to (V,Z), and applying Lemma 3.12 with the integrand

φ(ω, y, v, z) =

(∫ τ

0
z[j,i]r dr

)
Φ(ω, y, v, z),
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we get

(39) lim
n

E

(

∫ τ

0
Z(n),[j,i]
r dr


Φ

(
., Y (n), V (n), Z(n)

))

= E

(

∫ τ

0
Z [j,i]
r dr


 Φ

)
.

Let t ∈ [0, T ], and let s ∈ [0, T − t]. Using (38), (39), and the fact that
N (n),[i,j] and N̂ [i,j] are martingales, we get, for any δ > 0,

1

δ

∫ t+δ

t
E
(
W

[i]
u+s

(
V

[j]
u+s − V̂

[j]
u+s

)
Φ
)
du

=
1

δ

∫ t+δ

t
lim
n


E

(
W

[i]
u+sV

(n),[j]
u+s Φ

(
., Y (n), V (n), Z(n)

))

− E
(
W

[i]
u+sV̂

[j]
u+sΦ

(
., Y (n), V (n), Z(n)

))du

=
1

δ

∫ t+δ

t
lim
n


E

((
N

(n),[i,j]
u+s +

∫ u+s

0
Z(n),[j,i]
r dr

)
Φ
(
., Y (n), V (n), Z(n)

))

− E

((
N̂

[i,j]
u+s +

∫ u+s

0
Z [j,i]
r dr

)
Φ
(
., Y (n), V (n), Z(n)

))du

=
1

δ

∫ t+δ

t
lim
n

E
((

N
(n),[i,j]
u+s − N̂

[i,j]
u+s

)
Φ
(
., Y (n), V (n), Z(n)

))
du

=
1

δ

∫ t+δ

t
lim
n

E
((

N (n),[i,j]
u − N̂ [i,j]

u

)
Φ
(
., Y (n), V (n), Z(n)

))
du

=
1

δ

∫ t+δ

t
E
(
W [i]

u

(
V [j]
u − V̂ [j]

u

)
Φ
)
du.

Passing to the limit when δ → 0 yields

E
(
W

[i]
t+s

(
V

[j]
t+s − V̂

[j]
t+s

)
Φ
)

= E
(
W

[i]
t

(
V

[j]
t − V̂

[j]
t

)
Φ
)
.

By Lemma 3.14, this shows that W [i]
(
V [j] − V̂ [j]

)
is a martingale.
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3.5 Proof of the main result

In this part, we use the special form of f with respect to Z: By hypothesis
(H2), f has the form

(40) f(s, x, y, z) = α(s, x, y)z + β(s, x, y),

where α and β are bounded and continuous in (x, y), and α takes its values
in the space L(L,Rd) of linear mappings from L to R

d.
We first prove a technical lemma.

Lemma 3.17 Let K be the space of linear mappings from R
d to R

l for some
l ≥ 1. Let b : [0, T ] → K be a continuous function. For each t ∈ [0, T ], the
mapping

Φ :

{
DS ×Hσ → R

l

(y, z) 7→
∫ t
0 b(s).f(s, x(s), y(s), z(s)) ds

is sequentially continuous. Furthermore, if yn → y in DS and zn → z in Hσ,
then, for every t ∈ [0, T ], we have

lim
n

(∫ t

0
b(s).f(s, x(s), yn(s), zn(s + 1/n)) ds

−

∫ t

0
b(s).f(s, x(s), yn(s), zn(s)) ds

)
= 0.

Proof We only need to prove the lemma for f(s, x, y, z) = α(s, x, y)z. As x
does not play any role in our reasoning, we write for simplicity f(s, x, y, z) =
α(s, y)z.

First, for every z ∈ L2
L[0, T ], we have

(41) lim
n→∞

‖z − z(. + 1/n)‖L2
L
[0,T ] = 0.

Indeed, for every ǫ > 0, there exists a continuous function u : [0, T ] → L

such that ‖z − u‖L2
L
[0,T ] < ǫ. Then we have, for every n ≥ 1,

‖z(. + 1/n) − u(. + 1/n)‖L2
L
[0,T ] < ǫ.

But the family u(. + 1/n) is uniformly integrable because it is bounded in
L2
L[0, T ], thus, by Vitali’s theorem and the continuity of u,

lim
n→∞

‖u− u(. + 1/n)‖L2
L
[0,T ] = 0.
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We conclude by the triangular inequality that

lim sup
n→∞

‖z − z(. + 1/n)‖L2
L
[0,T ] ≤ 2ǫ,

which proves (41).
Now, let yn → y in DS and zn → z in Hσ. We have in particular

yn(s) → y(s) for a.e. s ∈ [0, T ] and sup
n

‖zn‖H < +∞,

thus

‖Φ(yn, zn)(t) − Φ(y, z)(t)‖

=

∥∥∥∥
∫ t

0
b(s). (α(s, yn(s)) − α(s, y(s))) zn(s) ds

+

∫ t

0
b(s).α(s, y(s)) (zn(s) − z(s)) ds

∥∥∥∥

≤ sup
n

‖zn‖H

(∫ t

0
‖b(s)‖ ‖α(s, yn(s)) − α(s, y(s))‖2 ds

)1/2

+

∥∥∥∥
∫ t

0
b(s).α(s, y(s)) (zn(s) − z(s)) ds

∥∥∥∥
→ 0 when n → ∞,

which proves the first part of Lemma 3.17. Furthermore, we have

∥∥∥∥
∫ t

0
b(s).α(s, yn(s))

(
zn(s + 1/n) − zn(s)

)
ds

∥∥∥∥

=

∥∥∥∥
∫ t

0
b(s).

(
α(s, yn(s)) − α(s, y(s))

)(
zn(s + 1/n) − zn(s)

)
ds

+

∫ t

0
b(s).α(s, y(s))

(
zn(s + 1/n) − zn(s)

)
ds

∥∥∥∥

≤2 sup
n

‖zn‖H

(∫ t

0
‖b(s)‖ ‖α(s, yn(s)) − α(s, y(s))‖2 ds

)1/2

+

∥∥∥∥
∫ t

0
b(s).α(s, y(s))

(
zn(s + 1/n) − zn(s)

)
ds

∥∥∥∥.

The term
∫ t
0 ‖b(s)‖ ‖α(s, yn(s)) − α(s, y(s))‖2 ds converges to 0 by the dom-

inated convergence theorem. On the other hand, since b and α are bounded
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and (zn) is uniformly bounded in L2
L[0, T ], we have (with the convention

that b(s) = α(s) = 0 for s < 0):

lim
n

∥∥∥∥
∫ t

0
b(s).α(s, y(s))

(
zn(s + 1/n) − zn(s)

)
ds

∥∥∥∥

= lim
n

∥∥∥∥
∫ t

0

(
b(s − 1/n).α(s − 1/n, y(s − 1/n)) − b(s).α(s, y(s))zn(s)

)
ds

∥∥∥∥.

This term vanishes by (41) with z(s) = b(s).α(s, y(s)), using again the
uniform boundedness of (zn) in L2

L
[0, T ]. Thus

lim
n

∥∥∥∥
∫ t

0
b(s).α(s, yn(s))

(
zn(s + 1/n) − zn(s)

)
ds

∥∥∥∥ = 0.

In order to check that (Y,Z) is a solution to (2), we prove in the next

lemma that we can replace Z̃(n) by Z(n) in the limit of
∫ T
t f(s,Xs, Y

(n)
s , Z̃

(n)
s ) ds.

Lemma 3.18 For each t ∈ [0, T ], the sequence

∫ T

t
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds−

∫ T

t
f(s,Xs, Y

(n)
s , Z(n)

s ) ds

converges to 0 in µ-probability.

Proof With the notations of (40), we only need to check that

∫ T

t
α(s,Xs, Y

(n)
s )

(
Z̃(n)
s − Z(n)

s

)
ds

converges to 0 in probability.
Now, by Lemma 3.4 and Proposition 3.5, the sequence (Z̃(n)) is bounded

in L2
L
(Ω × [0, T ]), thus it can be viewed as a tight sequence of Hσ-valued

random variables. Enlarging the space Ω to Ω×D×D×H×H, we can assume
that (Y (n), V (n), Z(n), Z̃(n)) converges to a Young measure, still denoted by
µ, in Y(Ω,F ,P;DS × DS ×Hσ ×Hσ). We set

Z̃(ω, y, v, z, z̃) = z̃

and we extend Y , V , Z, and the σ-algebra F t in the obvious way.
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Let K be an F t-adapted process with càdlàg trajectories in R
d, and

assume that K is continuous with respect to y, v, z, and z̃, and that the
sequence

(∫ T

0
Ks.α(s,Xs, Ys)(Z

(n)
s − Z̃(n)

s ) ds
)

is uniformly integrable. We have

E

∫ T

0
Ks.α(s,Xs, Ys)(Zs − Z̃s) ds

= lim
n

E

∫ T

0
Ks.α(s,Xs, Y

(n)
s )(Z(n)

s − Z̃(n)
s ) ds

by Lemma 3.17 and Lemma 3.12, with

Φ(ω, y, v, z, z̃) =

∫ T

0
Ks(ω, y, v, z, z̃).α(s, xs, ys)(zs − z̃s) ds.

Thus, by Lemma 3.17,

E

∫ T

0
Ks.α(s,Xs, Ys)(Zs − Z̃s) ds

= lim
n

E

∫ T

0
Ks.α(s,Xs, Y

(n)
s )(Z

(n)
s+1/n − Z̃(n)

s ) ds

= lim
n

E

∫ T

0
EFs

(
Ks.α(s,Xs, Y

(n)
s )(Z

(n)
s+1/n − Z̃(n)

s )
)
ds

= lim
n

E

∫ T

0
Ks.α(s,Xs, Y

(n)
s )(Z̃(n)

s − Z̃(n)
s ) ds

=0.

In particular, one can take

Ks =
α(s,Xs, Ys)(Zs − Z̃s)

1 +
(
α(s,Xs, Ys)(Zs − Z̃s)

)2 .

Thus α(s,Xs, Ys)(Zs − Z̃s) = 0, µ-a.e., for almost every s ∈ [0, T ].
Let Ψ : R

d → R be a bounded continuous function. Let

Φ :

{
DS × DS ×Hσ ×Hσ → R

(x, y, z, z̃) 7→ Ψ
(∫ T

t α(s, xs, ys)(zs − z̃s) ds
)
.
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By Hypothesis (H2) and Lemma 3.17, Φ is sequentially continuous, thus,
from the F-stable convergence of (X,Y (n), Z(n), Z̃(n)),

Ψ(0) = E Ψ

(∫ T

t
α(s,Xs, Ys)(Zs − Z̃s) ds

)
= lim

n
E Φ(X,Y (n), Z(n), Z̃(n))

= lim
n

E Ψ

(∫ T

t
α(s,Xs, Y

(n)
s )

(
Z̃(n)
s − Z(n)

s

)
ds

)
.

This shows that the sequence

(∫ T

t
α(s,Xs, Y

(n)
s )

(
Z̃(n)
s − Z(n)

s

)
ds

)

converges to 0 in law, thus in probability.

Lemma 3.19 The sequence (
∫ T
. f(s,Xs, Y

(n)
s , Z̃

(n)
s ) ds) converges in law to∫ T

. f(s,Xs, Ys, Zs) ds.

Proof By Lemma 3.9, we know that the sequence (
∫ T
. f(s,Xs, Y

(n)
s , Z̃

(n)
s ) ds)

is relatively compact in law, thus we only need to show that it has only one
possible limit in law, and that this limit is the law of

∫ T
. f(s,Xs, Ys, Zs) ds.

By Lemma 3.18, it suffices to prove that (
∫ T
t f(s,Xs, Y

(n)
s , Z

(n)
s ) ds) con-

verges in law to
∫ T
t f(s,Xs, Ys, Zs) ds for each t ∈ [0, T ].

Let Ψ : R
d → R be a bounded continuous function. Let

Φ :

{
DS × DS ×Hσ → R

(x, y, z) 7→ Ψ
(∫ T

t f(s, xs, ys, zs) ds
)
.

By Hypothesis (H2) and Lemma 3.17, Φ is sequentially continuous, thus,
from the F-stable convergence of (X,Y (n), Z(n)),

E Ψ

(∫ T

t
f(s,Xs, Ys, Zs) ds

)
= µ(Φ) = lim

n
E Φ(X,Y (n), Z(n))

= lim
n

E Ψ

(∫ T

t
f(s,Xs, Y

(n)
s , Z(n)

s ) ds

)
.

Proof of Theorem 3.1 By Lemma 3.13, W is a Brownian motion on
(Ω,F , (F t)t, µ). Let Lt = Vt − V0 − V̂t, 0 ≤ t ≤ T . We have L0 = 0 and L is
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a càdlàg martingale by Lemma 3.15, furthermore L is orthogonal to W by
Lemma 3.16. Thus there only remains to prove that (Y,Z,L) satisfies (1).

Thanks to Proposition 3.10 and Lemma 3.9, we know that the sequence

(42)

(
X,Y (n),

∫ T

.
f(s,Xs, Y

(n)
s , Z̃(n)

s ) ds,

∫ T

.
Z(n)
s dWs

)

n≥1

is tight in CM[0, T ]×DS ×CRd [0, T ]×DS. Furthermore,

(∫ T
. Z

(n)
s dWs

)

n≥1

converges in law to VT−V., and, by Lemma 3.19,

(∫ T
. f(s,Xs, Y

(n)
s , Z̃

(n)
s ) ds

)

n≥1

converges in law to
∫ T
. f(s,Xs, Ys, Zs) ds. Extracting if necessary a further

subsequence, we can thus assume that the sequence (42) jointly converges
in law on CM[0, T ] × DS × CRd [0, T ] × DS to

(
X,Y,

∫ T

.
f(s,Xs, Ys, Zs) ds, VT − V.

)
.

Then the process

U (n)
. = Y (n)

. − ξ −

∫ T

.
f(s,Xs, Y

(n)
s , Z(n)

s ) ds +

∫ T

.
Z(n)
s dWs

converges in law in DS to

U. :=Y. − ξ −

∫ T

.
f(s,Xs, Ys, Zs) ds + VT − V.

=Y. − ξ −

∫ T

.
f(s,Xs, Ys, Zs) ds +

∫ T

.
Zs dWs + LT − L.

But, by Lemma 3.7, (sup0≤t≤T U
(n)
t ) converges to 0 in probability, thus

U = 0 a.e., which proves Theorem 3.1.
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