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Feed-Forward Control of Open Channel Flow Using Differential Flatness
Tarek S. Rabbani, Florent Di Meglio, Xavier Litrico, and Alexandre M. Bayen

Abstract—This brief derives a method for open-loop control of
open channel flow, based on the Hayami model, a parabolic partial
differential equation resulting from a simplification of the Saint-
Venant equations. The open-loop control is represented as infinite
series using differential flatness, for which convergence is assessed.
A comparison is made with a similar problem available in the lit-
erature for thermal systems. Numerical simulations show the ef-
fectiveness of the approach by applying the open-loop controller to
irrigation canals modeled by the full Saint-Venant equations.

Index Terms—Differential flatness, diffusive wave equation,
open channel hydraulics, trajectory planning, water management.

I. INTRODUCTION

T HE limitation of global water resources is a motivation for
research on automation of management of water distribu-

tion systems. Large amounts of fresh water are lost due to poor
management of open-channel systems. This brief focuses on the
management of canals used to convey water from the resource
(generally a dam located upstream) to a specific downstream
location. Due to the fluctuations of water needs, water demand
changes with time. This change in demand calls for the efficient
operations of open-channel systems to avoid overflows and to
supply desired flow rates at prespecified time instants.

Automation techniques based on optimization and control
have the potential to provide more efficient management strate-
gies than manual techniques. They rely on flow models, in par-
ticular the Saint-Venant equations [1] or simplified versions of
these equations to describe 1-D hydraulic systems. Water level
regulation and control of the water flow are among the methods
used to improve the efficiency of irrigation systems. These tech-
niques allow engineers to regulate the flow in hydraulic canals
and therefore to irrigate large areas according to user specified
demands.

In this brief, the specific problem of controlling the down-
stream flow in a 1-D hydraulic canal by the upstream discharge
is investigated. Several approaches to this problem have al-
ready been described in the literature. The majority of these
approaches use linear controllers to control the (nonlinear)
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dynamics of the canal system. Such methods include transfer
function analysis for Saint–Venant equations [19] which in turn
allows the use of classical control techniques for feedback con-
trol [6], [20]. Alternatively, Riemann invariants for hyperbolic
conservation laws as in [7] and [8] can be used to construct
Lyapunov functions, used for stabilization purposes. Adjoint
methods [32] have been used for estimation and control, via
sensitivity analysis. More closely related to the present study,
open-loop control methods have been developed either by
computing the solutions of the flow equations backwards using
discretization and finite difference methods [3], [4], or using a
finite dimensional approximation in the frequency domain [21],
[28]. Our approach is to design an open-loop controller which
parametrizes the upstream discharge explicitly as a function
of the desired downstream discharge at a given location using
differential flatness (based on Cauchy–Kovalevskaya series).
It can be shown using Lyapunov stability method that the
open-loop system is stable [15], [16], which provides another
justification for the usefulness of open-loop control of the
considered system.

In the context of partial differential equations, differential
flatness was used to investigate the related problem of heavy
chains motion planning [27], as well as Burgers equation in
[26] or the telegraph equation in [12]. The theory of differen-
tial flatness, which was first developed in [11], consists in a
parametrization of the trajectories of a system by one of its out-
puts, called the “flat output”.

Starting from the classical Saint–Venant equations, widely
used, to model unsteady flows in rivers [1], we present a model
simplification and a linearization which lead to the Hayami par-
tial differential equation as shown in [25]. The practicality of
using the Hayami equation lies in the fact that only two nu-
merical parameters are needed to characterize flow conditions:
celerity and diffusivity. The original Saint–Venant equations re-
quire the knowledge of the full geometry of the canal and of the
roughness coefficient, which make it impractical for long rivers
where these parameters are more difficult to infer [18].

The problem of controlling the Hayami equation was already
investigated [22] with transfer function analysis, and in [18]
for parameter estimation. The Hayami equation [14] is closely
linked to the diffusive wave equation with quadratic source
terms, which has been studied in [10] and [23]. The difference
between our problem and the aforementioned problem is the
nature of the boundary conditions: indeed, unlike for heat
transfer problems, one cannot impose a value for the down-
stream discharge (respectively, heat flux). In river flow, there
are hydraulic structures such as weirs or gates which impose
a static relation between water elevation and the flow. In fact,
we show that the solution of our problem is a composite of the
solution in [23] and an additional new term which captures the
boundary condition set by the hydraulic structure, therefore
required to solve the specific problem of interest in this study.

1063-6536/$25.00 © 2009 IEEE
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This brief is organized as follows. A description of the phys-
ical problem and the system of equations to be solved is first in-
troduced (see Section II). Then, in Section III, a solution of these
equations is derived using differential flatness. The convergence
of the infinite series controller is studied and an upper bound on
the truncation error is computed as a function of the approxi-
mating terms. Moreover, a numerical assessment of the open-
loop controller is finally presented and discussed in Section IV.
In particular, the difference with controllers synthesized in the
context of heat transfer is illustrated through numerical sim-
ulation. Applications of the controller on the fully nonlinear
Saint–Venant model are presented to show the usefulness of the
proposed method for the full nonlinear system.

II. PHYSICAL PROBLEM

The system of interest is a hydraulic canal of length . For
simplicity, the canal is assumed to have a uniform rectangular
cross-section but more complex geometries can easily be taken
into account. In this section, we present the equations that
govern the system, the Saint–Venant equations. We then derive
the Hayami model which is a simplification of these equations.

A. Saint–Venant Equations

The Saint–Venant equations [1] are generally used to describe
unsteady flows in rivers or canals [25]. These equations assume
1-D flow, with uniform velocity over the cross-section. The ef-
fect of boundary friction and turbulence is accounted for through
resistance laws such as the Manning–Strickler formula [33], the
average channel bed slope is assumed to be small, and the pres-
sure is hydrostatic. Under these assumptions, these equations
are written as follows:

(1)

(2)

with the wetted cross-sectional area m , the
discharge m s across section , the water
depth m , the friction slope m m , the bed
slope m m , and the gravitational acceleration m s .
For rectangular cross sectional geometries, these variables
are linked by the following relations: ,

and
where is the absolute water elevation m , is
the mean water velocity m s across section , and
is the bed width m . Equation (1) is referred to as the mass
conservation equation, and (2) is called the momentum conser-
vation equation. We assume that there is a cross-structure at the
downstream end of the canal, which can be modeled by a static
relation between and at , i.e.,

(3)

where is an analytical function. For a weir struc-
ture, this relation can be assumed to be

, where is the gravitational ac-
celeration, is the weir length, is the weir elevation, and

is the weir discharge coefficient. A similar static relation
holds in the case of a gate structure.

B. Hayami Model

Depending on the characteristics of the river, some terms in
the momentum equation (2) can be neglected, which allows us
to simplify the two equations and to assemble them into a single
partial differential equation. As shown in [22], assuming that the
inertia terms can be neglected with respect to

will lead to the diffusive wave model

(4)

(5)

The two equations can be combined and will lead to the diffusive
wave equation [18]

(6)

where is the flow m s , and usually known as the
celerity and the diffusivity are non linear functions of the flow.
Linearizing (4) around a reference discharge (i.e.,

) leads to the Hayami equation

where is the deviation from the nominal flow ,
, and are the nominal celerity and diffusivity

which depend on . We call the reference elevation, and
assume that , therefore (4) can be
linearized as follows:

where we have substituted by
before linearizing. The right boundary condition (3) is also lin-
earized and becomes

where is the linearization constant m s . The value of this
constant depends on the weir geometry: length, height, and dis-
charge coefficient.

C. Open-Loop Control Problem

The control problem illustrated in Fig. 1, consists in deter-
mining the control , i.e., the flow of the up-
stream discharge that yields the desired downstream discharge

, where is a user-defined flow profile over
time at the end of the canal.

We therefore have to solve a feed-forward control problem
for a system with boundary control (in the present case upstream
discharge). The dynamics are modeled by the following partial
differential equations:
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Fig. 1. Schematic representation of the canal with weir structure.

(7)

(8)

A boundary condition is imposed at by (9)

(9)

where is the desired output, and initial conditions defined
by the deviations from the nominal values

We are looking for the appropriate control that will gen-
erate the defined by (9), where is defined by

(10)

III. COMPUTATION OF THE OPEN-LOOP CONTROL INPUT FOR

THE HAYAMI MODEL

In this section, we solve the control problem given by (7)–(9)
and parametrize the flow in terms of the discharge
or . We will produce a solution to this problem using differ-
ential flatness based on Cauchy–Kovalevskaya decomposition,
and study the convergence of the obtained infinite series.

A. Cauchy–Kovalevskaya Decomposition

Following [29], (7) can be transformed into the heat equation.
Let us consider the following transformation:

(11)

where , , and
. We have

Substituting in (7), satisfies

(12)

The problem (7)–(9) can now be reformulated as follows:

(13)

(14)

(15)

where . The system of (13)–(15) can be used
for a Cauchy–Kovalevskaya decomposition [5], [17] and the
solution of the PDE, (respectively, ), can be ex-
pressed in the Cauchy–Kovalevskaya power series decomposi-
tion, in the present case as a function of (respectively,

) and all its derivatives. The Cauchy–Kovalevskaya de-
composition is a standard way of parametrizing the input as
a function of the output for parabolic and linear PDEs [10],
[17], [23]. In the present case, it can be shown to be equiv-
alent to Laplace decomposition [9] which produces the same
parametrization, using spectral analysis. We assume the fol-
lowing form for and :

(16)

(17)

where and are functions. We have:
, , where

denotes the time derivative of . After substitution in
(13), we obtain

Equating the coefficients of gives for all

(18)

Additionally, it follows from (16) and (17) that
and . We still need a condition on to be able to
express every as a function of . We combine (14) and (15)
to obtain a boundary condition on at . We have

So that , and (14), with gives

(19)
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In addition, (15) gives: . Differentiating this
equation with respect to time, we get

and eventually; plugging back into (19), we obtain:
, where .

Using the induction relation (18) and the expression of and
, we can compute separately the odd and even terms

where stands for the time derivative of . Therefore,
we can formally write as follows:

From (15), we deduce that . The final
parametrization of the flow will have the form

(20)

where

(21)

(22)

(23)

Equation (20) relates the discharge variation as a func-
tion of the desired flat output which corresponds to the dis-
charge at the downstream end of the canal. The output

is sometimes referred to as “flat,” which in the present
context means that it is possible to express the input of the
system explicitly as a function of the desired output
and its derivatives (a formal definition of differential flatness
is available in [11], for general systems). This also defines the
parametrization of the state as a function of the same
derivatives. The present decomposition, chosen for this study, is
the Cauchy–Kovalevskaya form, which is appropriate for par-
abolic equations such as the one presented in this brief. This
solution is formal, until the convergence of the infinite series
is assessed. An alternate derivation of (20) was produced using
Laplace techniques, and provides the same algebraic result [9].

B. Convergence of the Infinite Series

We now give the formal proof of convergence of the series in
(20). We assume that the flat output is a Gevrey function
[30] of order , i.e.,

(24)

is Gevrey of order 0, and therefore is Gevrey
of order . The product of two Gevrey functions of same order is
a Gevrey function of the same order, as a consequence,
is Gevrey of order . We will use the Cauchy–Hadamard
theorem [13] which states that the radius of convergence of the
Taylor series is . The

radius of convergence for is given by

where is the radius of convergence around . We can find an
upper bound to by inducing the property of bounds on a
Gevrey function of order from (24)

(25)

where in (25), we have used the fact that
, and as an im-

mediate consequence of the Stirling formula. Also, we have
used , and

. This will ensure an infinite radius of convergence for
. Similar calculations can be held for and

leading to the following conclusions.
• Equation (20) converges with an infinite radius of conver-

gence for the choice of a Gevrey function of order
.

• For , the radius of convergence is greater than
, which provides convergence of the series

for , given the definition of

.
• We can draw no conclusions on the convergence of the

series when .

IV. NUMERICAL ASSESSMENT OF THE PERFORMANCE OF THE

FEED-FORWARD CONTROLLER

In this section, we compute the control command by
evaluating (20) at . We subsequently simulate the con-
troller numerically on the Hayami model (7)–(9) in order to
evaluate their behavior before testing them on the Saint–Venant
equations. This section successively investigates numerical sim-
ulations for the Hayami and the Saint–Venant models and the
performance of the controller on both models.
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Fig. 2. Bump function described by (26) plotted for different values of � and
� � �.

A. Hayami Model Simulation

From Section III-B, the infinite series convergence is ensured
by choosing to be a Gevrey function of order . To
meet this convergence condition following [17], we introduce
the bump function : defined as

(26)

where , . The Gevrey order of the bump function is
. The function is used in [10], [11], [17], [23], and

[31], it is strictly increasing from 0 at to 1 at with
zero derivatives at and . The larger the param-
eter is, the faster is the slope of transition. Fig. 2 shows a plot of
the bump function for different values of and . Setting

will allow us to have a transition from zero dis-
charge flow for to a discharge flow equal to for ,
where is a constant. Note that the bump function was chosen
because of its Gevrey properties, we guarantee an infinite radius
of convergence for ( as described in Section III-B).
As can be inferred from the previous proof, the proposed method
only applies to functions with proper radius of convergence, by
(25). This is due to the fact that in general, the reachable set (i.e.,
the set of attainable functions) from input functions is
not equal to the whole state space of output functions. In other
words, not all functions can be synthesized by a function

.
The upstream discharge or the control input can be com-

puted by substituting in (20). We obtain

(27)

1) Evaluation of the Truncation Error: For practical imple-
mentation purposes, one needs to know how many terms should
be included in the numerical computation. This can be done by
computing an upper bound on the truncation error. When the

infinite series, , , and , in (27) are trun-
cated, this generates an approximation error which needs to be
evaluated. We use the Gevrey assumption in (24) and write

To evaluate the approximation error of
when truncated, we study the series . The se-
ries satisfies the relation , where

. The
function is decreasing towards zero

and for large values of . Thus, for
, this implies that, for any small enough constant

, there exists a unique integer such that and
. Since is strictly decreasing, we have

for any . Thus, and
, . , and satisfy

similar properties, which can be summarized by: for any ,
there exist , such that

(28)

This result provides us with an upper bound on the truncation
error, which is quantified by writing (27) as a sum of the trun-
cated series and the truncation error

where

(29)

We now use the geometric series upper bound given by (28)
to compute an upper bound of the truncation error, for a large
enough
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Fig. 3. � norm of the error � ��� defined by (31) as a function of the terms
used � . The upper bound is computed using (32) and the real error is computed
until numerical convergence.

(30)

Therefore, an upper bound on the truncation error of approxi-
mating using terms of the infinite series can be found,
and it is linear in the coefficients , , and .

2) Numerical Simulation: For the numerical simulation, we
consider incrementing the flow by 1 m s from its nominal flow

m s in 1 hour 3600 s . We take which
implies to be a Gevrey-function of order 1.5 thus satisfying
the convergence condition in Section III-B. The model parame-
ters are 1000 m, 20 m/s, 1800 m s, 7
m, and 1 m s. The infinite series of the control input
is approximated using terms. The value of is determined by
evaluating the norm of the truncation error as a function of

which is given by

(31)

where is the simulation time. We compute the norm of
the upper bound error

(32)

Fig. 3 shows a comparison between the norms of the upper
bound computed by (32) and the real error computed by (29)
until numerical convergence (the residual goes to machine ac-
curacy for 76 terms). We notice that our upper bound is conser-
vative, (the real error may be two orders of magnitude smaller).

Fig. 4. Effect of adding more terms on the relative error � ��� �
������ � ����� � ����� for consecutive values of � starting from � � � to
� � ��.

Fig. 5. Results of the numerical simulation of feed-forward control of the
Hayami equation. The desired downstream discharge is ����, the upstream
discharge is ����, and the downstream discharge computed by solving the
Hayami model with 	 � 1 m �s is 
��� ��.

Nonetheless, it gives a sufficient condition useful for computa-
tional purposes. Fig. 4 shows the effect of adding more terms on
the relative error . We
choose which yields an error of , and solve
(7), (8), (9), and (10) using the Crank–Nicholson scheme. The
numerical solution at or is compared to , the
desired downstream discharge flow. The results of this simula-
tion are shown in Fig. 5.

The discharge at the downstream follows the desired dis-
charge accurately which validates our control input. We can
now compare our result to other problems from the literature.

3) Comparison With the Heat Equation: In the context of
thermal systems [17], an explicit open-loop controller was de-
rived for the heat equation with zero gradient boundary condi-
tions. With some simple transformations in time and space we
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Fig. 6. Effect of varying � �m �s� on the upstream discharge or control input
����.

can relate the results [27] to our problem. The transformed ver-
sion of the equations of [17] has the following form:

(33)

(34)

The solution of the control input for this particular problem is

(35)

We can vary the value of the variable in (27), and observe
its effect on . This physically corresponds to changing the
height or the width of the weir located at the downstream end
of the canal. Fig. 6 shows the effect of varying on the control
input .

We can see that by increasing the value of , the function
of numerically converges to described by (35).
This can be seen directly by inspection of the limit of (27) as

tends to which would result in (35). Substituting
into (27), we obtain

where

As tends to , the boundary effect becomes negligible, and
(27) converges in the limit to (35), i.e., in the limit and
are identical. If we were to use the controller in (35) to con-
trol our problem with 1 m s, we would obtain the re-
sults shown in Fig. 7. The effect can be seen in the transition
which takes approximately 1.6 h instead of 1 h. This shows
the considerable importance of boundary conditions on the dy-
namics of the flow transfer. It is therefore very important to take
into account the appropriate physical boundary conditions in the

Fig. 7. Consequence of neglecting the boundary conditions in calculating the
upstream discharge. The desired downstream discharge is ����, and the down-
stream discharge calculated by solving the Hayami model with � � 1 m �s and
control input of (35) is ���� ��.

open-loop control design to ensure a scheduled water distribu-
tion.

B. Saint–Venant Model Simulation

In numerous cases, controlling the Saint–Venant equations di-
rectly is impractical because of the required knowledge for the
geometry of the canal and the Saint–Venant parameters defined
in Section II-A. For this reason we have used a simplification
of the model to arrive to the Hayami equation which requires
only two parameters, and . The coefficient , which rep-
resents the downstream boundary condition, can easily be in-
ferred from the weir equation. In this section we show numeri-
cally that a calibrated Hayami model would provide us with an
open-loop control law that steers the Saint–Venant equation so-
lution at or the flow discharge at the weir to the desired
discharge accurately. For the purpose of the simulation we use
SIC, a computer program developed by Cemagref [2], [24] to
simulate the upstream discharge and the measurement discharge
at the downstream. SIC solves the full nonlinear Saint–Venant
equations using a finite difference scheme standard in hydraulics
(Preissmann scheme). We also study the effect of uncertainties
of the Saint–Venant equation parameters on the open-loop con-
trol system performance.

1) Hayami Model Identification: The purpose of model iden-
tification is to identify the parameters , , and corre-
sponding to the Hayami model and its boundary condition pa-
rameter that would best approximate the real flow governed by
the Saint–Venant equations. This is done with an upstream dis-
charge in a form of a step input, the flow discharges are moni-
tored at the upstream and downstream positions. The hydraulic
identification is done classically by finding the values of , ,
and that minimize the error between the computed downstream
discharge by the solution of the Crank–Nicholson scheme [34]
and the measured one. We therefore have to solve the following
optimization problem:
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where is the downstream flow generated by SIC, and
is the downstream flow generated by the Crank–Nicholson
scheme, is the simulation time usually larger than the
period needed to reach steady state. The nonlinear optimization
problem was solved by the MATLAB nonlinear least-square
curve fitting function (lsqnonlin). The identification was done
using Saint–Venant equations generated data. In our case, the
identification was performed around a steady flow regime of
0.4 m s, canal of length 4887 m, and bed width
2 m. The average bottom slope is 3.8 , the Manning
coefficient is 0.0213 m , and the weir discharge coefficient
is 0.35. This leads to the following parameters: 0.88 m/s,

660.19 m s, and 0.16 m s. Identification of
coefficients of the Hayami equation is standard in hydraulics,
and has shown to work well in practice [18].

2) Saint–Venant Control: The experimental canal we would
like to simulate has the same properties as the one we have used
for identification in the previous section. We are interested in
raising the flow at the downstream from 0.4 m s to 0.5 m s in
5 h. Setting the variables in Section IV-A to 0.1 m s,
5 h, and will define the downstream profile . The
control input or the discharge at the upstream can be calculated
and the results are shown in Fig. 8. We notice that the open-loop
control designed with the Hayami model performs very well
on the full nonlinear Saint–Venant equations. As can be seen
in Fig. 8, the reference output and the actual output achieved
by the Hayami controller on the full Saint–Venant equations
are visually almost identical, which confirms the practicality
of the method for implementation on canals. This shows that
the Hayami model is practical for the design of open-loop con-
trol when the corresponding parameters are identified. We ex-
tended our results by evaluating the uncertainties on the system
parameters, and studying their effect on the performance of the
open-loop control system.

3) Sensitivity Analysis: We study the effect of parameter
uncertainties in the full nonlinear Saint–Venant model on the
downstream discharge. We compute the control input using
nominal values of Saint–Venant equations parameters and
simulate it with models which incorporate some uncertainties.
We specifically study the effect of the Manning and discharge
coefficients uncertainties. We experiment with variations
on the nominal values and compare the downstream discharges
of each scenario.

We use the experimental canal described in Section IV-B2
with nominal Manning coefficient 0.0213 m s,
and weir discharge coefficient . The control
input of Section IV-B2 is simulated under four different
scenarios which define the variations on the nom-
inal values: Scenario 1: 0.0256 m , ,
Scenario 2: 0.0170 m , , Scenario
3: 0.0256 m , , and Scenario 4:

0.0170 m , . Fig. 9 shows the result

Fig. 8. Results of the implementation of our controller on the full nonlinear
Saint–Venant equations. The desired downstream discharge is � ��� �
� � ����, the downstream discharge calculated by solving the Saint–Venant
equations in SIC is���� �� � � ����� ��, and the control input of the canal is
���� � � �����, where���� is calculated using the Hayami model open-loop
controller. The nominal flow in the canal is � � 0.4 m 	s.

of the sensitivity analysis. We observe that the dominant effect
is due to uncertainties in the Manning coefficient. Underesti-
mating the Manning coefficient as in scenarios 1 and 3, leads to
a delay in the downstream discharge delivery (approximately
two hours delay to reach the desired downstream discharge).
A larger Manning coefficient means more friction and this
slows down the upstream discharges to reach the downstream
location. In scenarios 2 and 4 (overestimating the Manning
coefficient), the downstream discharge reaches its desired
value one hour earlier. The peak in the upstream discharge is
not fully filtered by the dynamics of the canal and leads to
an overshoot in the discharge. The overshoot stabilizes at the
desired downstream discharge (0.5 m s) after 2 h.

Overestimating (scenarios 2 and 3), or underestimating (sce-
narios 1 and 4) the weir discharge coefficient has a very minor,
yet opposite effect to uncertainties in the Manning coefficient.
Downstream discharges in scenarios 1 and 4 are above the ones
in scenarios 3 and 2, respectively. In all cases, the downstream
discharge reaches a steady state equal to the desired one with a
delay of 2 h.

V. CONCLUSION

This brief introduces a new method to design an open-loop
control based on the Hayami model for open channel flow con-
trol using differential flatness. The controller is obtained as an
infinite series (Cauchy–Kovalevskaya decomposition) in terms
of the desired downstream discharge flow. We have given suf-
ficient conditions on the downstream profiles to ensure conver-
gence. The effect of the boundary condition is also investigated
and compared to previous studies realized for thermal systems.
The simulations show satisfactory results for controlling the full
Saint–Venant equations.
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Fig. 9. Simulation results when the Manning and weir discharge coefficients
are perturbed around their nominal values (� � ������, � � ����). The
downstream discharge is computed with four different scenarios. The scenarios
correspond to���� uncertainties on the nominal Manning and weir discharge
coefficients. Scenario 1: � � 0.0256 m s, � � ����, Scenario 2: � �

0.0170 m s, � � ���	, Scenario 3: � � 0.0256 m s, � � ���	,
Scenario 4: � � 0.0170 m s, � � ����.
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