Chih-Hsing Chu
email: chchu@ie.nthu.edu.tw

Cheng-Ta Lee

Kai-Wen Tien

Ching-Jung Ting

Yuan Ze

Efficient Tool Path Planning for 5-Axis Flank Milling of Ruled Surfaces using Ant Colony System Algorithms

Keywords: Flank Milling, 5-axis Milling 5-axis machining, flank milling, ant colony, ruled surface, machining error

5-axis CNC flank milling has recently received much attention in industry. The flank milling operation is efficient in shaping ruled geometry, but introduces a challenging task in machining error control. Previous work proposed a dynamic-programming based scheme for generating optimal tool path by minimizing the machining error. However, to compute the tool path takes a considerable amount of time. This paper presents a new scheme using meta-heuristics, Ant Colony System (ACS), for tool path planning in 5-axis flank milling, with a focus on improving the computation efficiency. The path planning problem is first formulated as mapping two boundary curves of a ruled surface. An ACS-based optimization algorithm is then applied to search for the mapping that minimizes the machining error. The solution is nearly as good as using dynamic programming but takes only half of the computational time. The results from machining experiment and 3D measurement validate the effectiveness of the proposed scheme.

In recent years, 5-axis CNC machining has been widely used in manufacturing industries like automobile, aerospace, energy, and molding components. This advanced machining technology is classified into two ways of operation: end milling and flank milling. The flank milling operation is more efficient in terms of machining efficiency. The machining shape that it can deal with is usually limited to ruled geometries. The tool path planning in 5-axis flank milling is considered a challenging task. Frequent occurrence of tool interferences and control of the machining error are two major difficulties. Effective solution to these problems has not yet been fully developed.

[Insert Figure 1 about here] As illustrated in Figure 1, a straight ball-end milling cutter sweeping along the boundary curves of a ruled surface induces tool interferences when the contact region is not locally developable [START_REF] Chu | Automatic Tool Path Generation for 5-axis Flank Milling based on Developable Surface Approximation[END_REF]. The majority of previous studies attempted to reduce the amount of such interferences with empirical methods applied to individual tool locations. [START_REF] Liu | Five-Axis NC Cylindrical Milling of Sculptured Surfaces[END_REF] displaced the cutter contact points with a small distance along the surface normal at the midpoint of a ruling. The line connected with the displaced points then determines the new cutter axis. The author claimed that setting the tool axis in this way produces a smaller machining error. [START_REF] Lee | Interference-Free Tool-Path Planning for Flank Milling of Twisted Ruled Surfaces[END_REF] developed a method for adjusting the cutter axis and the offset distance to the design surface such that the sum of the distances from sample points of the cutter axis to the surface is minimized. [START_REF] Bohez | A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers[END_REF] developed an optimization scheme that offsets the end points of the surface rulings to determine the tool orientations. The offset direction was chosen as the average of the surface normals at these points. Some recent studies fully utilized the two extra degrees of freedom in 5-axis machining.

They employed local optimization methods to adjust the tool axis until producing a smaller machining error [START_REF] Menzel | Triple Tangent Flank Milling of Ruled Surfaces[END_REF], or to re-position the cutter with look-up tables considering the surface twist [START_REF] Tsay | Accurate 5-Axis Machining of Twisted Ruled Surfaces[END_REF]. [START_REF] Monies | Five-axis NC Milling of Ruled Surfaces: Optimal Geometry of a Conical Tool[END_REF] positioned the cutter tangent to the ruled surface at three points, i.e. two points on two directrices and one point on a ruling. A tool axis is solved from a set of nonlinear transcendental equations. The interference errors on the two ends of the ruling are equal and thus minimized with the axis. [START_REF] Ding | On a Novel Approach to Planning Cylindrical Cutter Location for Flank Milling of Ruled Surfaces[END_REF] proposed a simple adaptive mesh algorithm to adjust cylindrical cutter location for flank milling of ruled surfaces in two steps. The first step is to determine a sequence of initial cutter locations by offsetting the grid sampled points based on semi-definite programming (SDP). The second step is to re-position the tool axis by adjusting the offset value of each However, these methods could not control the error amount of the machining surface as a whole.

The recent research [START_REF] Chu | Tool Path Planning for 5-Axis Flank Milling of Ruled Surfaces Considering CNC Linear Interpolation[END_REF] found that in 5-axis flank milling of ruled surface the local optima discretely scattered on the surface do not transform into a global optimum in consideration of CNC interpolation, i.e. they do not guarantee a smaller error amount in view of the entire surface. This finding motivates and justifies the research work on the tool path planning of 5-axis flank milling using a global optimization/adjustment approach. [START_REF] Wu | Optimized tool path generation based on[END_REF] converted the planning task into a curve matching problem and applied dynamic programming to generate optimal tool path by minimizing the total machining error. Their method offers an effective error control mechanism. However, it took a significant amount of time to compute the tool path. Not much flexibility exists in the tradeoff between the required computation time and the machining quality, thus restricting its practical use. This paper proposes a novel scheme for the tool path planning of 5-axis flank milling of ruled surfaces using a meta-heuristic algorithm, Ant Colony System (ACS). This work is the first attempt of applying meta-heuristics based optimization to 5-axis flank milling. The path planning task is transformed into the optimal mapping problem between two boundary curves. These curves are discretely sampled and any connection between the two set of sample points determines a tool location. A complete tool path consists of the sequence of the connections along which the cutter sweeps across the entire surface. An ACS-based optimization scheme is applied to search for the mapping that is globally optimal in reducing the machining error. A local search mechanism is also included to adaptively improve the path in local regions. A set of error simulations generated by a stock height method compares the performance of ACS, ACS with local optimization, and dynamic programming. The results indicate that both the ACS schemes provide solutions nearly as good as the dynamic programming approach. It however only requires half of the computational time. Finally, we conduct a set of machining experiments and measure the machined surfaces with a 3D coordinates measuring machine (CMM) to verify the effectiveness of the proposed method. This work provides a computationally efficient method for systematically reducing the machining error in 5-axis flank milling of ruled surfaces.

Optimization of 5-Axis Flank Milling

Preliminaries of Ant Colony System (ACS)

The idea of ant-based algorithms originated from the observation of ants' behaviors in nature [START_REF] Dorigo | Ant System: Optimization by a Colony of Cooperating Agents[END_REF] and gradually became a well-established research trend. Ants travel back and forth between two end points for delivering food.

When the ants encounter an obstacle during the trip, they find the paths to move around the obstacle and continue the trip. At first, the ants wander and randomly choose a path to circumvent the obstacle. After a certain period of time, the number of the ants passing the shorter path increases, as it takes less time to travel. The pheromone lay down by these ants taking on the shorter path tends to accumulate and less likely to evaporate. The ants that follow will thus have a higher probability to choose this better path.

The artificial ants in most ant-based algorithms have three common characteristics.

First of all, the ants have to remember the paths that they pass by for updating pheromone trails. Secondly, in addition to pheromone trails, they are able to use some heuristics to choose the path. Thirdly, the ants move at discrete time intervals in most applications rather than continuously. There are different variants in the ant-based algorithms [START_REF] Dorigo | Ant System: Optimization by a Colony of Cooperating Agents[END_REF]. Most of them consist of the following procedures:

(1) Solution construction: determine the probability for choosing all different paths.

(2) Pheromone update: the change of the pheromone trails on the traveled and unselected paths.

(3) Application of heuristic value (or visibility): use of other heuristic conditions for determining the probability in solution construction.

(4) Local optimization: adaptive tweaking of the optimal result locally in order to find better solution. The previous study [START_REF] Dorigo | Ant Colony Optimization[END_REF] reported that it is quicker to find optimal solutions by ACS compared to the original ant method. We thus develop an algorithm based on Ant Colony System (ACS) to find the optimal tool path from all possible mappings. The parameters involved in the algorithm are denoted as: The computational models of our ACS algorithm are defined as:

Solution construction:

(1)

where k i N indicates all next positions the k-th ant can choose at node i.

Pheromone update:

(2)

Parameters in the ACS Algorithm

The proposed optimization scheme contains three basis parameters, as shown in Table 1. A ruled surface is generally formed by linearly interpolating two boundary curves. The two boundary curves are discretely sampled in our scheme. Any connection between the two set of sample points determines a tool location, becoming

[] [] [] [] k i N j , k i N l ij) t (ij ij) t (ij k ij a ∈ ∀ ∈ β η α τ β η α τ = ∑ ∑ ∈ >      ∈ = = ≤      k i N l (t) il a (t) ij a (t) k ij p 0 q q when k i N j | (t) k ij a argmax j if 1 otherwise 0 k ij p 0 q q when U(0,1) q solution best the is j) (i, connection if (t) gb 1/f otherwise 0 (t) ∆τ (t) ∆τ ρ (t) τ ρ) (1 1) (t τ ij ij ij ij      = ⋅ + ⋅ - = + F o r P e e r R e v i e w O n l y
the "ideal" contact line of the cutter. In reality, the cutter protrudes or protracts the machined surface around the line due to the surface twist (see Figure 1). A complete tool path consists of the collection of the connections that can cover the entire surface.

The discrete points are sampled with equal parametric intervals. The parameters NDP 1 and NDP 2 control the sampling density of the two boundary curves, respectively.

[Insert Table 1 about here] Perhaps the simplest way to plan tool path in 5-axis flank milling is to let the cutter move along the surface rulings, i.e. to make use of all the sampling points and their connections in our case. The tool path thus generated is certainly not optimal in terms of minimizing the machining error. Positioning the cutter along the surface ruling may induce a larger amount of tool interference. Besides, it is not necessary that the cutter passes all the points. The machining error may be reduced by skipping some points. To utilize this potential advantage, we provide the parameter PS in our algorithm. It specifies the maximal number of the points skipped when connecting the sampling points. Every discrete point has a line connected to it when PS is set to zero.

At most 2 discrete points on the boundary curve are not being connected for PS = 2.

The third parameter CS in Table 1 places a constraint on the displacement of the to the point with the same index on the opposite curve; otherwise the tool will follow the surface rulings. However, it is also not practical to allow a point to be connected to another point much further to the current indexed position. There are two implications associated with this constraint. The cutting edge of a tool has certain length. The tool contact line during machining certainly cannot be longer than it.

Besides, the CS value confines the connections in a range, thus reducing the solution space of the possible paths. From a practical point of view, it is not possible that two connected points indexed very apart on each curve produces a smaller machining error.

ACS Algorithm for Tool Path Generation

The path planning task will be formulated in a way that can be solved by ACS algorithms. The two boundary curves are discretely sampled. The sampled points are then indexed and transformed to a discrete finite 2D coordinate system. The beginning and end positions are indexed as (0, 0) and (NDP 1 , NDP 2) respectively. The tool path can then be generated by connecting the nodes traveled through by the ants.

[Insert Figure 2 Given no explicit constraints, the whole solution space consists of, theoretically, any possible connection between the two set of discrete points. There are NDP 1 xNDP 2 possible points. The complexity increases with the sampling density.

Searching exhaustively in the whole solution space is not computationally feasible.

The proposed algorithm provides two parameters, PS and CS, for controlling the space size to be searched. As shown in Figure 2, a larger PS value allows more options to be considered for the next tool movement. The proposed ACS algorithm contains the following procedures (see Figure 3):

Step 1: Compute a look-up table to record the machining errors A look-up table is constructed to store the machining error values of all nodes based on the stock height method proposed by the previous work [START_REF] Wu | Optimized tool path generation based on[END_REF]. This is to avoid re-computing the machining error values during the optimization process. Note that the computation load required for the error estimation is greater than that for the optimization process in the current problem. The values of pheromone are initialized to 1 except for the unproceedable nodes, which are initialized to 0.

Step 2: Construct the path for ant k in the t-th iteration The iteration process begins. An ant is placed at the starting position. The probability for each proceedable node is then computed. The heuristic η ij (t) for Step 3: Compare X k and X ib Store the path constructed above in X k (the best solution of the ant k) and

compute f k . If f ib > f k , update X ib and f ib with X k and f k . If f ib <= f k , retain X ib and f ib for next iteration.
Step 4: Compare X k and X gb After all of the search by the ants in generation t is completed, compare f ib and

f gb . If f gb > f ib , update X gb and f gb with X ib and f ib . If f gb <= f ib , no update is carried out.
Step 5: Check the stop criterion If X gb remains un-changed for N generations, the search is ended, otherwise proceeds to next iteration.

[Insert Figure 3 about here] [Insert Figure 4 about here]

Local optimization

Generally speaking, meta-heuristic optimization is more computationally efficient than dynamic programming, as only part of the solution space will be 13 evaluated during the optimization process. The solution thus obtained is certainly a sub-optimal result. In addition, the optimum can have variances of some degree due to the probabilistic nature of the meta-heuristic algorithm. A local search mechanism is often included in ACS to improve the performance of the optimization process. We incorporate a similar mechanism to the original algorithm, which consists of the following steps:

(1) Randomly select a tool contact line from the optimal result X gb obtained by the original algorithm. Identify an altering area that contains M consecutive tool positions starting from the selected position for further improvement (See Figure 4(b)).

(2) Perform the original ACS-based search to attain an optimal path in the altering area, as shown in Figure 4(c).

(3) Update the corresponding path with the new one if the latter is better (see Figure 4(d)).

Machining Error Estimation

To optimize the tool path in 5-axis flank milling depends on effective estimation of the machining error. The major task in the error estimation is to compute the shape of the machined stock. It can be generated by subtracting the volume swept by the cutter along a tool path from the initial stock. However, to obtain the exact shape involves complex computations like envelop surface construction [START_REF] Lartigue | Tool Path Deformation in 5-Axis Flank Milling Using Envelope Surface[END_REF] and Boolean Operations. To save the computation load, this research adopts an approximate method developed by our previous study [START_REF] Wu | Optimized tool path generation based on[END_REF]. The schematic of the method is shown in Figure 5. The idea is to transform the stock shape from volumetric representation into lines sampled from the surface. Two line segments of a length equal to the cutter radius are created from each point, one along a user-given direction and the other along its reversed direction. Each group of lines represents the excess and gouge regions, respectively. A tool movement is approximated by n This section simulates the machining error of test surfaces under various conditions to validate the ACS algorithm. The machining error is estimated using the stock height method developed in our previous work [START_REF] Wu | Optimized tool path generation based on[END_REF]. The method transforms the stock geometry from volumetric representation into discrete heights at the sampling points of the machining surface. Two line segments are produced from each point, one along a user-given direction and the other along its reversed direction.

Intermediate tool motion is constructed by linear interpolation of the tool center point and the tool axis between consecutive cutter locations. The cutter intersects those line segments during the motion, thus updating the height of the intersected lines. The stock shape is approximated in this manner. Note that all the length units are mm in this section if not specified.

[Insert Figure 6 about here] [Insert Table 2 about here] Figure 6 shows a test ruled surface constructed with two cubic Bezier curves. The coordinates of the surface control points are also shown. Table 2 lists the parameters setting during the simulation. The performance of an ACS algorithm is closely related to four parameters: M ant , α, β, and ρ (see the definitions described in section 2.2).

There is no common agreement on how these parameters should be set. They are (1) M ant : as shown in Figure 7(a), the error converges as the number of ants increases. This is because the research space is expanded with more paths produced. As a result, it takes a longer time to compute the optimal solution. The plot shows that the convergence rate remains nearly unchanged when M ant > 500.

(2) α: we can see that α smaller than 4 produces a smaller error in Figure 7(b).

(3) β: Figure 7(c) shows that a smaller β value produces a smaller error.

(4) ρ: as shown in Figure 7(d), with a larger ρ value, the error curve converges more quickly but to a larger value. The error curve converges more slowly but to a smaller value with a smaller value. 3 about here] The above trials help us properly select the parameter values in the ACS algorithm. Table 3 shows a better setting in terms of both the convergence rate and the optimal value. This setting should produce a satisfactory result, although it is not the best combination of the parameters. Unless specified, these parameters remain unchanged in the subsequent optimizations.

Effectiveness of Local Search

The next step is to demonstrate the effectiveness of the local optimization mechanism discussed in Section 2. The simulation result is computed with the same test surface shown in Figure 6 and the parameters setting (Tables 2 and3) as the original algorithm. Figure 8 shows the error distributions with and without applying the local optimization in the tool path generation. Each optimization is conducted for 20 random trials. The error amount produced by each search varies due to the stochastic nature of ACS. The graphs indicate that the error distribution in both cases is close to a normal distribution. The local search mechanism is validated with the above discussion.

[Insert Figure 8 about here]

[Insert Table 4 about here]

Comparison with Dynamic Programming

The last test is to compare the result with that produced by dynamic programming. All the test conditions remain the same, including the machining surface (Figure 6) and the parameters setting (Table 2). The dynamic programming algorithm used for the comparison can be referred to the previous work [START_REF] Wu | Optimized tool path generation based on[END_REF]. The objective function in all cases is to minimize the total machining error. As shown in Table 5, both the ACS algorithms (with or without local search) produces an error value higher than that of the previous method. However, it takes less than half of [Insert Table 5 about here] Note that we choose β=1 in the tests above, although β=2 gives a slightly better result (see Figure 7). Since the ASC algorithm is a computational process that employs a degree of randomness as part of its logic, a single run result like in this case does not guarantee that β=1 outperforms β=2 or vise versa. Table 6 shows the comparison of both settings in 20 trial runs without local search. The average error with β=1 is slightly greater than that of β=2, but the former produces a smaller value of the maximum value. Its standard deviation is also smaller. 6 about here]

Machining Experiment

We conduct a 5-axis machining experiment to validate the effectiveness of our method on reducing the machining error. A test ruled surface is cut twice with different tool paths. In the experimental condition, the surface is to be cut with the tool path generated by the ACS algorithm proposed by this work. In the control condition, the same surface is to be cut with un-optimized tool path, in which the cutter follows the surface rulings. Figure 9 shows the rule surface used in the experiment (different from the one in Figure 6) and the coordinates of the control vertices of the boundary curves (both cubic Bezier curve). The parameter settings in the ACS algorithm remain the same as Table 2.

[Insert Figure 9 about here] Each contact line generates a cutter location in the following manner. As shown in Figure 1, the cutter center point is determined by offsetting the point on the B curve (the lower one) along the surface normal with a distance of the cutter radius.

Offsetting the point on the other curve (the A curve in this case) produces another point in 3D space. The cutter axis is along the direction determined by the two offset points. A tool path is fully specified, i.e. the CL (Cutter Location) file is manifested, once every cutter location of the path has been generated in the above manner. The CL file is then converted into machine-specific NC codes by a post processor (PP). Figure 10 shows the cutter contact lines generated by the ACS algorithms with and without the local search. The better path will be used in the subsequent machining experiment.

[Insert Figure 10 about here] The experiment is conducted on a 5-axis CNC machining center DECKEL-MAHO DMG 60T with an ITNC 530 controller. The computed tool paths are first generated in the CL format from a C++ program integrated with the modeling kernel ACIS. They are then converted into NC codes input to the controller by a post processor program. The tool used in the experiment is a 2-mm (radius) straight ball-end milling cutter. It is designed for deep machining with a large aspect ratio. The total length of the cutter is 30 mm and the cutting edge is of 20 mm. The stock material is Epoxy, which produces light cutting loads. Cutting fluids is thus not needed. The experiment consists of the following steps:

Stock preparation: design the stock shape so as to ease the fixturing task and Rough cut: the rough cuts are conducted with the same tool. The radial depth of cut is 2 mm in each tool path, offset from the surface geometry. The feed rate is 280 mm/min and the spindle speed is 14000 rpm. The depth of cut preserved for the finish cut is 0.5 mm.

Finish cut: a fresh tool is used for this machining operation. The feed rate is increased to 3000 mm/min. The spindle rate is 14000 rpm. The finished part is shown in Figure 11.

[Insert Figure 11 about here] The machined part is then measured with a Zeiss TM UMC 850 3D measuring machine (CMM). The stock geometry contains three mutually orthogonal planes, x-y, y-z, and x-z. They have been precisely machined at the stage of stock preparation. The intersection of the three planes determines the measurement reference point (see point is calculated as the distance between the actual position probed by the machine and the ideal value in CAD. To sum up the errors at all the points gives the machining error of the surface.

Table 7 shows the measurement result. The machining error in the experimental condition is approximately 51% of the error amount of the control condition. This validates the effectiveness of the ACS algorithm on improving the machining quality.

As shown in Figure 10, the machining error can be reduced by following non-ruling lines or properly skipping sampled points in certain surface regions. Figure 12 shows the distributions of the measured errors on the two finished surfaces along the u and v directions. Not only is the total machining error reduced, but the maximal tool interference at single tool location is also decreased from 0.174 mm to 0.136 mm, approximately 22%. They are both overcut in this case.

[Insert Table 7 about here] Note that the measured errors do not numerically match the simulated errors in both conditions. This is mainly because that the way the CMM measures the error does not exactly correspond to the error estimation in the optimization process. The probing density of the CMM, restricted by the machine resolution, is lower than that of the optimization. The sampling locations are also different on the surface. We can

Conclusion

5-axis flank machining offers a productive way for material removal of complex geometry. However, to control the machining error in the flank milling operation is difficult. Tool interference inevitably occurs in the tool contact regions that are locally non-developable. Most past studies adjusted individual cutter locations with heuristics or analytic methods for reducing the tool interferences. These "greedy" approaches may not produce minimal machining error due to CNC interpolation when considering the error of the entire machining surface. Tool path generation of 5-axis flank milling must thus take a holistic approach that minimizes the error globally rather than locally. This work is the first attempt that proposes a solution for this based on the ant colony algorithm. The path planning task is transformed into the optimal mapping problem between the boundary curves of a ruled surface. Any connection between the curves determines a cutter location and the machining error that the tool induces at the location. We then propose an optimization scheme based on Ant Colony System (ACS) to compute the optimal combination of such connections that minimizes the machining error on the surface. A local search mechanism is included to improve the result by applying the ACS scheme to some surface region randomly generated. The minimal error produced by the optimal tool path is only 3.5% higher than that produced by dynamic programming but takes only half of the computational time. A test ruled surface was cut twice with different tool paths to verify the effectiveness of the ACS scheme. 3D measurement result shows that the amount of the machining error is only 51% of that generated by the tool moving alone the surface rulings. The maximal tool interference at individual cutter location is also decreased by 22%. This work provides an effective and systematic method of reducing the machining error in 5-axis flank milling of ruled surfaces. Future work is to expand the solution space in the optimization by allowing the tool contact lines not to lie on the machining surface.

It is also of a good potential to incorporate parallel processing techniques with meta-heuristics for further improvement of computational efficiency.

 the designed surface according to the predicted cutting errors.

 both curves. A point on a boundary curve may not be connected

 about here]

 is equal to the inverse of the corresponding error between nodes i and j.

 intermediate tool positions generated by linear interpolation of the tool center point and the tool axis at each cutter location. The cutter intersects the line segments at each position, thus updating the lengths of the intersected lines. The material left in the excess region after machining indicates undercut while the material removed in the gouge region suggests overcut.

 based on trial and error. Statistics-based approaches offer a rigorous but time-consuming way for determining these parameters. For example, conducting the simulations with DOE (Design of Experiments) techniques provides a systematic approach to setting the parameters. The process requires a large amount of computation, though. Since this work is not focused on optimizing the ACS algorithm, we adopt a simpler method instead. The value of each parameter is varied while the other parameters remain constant. The results are shown in the following graphs. The vertical axis in the graphs indicates the machining error, which is estimated as the summation of all the stock heights after machining. The parameters are chosen as:

 . It is clear that adding local optimization help reduces the error mean and standard deviations. The optimization with the local search outperforms the original algorithm for all the trials in this case. Besides, the corresponding best and worst solutions are smaller. It is also worth noted that adding the local search does not significantly increase the computational time (see the comparison in the later section).

 . Applying the local search improve the tool path. The corresponding error is merely 1.3% greater than that produced by the dynamic programming method. More importantly, performing local search in the ACS algorithm does not introduce a significant increase on the computational time. The result shows that the ACS-based tool path planning is quite effective on tradeoff between the machining quality and the computation time spent on the tool path generation. Note that in the test the estimation of the objective function, i.e. the machining error, needs a much longer time than the search process in the optimization.

Figure 11)

 11 Figure 11). It coincides the origin of the surface models in CAD. Each machined

 sampling conditions identical by decreasing the sampling density in the ACS algorithms, but doing so may deteriorate the optimum attained. The more sampling points in the error estimation, the closer to the actual machining error. From a practical point of view, it is not necessary to use the exact machining error as the objective in the optimization. An approximate error serves the purpose well as long as the machining error can be effectively reduced through the optimization process.[Insert Figure12about here]

Figure 1 :Figure 2 :Figure 5 :Figure 4 :Figure 7 Figure 8 :Figure 10 Figure 12 :

 1254781012 Figure 1: Machining error produced by 5-axis flank milling due to non-developability

ij (t):the heuristic other than pheromone trails for choosing paths • ρ:the evaporation rate of pheromone

	• •	X gb (t):global optimal solution f gb (t):the value of global optimal solution F o r
	•	P X ib (t):optimal solution in one iteration e
	•	f ib (t):the value of optimal solution in one iteration e r
	•	f k (t):the path traveled by ant k in the t-th iteration R
	•	τ ij (t):the amount of pheromone between nodes i and j in the t-th iteration, with e
		the initial value τ 0 at the beginning	v i e
				w
	•	P ij	k (t): the probability of ant k choosing node j when it is at node i in the t-th O n l
		iteration	y
	•	M ant : the number of total ants
	•	α: the weighting value for choosing pheromone trails
	•	β: the weighting value for choosing other heuristics
				8

• η

 Table 4 compares the means and the standard

Table 3 :

 3 Parameters setting in the ACS algorithms

	M ant α	β	ρ
	500 1.0 1.0 0.125

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.

uk International Journal of Production Research

	F o r
	P
	e
	e r
	R
	e
	v i e
	w
	O n l
	y
	44

Table 4 :

 4 Statistics of the machining errors with and without local search

		With local optimization Without local optimization
	Mean	9.554703	9.881245
	Std.	0.010711836	0.05976158
	Max.	9.56586	10.01235
	Min.	9.53432	9.87546

Table 6 :

 6 Performance comparison between the parameter settings β=1 and β=2

		β = 1	β = 2
	Mean	9.881245	9.826810
	Std.	0.05976158	0.0686151
	Max.	10.01235	10.74235
	Min.	9.87546	9.81335

Table 7 :

 7 Error measuring results

	Page 47 of 47		
		Simulated error	Measured error
	Experimental condition	22.3946	10.8664
	Control condition	64.3416	21.3383

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.

uk International Journal of Production Research

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.ukInternational Journal of Production Research