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This paper develops and analyzes several customer order acceptance policies to achieve high
bottleneck utilization for the customized stochastic lot scheduling problem (CSLSP) with
large setups and strict order due dates. To compare the policies simulation is used as main
tool, due to the complicated nature of the problem. Also approximate upper and lower bound
for the utilization are provided. It is shown that a greedy approach to accept orders performs
poorly in that it achieves low utilization for high customer order arrival rates. Rather, good
acceptance and scheduling policies for the CSLSP should sometimes reject orders to create
slack even when there is room in the schedule to start new production runs. We show that
intelligently introducing slack enables to achieve high utilization. One particularly simple
policy is to restrict the number of families present.

Keywords: Make-to-order production, order acceptance policies, customized stochastic lot
scheduling problem, SLSP, simulation.

1. Introduction

Scheduling the production of multiple standardized items on a single machine with
limited capacity and significant setup times under random demand is a classic
operations research problem. The setups are required to switch production from
one type of product to another, while at the same time any time spent on setups
wastes scarce capacity.

One approach to reduce the fraction of time spent on setups is to combine indi-
vidual orders with similar characteristics into production runs of a single product

family such that intra-family setups are relatively short while inter-family setups
are relatively long. Hence, production efficiency increases by spreading the inter-
family setup time over the orders within one run. However, the problem becomes
now to determine the size of these runs and the production sequence.

In situations that allow for make-to-stock production, for example when products
are sufficiently standard, family runs can be reasonably large since the stock serves
to decouple production from demand. Here the production control aims at using
the inventory as efficiently as possible to meet demand.

However, many production situations, for instance when final products are highly
customer specific, do not allow to use stock as a means to decouple demand from
production. Rather than make-to-stock, the production policy is now make-to-

order. The additional aspect of make-to-order considerably complicates the lot
scheduling problem, as now not only the utilization expressed as the fraction of
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orders served should be acceptable, also the due dates of the customers should be
met. We refer to this situation as the customized products stochastic lot scheduling

problem (CSLSP) with strict due dates, c.f. Winands et al. (2005).
One of the most interesting aspects of the CSLSP is to try to strike a balance

between the conflicting internal and external objectives of the production process.
On the one hand, since the loss of production time due to inter-family setups is
significant, quoting long lead times becomes tempting: the longer the lead times,
the more potential to combine orders into long family runs, hence the smaller the
setup loss. Moreover, long lead times act as a buffer to smooth demand fluctuations.
As such the lead times actually provide the advance demand information that
enables to efficiently combine orders. On the other hand, customers require short
lead times, immediate acceptance decision, and on-time delivery. Consequently,
customer service puts an upper bound on the lead times. Therefore, the main
problem for the CSLSP is to design a customer acceptance control policy that
respects on the one hand buyer-supplier relationships and on the other realizes an
acceptable utilization.

In this paper we develop and analyze several order acceptance control policies
that appear suitable for the CSLSP. These control policies try to accept orders
by positioning the orders into a schedule of finite length, which results from the
(finite) lead time of newly arriving orders. If an order cannot be scheduled, it is
rejected. Given the difficulty of the problem involved we use simple approximate
models and simulation to analyze the system behavior.

We first study a straightforward, greedy, control rule that tries to adjoin each
arriving order to a run of its family, when present. When such an insertion should
occur somewhere in the ‘middle’ of the schedule rather than at the ‘tail’, the in-
sertion pushes backward all jobs scheduled behind the ‘selected’ family run. This
is only allowed when the pushed back orders can still be produced in time. In case
this fails the greedy rule attempts to start a new family run at the end of the
schedule. When the schedule has sufficient room for the required setup and the
new order, the greedy rule accepts it. Although this greedy policy is appealing by
its simplicity, we show that it is not robust in that the realized utilization is quite
sensitive to the order arrival rate. In fact, for increasing arrival rates, the utilization
first increases, but after reaching a maximum it decreases.

To realize more robust performance, in the sense of being less sensitive to vari-
ations in the arrival rate, it turns out necessary to anticipate on future orders to
combine with already present family runs. We develop and analyze four different
modifications of the greedy policy to incorporate the required anticipation effect
in the acceptance policy.

The development and study of customer acceptance policies for the CSLSP gains
further motivation by pointing out that it is actually not so clear to what extent the
insights of the make-to-stock case to balance production objectives carry over to
the make-to-order case. First, the make-to-order environment uses an order accep-
tance function whereas the make-to-stock case does not. Second, the make-to-order
situation can use advance demand information, i.e., the positive lead-time between
the moment of arrival and delivery of an order, to schedule orders. Third, the major
performance indicators to evaluate the relevant scheduling policies are more or less
‘orthogonal’ for the two situations. The performance of policies for make-to-stock
situations is mainly expressed in terms of inventory cost and delivery reliability,
possibly combined with setup cost, whereas utilization is less important. Assum-
ing that orders are backlogged and that the system is stable the utilization must
equal the arrival rate of orders. As, typically, scheduling policies cannot change the
arrival rate, they cannot influence this utilization, making this is a less suitable
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performance measure. On the other hand, for make-to-order situations the major
performance metric is the utilization, i.e., the fraction of accepted orders, and the
service level, i.e., the fraction of orders delivered in time. Each of these measures can
be directly influenced by the order acceptance policy. Indeed, companies such as a
make-to-order tube mill, see, e.g., Schmidt et al. (2001), focus on the utilization.
Inventory cost, i.e., the cost of producing too early, is not the primary performance
measure to evaluate customer acceptance control policies, as this cost is rather
insensitive with respect to the choice of acceptance policy. When the utilization is
high, the schedule is usually near to full and the most urgent order of each run is
delivered just before its due-date. Only less urgent orders in one production run
build up inventories. However, producing early is the consequence of forming runs
of orders with different due dates. Inventories are as such inevitable for any policy.

The paper is organized as follows. Section 2 summarizes related literature. Sec-
tion 3 explains the model and the greedy policy. In Section 4 we derive approximate
lower and upper bounds on the resource utilization. In Section 5 we evaluate the
greedy policy. As alluded to previously, this policy performs poorly when the ar-
rival rate is high. Therefore, we investigate in Section 6 the performance of four
other customer acceptance control policies. Section 7 summarizes the results and
presents suggestions for further research.

2. Theoretical Background

The make-to-stock version of lot scheduling has received much attention in the
literature. Elmaghraby (1978) provides an overview of the case with deterministic
demand, i.e., the economic lot scheduling problem (ELSP), and Sox et al. (1999))
treats the case with stochastic demand, i.e., the SLSP. More recent overviews are
provided by Brander (2006) and Winands et al. (2005)

On the other hand, there is hardly any literature on the pure make-to-order
case of the SLSP, i.e., the customized products SLSP. Schmidt et al. (2001) and
Bertrand et al. (1990) study tube mills in which the make-to-order property is the
consequence of high variety in the last production stages and cyclic schedules con-
trol the mill. However, they do not discuss in detail the applied order acceptance
policies. Closest related is the work of ten Kate (1994, 1995) and Wester et al.

(1992) who compare order acceptance based on only aggregate information with
order acceptance that is fully integrated with scheduling. Van der Vaart and Wi-
jngaard (2007) consider the multi-machine situation and investigate the possibility
to dedicate machine capacity to specific families and reduce the multi-machine case
to the one-machine case. Kim and Oyen (2000) and Baker (1999) concentrate on
minimizing maximal lateness, but do not consider rejection as a strategy to meet
order due dates.

Polling models may seem an attractive approach to tackle the CSLSP, see, e.g.,
Federgruen and Katalan (1999) and Winands et al. (2005). Also interesting is the
random polling model with setups analyzed by Kleinrock and Levy (1988). A basic
assumption in these polling models is that the queue may have any length whereas
in our case the queue length is finite due to the committed due dates. Takagi (1991)
and Kim and Oyen (2000) study polling models in which the queue length for each
family is bounded. In our case the due date of each order may be interpreted as
putting a bound on the total queue length, rather than on the queue length of
each family. The former bound introduces interference between the queues of each
family, thereby considerably complicating the analysis.

Other queueing models in which the arrival and service rate depend on the work
load (or the queue length), see e.g. Bekker (2004), also do not cover the problems
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at hand as now the acceptance depends on the contents of the queue rather than
just the length.

There is also some research on hybrid situations (a combination between make-
to-order and make-to-stock), e.g., Soman et al. (2004), but because of the possibility
of building inventory in some products, these situations resemble more the make-
to-stock situation than the make-to-order situation.

We conclude that the CSLSP with setup times and strict due dates is theoreti-
cally and practically interesting, but no substantial model-oriented research on the
different aspects of this situation has been carried out as yet.

3. Model and Performance Measures

In Section 3.1 we introduce the simplest production system that features all the
problems of the CSLSP with strict due dates. Then, in Section 3.2 we present the
greedy control policy, according to which jobs will be accepted and released into
the system. Section 3.3 defines the performance measures of relevance.

3.1 The Production System

A single server resource receives orders arriving at rate λ in accordance to an
independent stationary Poisson process P (λ). Each arriving order belongs to one
of N product families with equal probability. Let Ai denote the arrival time of
order i and di = Ai + h its due date; the lead time h is the same for all orders.
Each order should be served before or at its due date.

The resource accepts or rejects orders according to some order acceptance control
rule, to be described below. When the resource is busy at an arrival epoch, it queues
any accepted order. The resource can serve one order per time unit, and delivers
every accepted order before its due date. As such the resource behaves as a single
server queue with maximal waiting time h. Between jobs of different families the
resource inserts a setup of duration s.

For later reference we use the shorthand (N,h, s) to characterize the production
system by its main parameter values. A (family) run is a set of consecutive jobs of
the same family.

We assume that the arrival rate is such that the resource is heavily loaded if
orders do not combine into family runs, that is, when a setup separates every two
orders whether the orders are of the same family or not. In such cases the amount
of work arriving per order is one unit of serve plus a setup, i.e., 1 + s, so that the
assumption on λ can be formulated as

λ(1 + s) > 1. (1)

3.2 The Greedy Acceptance Policy

Now that we have introduced the production system, we turn to describing the
greedy acceptance policy.

The greedy policy contains two order acceptance steps: the combine step and
the spawn step. In trying to accept a newly arriving order the resource first applies
the combine step. If this step rejects the order, the resource tries the spawn step.
If the order is also refused by this step, the resource rejects the order altogether.

To explain the acceptance steps, we refer to Table 1. The first step, i.e., combine,
aims at reducing the fraction of setups by trying to combine each order with the
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last run of the already accepted orders of the same family. For example, suppose
a ‘red’ order arrives. The schedule clearly contains two runs of the ‘red’ family, to
wit, at positions 1, 2, and 10. Since the schedule has two free places, the resource
accepts the new red order and schedules it at position 11, thereby enlarging the
second run of the red family. Suppose that, instead of being red, the new order is
blue. Then the resource tries to join the order with the run of its ’kin’ by scheduling
it at position 7, shifting the setup to 8, and the already present orders to positions 9
to 11. This is considered attractive (since it increases the effective processing time
of the server) as long as the shifted orders can be produced in time. However,
if one of the shifted order will be late, it is not allowed to insert this new order
at position 7. Now the resource applies the spawn step by trying to adjoin the
order to the end of the schedule so that it ‘spawns’ a new generation of its family.
This acceptance will necessarily introduce a setup between the last family and the
new order. Hence, the resource schedules the just arrived job at position 12 and
insert a setup at position 11. Thus, to accept such an order the schedule should
provide room for the setup and one order, as is the case in the instance of Table 1.
When there is only one place left, which would be the case if position 11 would be
occupied by a red job, the setup would shift the new order past its due date. When
this happens, the spawn step also rejects the order.

It is of interest to observe that the greedy policy not only accepts orders, but also
schedules accepted orders. In this sense, it would be perhaps more appropriate to
denote such a policy as an acceptance and scheduling policy. Furthermore, within
each run the combine step maintains the earliest due date first order, c.f. Baker
(1999) for some insights into the consequences for optimality.

1 2 3 4 5 6 7 8 9 10 11 12
R R s B B B s G s R

Table 1. An instance of a schedule of accepted orders. The symbols ‘R’, ‘G’, and ‘B’, refer to order colors,

‘s’ to setup. The size of the schedule is 12 positions.

3.3 Performance Measures

As explained in the Introduction, the utilization is the primary performance mea-
sure of interest, as by assumption all accepted orders are served before their due
dates. The utilization u is the fraction of time the server is working on jobs. Let
N(t) and S(t) denote the number of orders and setups served during [0, t], then,
since the service time per order is 1,

u = lim
t→∞

N(t)

t
= lim

t→∞

N(t)

N(t) + S(t)s
. (2)

The second equality follows from assumption (1), as the idle time is assumed neg-
ligible.

We are also interested in the long term acceptance probability p. Since the
resource serves every accepted order, the number of accepted orders equals the
number of served orders N(t). Hence,

p = lim
t→∞

N(t)

λt
. (3)
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Combining (2) and (3) gives

u = λp (4)

4. Approximate Bounds on the Utilization

It appears to be exceedingly difficult to provide an exact mathematical character-
ization of the dynamical behavior of the CSLSP, c.f.,Winands et al. (2005). We
therefore settle at deriving approximate lower and upper bounds of the utilization.
We derive these estimates under the assumption (1), i.e., that the combined work-
load of orders and setups is in excess of the capacity of the resource. These bounds
are of independent interest also, as the difference between these bounds provides
an estimate for the potential increase in utilization offered by the combine step.

4.1 Lower Bound

To obtain an approximate lower bound of the utilization, we propose, as an extreme
case, to make the combine step, explained in Section 3.2, so strict that it only
accepts orders at the tail of the schedule, and never ‘in the middle’. In this case
the queueing policy reduces to FIFO and family runs only originate at the tail of
the queue. This assumption minimizes the average run length, hence maximizes
the average number of setups present in the schedule.

To compute the resulting run length, proceed as follows. Suppose that at moment
t the resource starts a service, the last order is red, and the schedule is full. The
next order to be accepted must necessarily arrive after t + 1. Moreover, when this
next job belongs to another family it must arrive after t + s + 1. Thus, when no
red order arrives in the interval [t + 1, t + s + 1] any order arriving after t + s + 1
will be accepted in the schedule. Now

q = P (The next order belongs to another family)

= P (no red arrival during[t + 1, t + s + 1])P (next order is not red)

= e−λs/N N − 1

N
.

Since the run length of a family is geometrically distributed with probability 1− q,
the expected run length R = 1/q. Observe that a setup splits every two runs, so
that the minimal production efficiency becomes in analogy to (2),

umin ≈ min

{

λ,
R

R + s

}

= min

{

λ,
N

N + s(N − 1)e−λs/N

}

, (5)

as the minimal utilization can never exceed the total arrival rate λ of orders.

4.2 Upper Bound

At the other extreme, the combination gain is maximal if the combine step would
accept every order and simply ignore whether orders will shifted past their due
dates. As a consequence there will be at most one run of each family present in the
schedule.

To begin, observe that since every family run starts with a setup, the expected
number of setups present in the schedule should equal the expected number of
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present families. To compute this we proceed as follows. It is clear that the initial
Poisson arrival process P (λ) is thinned by the acceptance policy. Now we approxi-
mate this thinned stream as a Poisson arrival process P (λp) as with probability p
the order is accepted. Since on the long run each of the above policies is unbiased
towards family acceptance, the arrival process of a single family must then be well
approximated as P (λp/N). The probability that some family i is present equals the
probability q that the interarrival time Ti between two accepted orders of family i
is less that the length of the schedule, thus q = P (Ti ≤ h) = 1 − exp(−hλp/N).
As a second approximation we assume that the presence of some orders is of no
consequence to the presence of orders of other families. From this, then, it follows
that the number of families in the schedule is binomially distributed with parame-
ters N and q, the expectation of which is Nq. The operation is most efficient when
the schedule is full, so that of the h positions in the schedule Nqs are consumed
by setups, and the rest by orders. Consequently, the maximal utilization efficiency
umax = min {λ, (h − sNq)/h}, as the utilization can never exceed λ, that is

umax = min

{

λ, 1 −
sN

h

(

1 − e−hλp/N
)

}

.

On the other hand, by (4), we have that u = λp. Combining these two observations
into a single equation leads to a fixed point equation for p:

λ p = min

{

λ, 1 −
sN

h

(

1 − e−hλp/N
)

}

. (6)

That is, for given (reasonable) values of λ,N, h and s we solve (6) for p, and set
umax = λp. We occasionally write umax(N,h, s) to express explicitly the dependence
on the parameters N,h, and s.

4.3 Combination Potential

A reasonable estimate for the potential increase in utilization due to the the com-
bine step is the difference between (6) and (5), i.e., umax − umin. We refer to this
difference as the combination potential. Figure 1 gives an impression of the com-
bination potential for various values of h, N and s. Obviously, the difference is
considerable, thereby making a detailed investigation of an optimal acceptance
policy interesting.
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Figure 1. The upper and lower bounds on u as a function of lead time h, the number N of product
families, and setup time s, respectively. In all cases λ = 0.8. When N , s or h do not vary, they take the
values 8, 1 and 30.

By intuitive reasoning we derive that the combination potential should be a
decreasing function of N for N sufficiently large: there are simply too many product
families to form runs of interesting length. Also, when s is small the gain in forming
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combinations is small. These observations find further support from the following
limits of (5) and (6):

lim
N→∞

umax = lim
N→∞

umin =
1

1 + s
,

where the left equality follows from an expansion of (6) up to first order in N , and

lim
s→0

umax = lim
s→0

umin = 1.

5. Evaluation of the Greedy Policy

To evaluate the performance of the greedy policy we use simulations. The reference
situation is N = 8 product families, setup time equal to s = 1, and lead time h = 30.
The length of simulations is 100,000 time units, making the results reliable up to
±0.001.

Figure 2 shows some of the characteristic results for the utilization as a function
of the arrival rate λ. The left panel compares the utilization for the case (8, 30, 1)
to its approximate lower and upper bounds, c.f., (5) and (6). Clearly, we see that
by using the greedy control the utilization is not an increasing function of the
the arrival rate λ. In fact, for high arrival rates the greedy policy performs hardly
better than the approximate worst case behavior of (5).
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Figure 2. The utilization as a function of the arrival rate λ for the greedy policy for N = 8 and s = 1.

To analyze this substantial drop in performance in a larger context we varied the
lead time h from 10 to 100. The middle panel presents the results. Apparently, for
all values of h we see worst case behavior for large values of λ.

It appears that when λ is large an unacceptably large fraction of time is waisted
on setups. The reason is that the combine step cannot accept orders in the ‘middle
of the schedule’ to form long runs, because, roughly speaking, the schedule is full
with short runs. These short runs result from the fact that for high values of λ
any room originating at the tail of the schedule is rapidly filled by either orders or
setups. As a consequence most accepted orders have no or just small slack between
the delivery date and the due date, thereby making it impossible for the combine
step to squeeze in a new order. Actually, this type of acceptance behavior is at the
base of the lower bound (5).

One direction to mitigate the problem of only forming small runs is to extend
the lead time h. Indeed, the graphs in the middle panel show that this is effective,
however, only up to some point. When λ is large, relative to umax(h), the utilization
drops to worst case. To clarify this further, we show in the right panel the same
results as in the middle panel but now as a function of λ/umax(h). We see that
the larger h, the more sensitive is the utilization to λ in the neighborhood of umax.
From this figure we infer that umax is a critical threshold for the arrival rate.
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Simulations with various combinations (N,h, s) show similar behavior. This leads
us to conclude that the performance of greedy control is quite unsatisfactory and
that long lead times do not solve the problem. Consequently, trying to maximize
utilization for the short term is far from optimal. It may better to accept short
term penalties in the form of rejecting to orders to achieve high long term perfor-
mance. In other words, anticipating future combination possibilities with as yet not
available orders might lead to better results than the greedy policy, which focuses
on immediate customer satisfaction. This is the topic of the next section.

6. Four Alternative Acceptance Policies

The analysis in the previous section shows that the greedy policy fails because the
spawn step accepts orders too easily when the arrival rate is high. To repair this
flaw in the acceptance policy we propose to extend the spawn step with additional
rules, which we present in section 6.1. The resulting heuristics for order acceptance
aim to protect the combination potential that the combine step tries to exploit.
We evaluate these heuristics in section 6.2 to see whether the adapted acceptance
policies strike a good balance between the combine and the spawn step.

6.1 Improved Acceptance Policies

The problems with the greedy policy as outlined above leads us to investigate four
alternative acceptance policies that enable to accept a larger fraction of orders in
the combine step by making the rules at the spawn step stricter. Thus, all four
policies keep the combine step but differ in the precise rules of the spawn step.
Here the description of these steps is rather informal. In Section A we present the
details.

The spawn step of the setup policy is the simplest. An order is accepted at the
tail of the schedule if the greedy policy would accept it and it the number of setups
present in the schedule at arrival time is less than or equal to some threshold S.

The spawn step of the time distance policy only accepts an order at the tail if the
order can be delivered ch time units before its due date. This creates a distance slack

ch. We infer that there is some optimal c ∈ [0, 1], which we motivate as follows.
The larger the distance slack ch, the more potential for future combinations. On
the other hand, if c = 1 the spawn step will only start a new run when the schedule
is empty, so that the fraction of idle time of the resource is no longer negligible.
Observe that if c = 0 the slack policy reduces to the greedy policy.

The generation distance policy maintains a minimal distance between two sub-
sequent generations of the same family. The spawn step in this case only accepts
an order if a new family run does not get closer than the generation slack dh to
the start of the last run of the same family. If d = 1, there are no two runs of the
same family in the schedule; if d = 0 we have the greedy policy again.

The cyclic policy protects the distance in the same way as the generation distance
policy, but also guarantees a fixed cyclic order. Here the spawn step tries to insert
an order at some position p between two adjacent runs if the fixed cycle order
requires this. When this is not possible because an accepted job will be late, the
spawn step accepts the order to form a new run at the end of the schedule provided
the time between the preferred position p and the end of the schedule is less than
dh. Note that the case d = 0 does not reduce the cyclic policy to the greedy policy,
as the cyclic spawn step is allowed to insert new family runs in the middle of the
schedule, rather than only at the end.
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All four rules provide the possibility to anticipate on future combination pos-
sibilities. Time distance control anticipates directly by adding a new run only if
the order starting that run has some slack, controlled by the parameter c, between
scheduled delivery time and committed due time. The other policies anticipate in-
directly by restricting the number of runs in total (setup) or per family through a
proper choice of d (generation and cyclic).

6.2 Evaluation

In this section we investigate the performance of the above four policies by simu-
lation. As in Section 5 the reference case is (8, 30, 1). Appendix B provides results
for various other combinations of (N,h, s). The results shown there support the
observations made here.

Figure 3 contains the graphs of the utilization u for the policies and various
choices of the controls as a function of λ ∈ [0.5, 1.3]. We include as a reference
the performance of the greedy policy as the cases c = 0 and d = 0 for time and
generation distance, respectively.

The first observation is immediate: the striking improvement in utilization
achieved by the four policies as compared to the greedy policy. For instance, around
λ = 0.8 the utilization increases by approximately 10%. Secondly, the adapted
policies are much more robust to changes in the arrival rate, provided the control
parameters are chosen appropriately. Thirdly, there is not a single value of c, or
S, for the time, or setup, policy that gives (near to) optimal performance for the
entire range of λ. On the other hand, generation and cyclic control work (nearly)
optimal with maximal slack, i.e., d = 1.0.
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Figure 3. The utilization as a function of the arrival rate λ for the four acceptance policies with various
values of the protection factors for (N, h, s) = (8, 30, 1). The straight line y = x represents the zero loss
situation; hence the difference between the graphs for the policies and this line shows the fraction of lost
orders.

A particularly relevant range for λ, from the practical point of view, is around
umax, which is approximately 0.75 for the present case (8, 30, 1). By varying λ from
0.6 to 0.8 it appears that the (near to) optimal control values are c = 0.2, d =
1, S = 6, d = 1 for the time, generation, setup, and cyclic policy, respectively. Fig-
ure 4 shows the utilization for the four policies with the above values for the control
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Figure 4. The utilization as a function of the arrival rate λ for the time policy with c = 0.2, generation
with d = 1, setup with S = 6, and cyclic with d = 1.

parameters. The graphs show that time distance control leads to the highest uti-
lization of all four policies, setup and generation are very close, except for relatively
high values of λ, and cyclic performs worst. These results support the claim that
the inflexibility resulting from producing according to a fixed cycle is somewhat
costly. Thus, cyclic control appears to be only interesting if production regularity
is important, which is typically the case if the fixed cycle is communicated to the
customers so that they might be willing to adhere to this cycle and accept longer
lead times to compensate for the performance loss. In case it is not possible to
develop a close relationship with customers, the other three policies appear more
interesting.

As a second step we investigate the dependence of the utilization u for the dif-
ferent policies for different values of h, N and s, just as in Figure 1. For all combi-
nations we solve (6) for the largest λ such that the acceptance probability p ≤ 1.
Clearly, this critical arrival rate equals umax(N,h, s). For time and generation dis-
tance, and cyclic, we take c = 0.2 and d = 1. The setup threshold S must of course
depend on N and h. Some experimentation showed that taking S as the integer
part of N exp (umaxh/N) − 1, compare the derivation of (6), is (near) to optimal.
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Figure 5. The utilization as a function of N , h and s while the arrival rate λ = umax varies according
to the choice of (N, h, s). The top graph (with index up) corresponds to umax.

In the plots we see that umax captures the trends of the simulations very well;
the actual results are about 5% less than umax.

Generation distance and setup perform well over the entire parameter regions.
Interestingly, for larger lead times, time distance with c = 0.2 has a lower utilization
than the other policies. Other simulations (the explicit results are not included)
show that c = 0.2 is too small for large lead times. By taking c larger for larger
h time distance gives the same results as generation and setup. It would be of
interest to find analytical methods to obtain good estimates for c as a function of
h. Finally, the cyclic policy never achieves better utilization than the other policies
with good control values, but when N is small, or h large, it is nearly as good.

7. Summary and Conclusions

In this paper we develop and analyze customer order acceptance policies to achieve
high bottleneck utilization for the customized SLSP with setups and strict order
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due dates. To benchmark the performance of the policies we derive an approximate
upper and lower bound for the utilization. The former bound is also an upper bound
on the arrival rate if zero loss if required. To compare the policies we use simulation,
as a detailed analysis appears very complicated.

The order acceptance policies apply two subsequent steps to accept and schedule
orders. The combine step, which is the same for all policies, tries to adjoin arriving
orders to runs of the same family type. This is acceptable as long as orders that are
pushed back due to the insertion will not be late. The details of the spawn steps
differ among the policies.

The spawn step of the greedy policy accepts orders whenever possible. It turns out
that this policy performs poorly: when the order arrival rate is high the utilization
decreases to worst case. The reason is that this greedy strategy does not introduce
slack in the schedule, so that future orders cannot form runs of considerable size.
This observation leads us to infer that a good spawn step should sometimes reject
orders even when there is room at the tail of the schedule, with the aim to protect
the combination potential for future arrivals.

We then compare four policies that introduce the required slack in different ways.
The time distance policy rejects orders that cannot be served within (1− c)h time
units of their due date, thereby maintaining an amount ch of slack in the schedule.
The generation distance policy introduces slack in the schedule by preventing runs
of the same family to get closer than dh time units. The setup policy only accepts
new family runs when the number of setups present is less then some threshold.
Finally, the cycle policy is a variant of the generation distance policy that also tries
to maintain a fixed production cycle.

Our main observation is that the time distance, generation distance and setup
policy achieve high utilization, provided the control values are chosen properly,
while the cyclic policy performs somewhat less. Moreover, the performance of these
policies is not sensitive to variations in the arrival rate, in contrast to the greedy
policy. Overall, we conclude that intelligently adding slack is good strategy to
exploit the combination potential.

We envisage various ways to extend the present work. Firstly, we conjecture that
introducing slack into the schedule is also necessary in more realistic, and hence
more complicated, make-to-order situations with large setup times at a bottleneck
resource. Simulations with non-identical product families provide some support for
this conjecture already.

Our assumption that the resource is completely reliable enables us to use de-
terministic policies to schedule and accept orders. Whether such policies perform
sufficiently well in the presence of random fluctuations in for instance processing
and setup times remains for further research.

A general investigation of the influence of the policies on fairness when the re-
quirements of the families may differ is also important. Suppose, for instance, that
the lead time of one family is twice that of the other families, i.e., 2h rather than
h. Clearly, this family does not have to compete for the schedule capacity in the
interval [t+h,t+2h].

When the orders can be served by multiple resources, rather than one, many
new problems come into play. Designing good customer acceptance control policies
becomes now very challenging as the policy should also incorporate a production
allocation decision, c.f. Van der Vaart and Wijngaard (2007).
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Appendix A. Policy Details

Here we describe the customer acceptance control policies in detail. First we need
some notation. A job of family r with lead time h arrives at time t at the resource,
requires 1 time unit of service, and introduces s time units of setup if it spawns
a new family run. The schedule contains n jobs with scheduled delivery times
t < t1 < t2 < . . . < tn and due dates d1 < d2 < . . . < dn. Obviously, ti ≤ di ≤ ti +h
for all i. Let fj denote the family of job j. Define R(r) = {i | fi = r}, i.e., the set
of jobs of family r present in the schedule. Let jr be the index of the last job of
family r, i.e., for all i ∈ R(r), ti ≤ tjr

.
The acceptance procedures we consider in the paper consist of the application of

Page 13 of 16

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

19th August 2008 11:46 International Journal of Production Research oneMachine

14 N.D. van Foreest et al.

the following set of subsequent steps.

(1) An order at an empty schedule is always accepted. A setup is inserted if
the family of the order is different from the family of the last departure.
(2) Tail check 1: Check whether the order fits in the schedule at the tail. If
successful, continue with the next step, otherwise reject the order.
(3) Apply the combine step (to be explained below). If successful, accept the
job, otherwise proceed to the next step.
(4) Tail check 2: Check whether a setup and the order fit in the schedule at the
tail. If successful, continue with the next step, otherwise reject the order.
(5) Apply the spawn step (to be explained below). If successful, accept the job,
otherwise reject it.

The first tail check involves to see whether the order fits in the schedule at all.
Suppose it would join the end of the schedule. If its due date t + h is smaller than
its potential departure time tn + 1 the order cannot be served in time, nor can it
be inserted at any other position in the schedule, as necessarily another job will
then be late. Hence, the order must be rejected in this case.

The combine step accepts the arriving order of family r if inserting it at the
end of the run of its family will not delay the present jobs too much. In formal
terms, the order is accepted whenever R(r) 6= ∅ and tk +1 ≤ dk for all k such that
jr < k ≤ n.

The second tail check precedes the spawn step. As the combine step failed, the
insertion of the order will necessarily insert a setup at some position in the schedule.
Therefore we first check whether the latest possible departure time of the order is
smaller than the due date, i.e., tn + s + 1 ≤ t + h.

The details of the spawn step depend on the actual policy. The setup policy
is particularly simple. Whenever the number of setups present in the schedule, or
equivalently, the amount of time spent on setups, does not exceed some threshold S
the order is accepted. The time distance policy requires the presence of some slack
at the end of the schedule in order to let the job spawn a new family run at the
end of the schedule. More specifically, accept when the departure time tn + s+1 ≤
t + (1− c)h. When c = 0 this case reduces to the greedy policy, as t + h is the due
date of the order. Observe that the order with the setup will fit into the schedule,
for to arrive at Step 5 it is necessary to pass Step 4. The generation distance policy
requires that subsequent family runs are not too near to each other. Formally,
accept if R(r) 6= ∅ and tjr

≤ t + (1 − d)h, or accept as in the greedy policy if
R(r) = ∅.

The details of the cyclic policy are slightly more complex than the other policies.
In simple terms it tries to maintain a cyclic production scheme. An example serves
perhaps best to clarify the rule. Suppose the families in the schedule are ordered
as 6, 1, 4, and an order of family 7 arrives. To maintain a cyclic order we would
like to insert this order between the families 6 and 1. In detail, we first look up the
job k after which the arriving order of family r should be inserted according to the
cyclic scheme, that is, we search for the first job k, starting from the last job in
the schedule (which is of family fn) such that

(fk + N − 1 − fn) mod N ≤ (r + N − 1 − fn) mod N. (A1)

Insertion behind job k is allowed if tj+s+1 ≤ dj for all j such that k < j ≤ n. If this
insertion fails, the job is adjoined to the tail of the schedule when tk ≤ t+(1−d)h.
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Appendix B. Additional Figures

Figures B1, B2, B3, and B4 provide further support for the observations made
in Section 6. In the first set of systems ((4, 30, 2) and (16, 30, 0.5))) and second
set (((8, 15, 0.5) and (8, 60, 2)), respectively, we leave Ns and h/s, respectively,
unchanged.
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Figure B1. The effect of the protection factor for the system (4, 30, 2).
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Figure B2. The effect of the protection factor for the system (16, 30, 0.5).
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Figure B3. The effect of the protection factor for the system (8, 15, 0.5).
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Figure B4. The effect of the protection factor for the system (8, 60, 2).
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