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A New Multinomial Model and a Zero Variance

Estimation

Luciana Dalla Valle∗, Fabrizio Leisen†

January 22, 2010

Abstract

The analysis of categorical response data through the Multinomial model is very
frequent in many statistical, econometric and biometric applications. However, one of
the main problems is the precise estimation of the model parameters when the number
of observations is very low. We propose a new Bayesian estimation approach where
the prior distribution is constructed through the transformation of the Multivariate
Beta of Olkin and Liu (2003). Moreover, the application of the Zero-Variance principle
allows us to estimate moments in Monte Carlo simulations with a dramatic reduction
of their variances. We show the advantages of our approach through applications to
some toy examples, where we get efficient parameter estimates.

1 Introduction

Our aim is to introduce a new model for independent and identically distributed tri-
als with more than two possible outcomes and to find out more efficient parameter
estimates for this model.

The usefulness of such a model is proved by the number of applications in different
fields, such as economics, statistics and biometrics. Examples include vote choice in
multi-party elections, choice of product in consumer choice models, choice of location
for foreign direct investments by companies and the effect of risk factors for patients
affected by a certain disease. For example, in the paper by Albert and Chib (1993),
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the authors predict the Carter/Ford vote in the 1976 US Presidential election using
socioeconomic and regional variables. Moreover, the work of Kamakura et al. (1996)
finds out consumer segments of households on the basis of their preferences toward
different brands of peanut butter. Then, in order to determine the preferred foreign
direct investments entry strategies in China, Wei et al. (2005) analyze data about more
than 10000 foreign investment projects. At last, in the paper by Fine et al. (2004)
the risk factors (as smoking and drinking) that mainly contribute to chronic disease
prevalence are identified.

As it is well known, the general model for polychotomous data is the Multinomial,
a distribution used to describe a wide variety of phenomena. From a Bayesian perspec-
tive, the most popular prior for the Multinomial is the Dirichlet distribution, which is
the conjugate prior.

We may cite a number of works applying this type of model. Gelman et al. (2004),
for instance, apply the Multinomial-Dirichlet model to a sample survey question with
three possible responses about the preferences in the US presidential elections of 1988.
Rannala and Mountain (1997) employed the model for a population genetics problem,
where genotypes were used to identify individuals who are immigrants, or have recent
immigrant ancestry. Moreover, applications to sampling theory can be found, for
example, in Brier (1980), who used the Multinomial-Dirichlet distribution for cluster
sampling to take into account the similarity of responses of members of the same cluster.
The Multinomial-Dirichlet model was also implemented in marketing applications, as
in Goodhardt et al. (1984), where the aim was to model buyers behavior and their
choice among different product brands.

Moreover, the Dirichlet distribution was commonly used as a prior for samples
generated by the Multinomial density with unknown number of categories and unknown
probabilities, as illustrated in Boender and Rinnooy Kan (1987). The model is also a
useful tool in case of ”extra variation” or ”overdispersion”, as pointed out by Morel and
Nagaraj (1993). More recently, Seaman and Richardson (2001 and 2004) analyzed case-
control studies with a retrospective likelihood and a Dirichlet prior for the exposure
probabilities in the control group.

Efforts to propose alternative priors to the Dirichlet distribution are not very fre-
quent in the literature. For example, the logistic-normal distribution may be seen as
a substitute for the Dirichlet prior to model contingency table data as well as for the
analysis of compositional and probabilistic data, as advised by Aitchison and Shen
(1980).

In this paper we propose an alternative prior for the Multinomial Model. This prior
is constructed with the multivariate Beta distribution of Olkin and Liu (2003), with
a construction method that resembles the stick breaking construction of the Dirichlet
Process introduced by Ferguson (1973). Indeed, the Dirichlet Process could be defined
through a random probability measure p̃ =

∑∞
i=1 piδxi where the weights pi are equal
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to Vi

∏i
j=1(1− Vj) with V1, ..., Vn, ... i.i.d. Beta(1,α), α > 0. For an account on the so

called stick breaking priors see Ishwaran and James (2001).

The resulting posterior distribution generated by this proposal prior has some at-
tractive properties compared to the traditional model and it is particularly adequate
to some applications we illustrate in the following sections, where we study the char-
acteristics and the behavior of the new Multinomial model. The estimation of the
parameters could be done with an independent Metropolis-Hastings algorithm intro-
duced by Metropolis et al. (1953) and improved by Hastings (1970). However, with
very few data, the problem of a precise estimation of the parameters is of particu-
lar concern, and a simulation with the Metropolis-Hastings algorithm could be not
enough for having a good estimation of the parameters of the new multinomial model.
An improvement for the estimation could be achieved through the so called Variance
Reduction techniques. In the Markov Chain Monte Carlo setting a typical way for do-
ing this is to choose in the simulation an updating law that gives rise to a sample with
the lowest asymptotic variance. In the paper of Peskun (1973) a simple rule on the
transition matrices is given in the discrete setting for choosing a transition rule with a
low asymptotic variance. More recently, Hobert and Marchev (2007) shown that the
transition rule of a new class of data augmentation algorithms has a lower asymptotic
variance than the usual data augmentation algorithm.
Another way for achieving a better variance is by changing the estimator of the param-
eter but not a lot of papers in the statistical literature are devoted to this reduction
strategy. In Casella and Robert (1996) a ”Rao-Blackwellizzation” is used for obtaining
better estimates and Delmas and Jourdain (2006) used the ”Randomness Recicle” idea
for improving the variance. In this paper this strategy is followed and in particular we
use the Zero Variance Principle introduced by Assaraf and Caffarel (1999) for estimat-
ing the parameters when we have few data. Their machinery is a quite general way of
constructing estimators with better variance and here it is applied to samples of the
new multinomial model generated with the independent Metropolis Hasting Algorithm.

The paper is organized as follows. Section 2 introduces the Multinomial-Dirichlet
model. Section 3 illustrates in detail the methodology we propose, analyzing the con-
struction of the prior and the derivation of the posterior distribution. Section 4 de-
scribes the simulation methods we adopted to estimate the model parameters and
outlines the application of our model to some toy examples, showing the simulation
results. In Section 5 the definition of the Zero Variance principle is given, focusing
on the continuous case. In section 6 the application of the Zero Variance principle
is illustrated, with a comparison between the Multinomial-Dirichlet and the proposed
model. Finally, remarks and conclusions are given in Section 7.
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2 The Multinomial-Dirichlet Model

Suppose to have categorical dependent variables with more than two response cate-
gories and that the outcomes fall into one of these categories. Let Ω be the sample
space with exaustive and mutually exclusive elements {ω1, ω2, . . . , ωn}, where n ≥ 2,
and suppose that each observation falls into one category ωi (for i = 1, . . . , n). Suppose
to have N independent trials from Ω with identical probability distribution P (ωi) = θi,
for i = 1, . . . , n where θi ≥ 0 and

∑n
i=1 θi = 1 (Walley (1996)). Then let the random

variables Xi denote the number of observations of category ωi over the N trials. The
vector X = (X1, . . . , Xn) follows a multinomial distribution with parameters N and
(θ1, . . . , θn) (see Balakrishnan et al. (1997)). The likelihood function of the Multino-
mial distribution is the following:

L(x1, . . . , xn|θ1, ..., θn) =
(

n
x1 . . . xn

) n∏
i=1

θxi
i ,

where Xi is a non negative integer (i = 1, . . . , n) and
∑n

i=1Xi = N .
From a Bayesian perspective we need to elicitate the prior distribution for the

vector (Θ1, . . . ,Θn) (Berger (1985)). Assuming that this distribution is denoted by
h(θ1, . . . , θn), according to Bayes’ theorem the posterior density function for the model
is, up to a normalizing constant:

π(θ1, . . . , θn|x) ∝
(

n
x1 . . . xn

) n∏
i=1

θxi
i h(θ1, . . . , θn). (1)

The most popular choice for the joint density of the vector (Θ1, . . . ,Θn) is the Dirichlet
distribution, which is the conjugate prior. If (Θ1, . . . ,Θn) ∼ Dirichlet(α1, . . . , αn),
then the probability density function is:

h(θ1, . . . , θn) ∝
n∏
i=1

θαi−1
i .

As it is well known, this choice of prior distribution for h(θ1, . . . , θn) gives us a posterior
which is again a Dirichlet with parameters (α1 + x1, . . . , αn + xn), taking the form:

π(θ1, . . . , θn|x) ∝
n∏
i=1

θαi+xi−1
i .

This is called the Multinomial-Dirichlet model (Ghosh et al. (2006)). This distribution
should not be confused with Dirichlet-Multinomial originally proposed by Mosimann
(1962) as Compound Multinomial distribution.

4
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3 The new Multinomial model

In order to define a new Multinomial model, we propose a new prior distribution for
Θ = (Θ1, . . . ,Θn).

The vector Θ = (Θ1, . . . ,Θn) is a vector of probabilities with the usual linear
constraint Θ1 + . . .+ Θn = 1. Without loss of information the dimensionality of Θ can
be reduced by removing its last component Θn. Note that (Θ1, . . . ,Θn−1) takes values
in this set {

(y1, . . . , yn−1) :
n−1∑
i=1

yi ≤ 1

}
.

Let g(θ1, . . . , θn−1) be the density of the random vector (Θ1, . . . ,Θn−1). Since θn =
1−

∑n−1
i=1 θi, we can rewrite equation (1), the posterior distribution, as:

π(θ1, . . . , θn−1|x) ∝
(

n
x1 . . . xn

)(
1−

n−1∑
i=1

θi

)xn n−1∏
i=1

θxi
i · g(θ1, . . . , θn−1). (2)

Therefore, to calculate the posterior π(θ1, . . . , θn−1|x), we have to determine the
prior distribution g(θ1, . . . , θn−1). In order to do that, we introduce the random vector
(V1, . . . , Vn−1), which is distributed according to the Multivariate Beta of Olkin (see
Olkin and Liu (2003)). The density of (V1, . . . , Vn−1) is the following:

f(v1, . . . , vn−1) ∝
∏n−1
i=1 v

ai−1
i∏n−1

i=1 (1− vi)ai+1

[
1 +

n−1∑
i=1

vi
1− vi

]−a
(3)

where (v1, . . . , vn−1) ∈ [0, 1]n−1 and (a1, . . . , an−1) are the parameters of the Multivari-
ate Beta distribution, with a1, . . . , an−1 > 0 and a =

∑n−1
i=1 ai.

Then we define the vector (Θ1, . . . ,Θn−1) according to the Stick Breaking transfor-
mation, as in the following:

Θ1 = V1

Θ2 = V2(1− V1)

. . . = . . .

Θn−1 = Vn−1

n−2∏
i=1

(1− Vi)

and finally

Θn = 1−
n−1∑
i=1

Θi.

5
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Note that Θn =

∏n−1
i=1 (1 − Vi). Since Vi ∈ [0, 1], this implies that

∑n−1
i=1 Θi ≤ 1.

About this transformation see also Kotz, Balakrishnan and Johnson (2000). After
some algebra, the prior g(θ1, . . . , θn−1) is:

g(θ1, . . . , θn−1) ∝
n−1∏
i=1

 θai−1
i(

1−
∑i

j=1 θj

)ai+1

1−
i−1∑
j=1

θj


 ·
[

1 +
n−1∑
i=1

θi

1−
∑i

j=1 θj

]−a
.

At last we determine the form of the posterior distribution π(θ1, . . . , θn−1|x) gen-
erated by the prior defined above, according to equation (2):

π(θ1, . . . , θn−1|x) ∝

(
1−

n−1∑
i=1

θi

)xn [
1 +

n−1∑
i=1

θi

1−
∑i

j=1 θj

]−a
·

·
n−1∏
i=1

 θai+xi−1
i(

1−
∑i

j=1 θj

)ai+1

1−
i−1∑
j=1

θj


 .

(4)

Equation (4) represents, with the appropriate normalizing constant, the proposed new
Multinomial model.

4 Estimation of model parameters and applica-

tions

Now our aim is to estimate the parameters of the new Multinomial model.
The posterior distribution of equation (4) is known up to a normalizing constant

that is not possible to compute. One of the algorithms that allows to sample from a dis-
tribution without the knowledge of the normalizing constant is the Metropolis-Hastings
(M-H) algorithm (Hastings, 1970). In particular for sampling from the distribution of
equation (4) we use a version of the M-H algorithm that is called Independent Metropo-
lis Hastings algorithm. The n-th step of this algorithm works as follow. Suppose that
Xn = x and that π is the distribution that we want to sample, known up to a normal-
izing constant (usually is called target distribution). A distribution q from what we are
able to sample is chosen (usually is called proposal distribution). Hence,

1. A point y is sampled from q

2. The so called acceptance probability is computed:

A = min
{

1,
π(y)q(x)
π(x)q(y)

}

6
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3. With probability A the point y is accepted and Xn+1 = y. Otherwise, with

probability 1−A the point y is rejected and Xn+1 = x.

In the case of equation (4) we choose a Dirichlet proposal with parameters (α1, . . . , αn):

q(θ1, . . . , θn) ∝ θα1−1
1 · θα2−1

2 · . . . · θαn−1
n

where a convenient choice in terms of calculations for (α1, . . . , αn) is the following:

α1 = a1 + x1

α2 = a2 + x2

. . . = . . .

αn−1 = an−1 + xn−1

αn = xn − an−1. (5)

Note that the determination of the acceptance probability requires rewriting the
posterior as a n-dimensional density.

In order to study the behavior of our model compared to the traditional Multinomial-
Dirichlet model, we apply it to two toy examples.

1. The first example considers a total of N = 18 categorical response data, observed
in n = 4 possible outcomes, where N is the number of trials and n is the number
of categories. Data are denoted by x = (x1, x2, x3, x4), where xi (i = 1, . . . , n)
represents the number of observations over the N trials that falls into the i-th
category. In this example suppose that x = (2, 3, 4, 9), meaning that 2 observa-
tions of the 18 trials fall into the first category, 3 observations of the 18 trials fall
into the second category, and so on. Moreover, let a = (a1, a2, a3, a4) denote the
hyperparameters vector of the Multivariate Beta prior distribution (3). Here we
assume that the vector a takes the values: a = (1, 1, 0, 0). Note that (recalling the
definition of the Dirichlet proposal (5)) this choice of hyperparameters is suitable
for a comparison of the Multinomial-Dirichlet with the new Multinomial model.

2. The second toy example is based on the data provided by Engeman and Swan-
son (1991) from a 2 × 2 contingency table. They are mortality data from two
anaesthesia techniques for elderly patients receiving emergency hip surgery. Here
the categorical response data are N = 76, observed in n = 4 possible outcomes.
Data are denoted by x = (34, 3, 30, 9) and the Multivariate Beta hyperparameters
vector is denoted by a = (1, 1, 0, 0), like in toy example 1.

7
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Figure 1: Sample paths for toy example 1

4.1 Simulation results for the first toy example

Figure (1) shows the sample paths of the four parameters (θ1, . . . , θ4) from top to
bottom. These are the plots of the random variables being generated versus the number
of iterations. This plot is helpful not only to understand if the chain can move around
the state space, but also to assess the convergence to the target distribution. As we
can see from the figure, the chains of all parameters are well mixing, since there are
no flat periods and the jumps are not too close. In fact, flat periods indicate that
the proposal generates candidate observations that are too often rejected, while very
close jumps denote that candidate observations are too often accepted, suggesting in
both cases that the proposal is not suitable to describe the target distribution and
that there is not convergence to the target itself. However, in our case the chains mix
very well, exploring freely the parameter space and being centered in correspondence
to the parameter estimate, showing in this way convergence to the target distribution.
We run 10000 iterations, after discarding 1000 values as burn-in period, considering
in this way only the elements approaching to the chain’s stationarity. The acceptance
rate is 0.84164, which is satisfactory as stated by Besag et al. (1995), suggesting an
acceptance rate between 20% and 80%.

Another test to assess whether the sample has reached its stationary distribution
is given by autocorrelations (Gelfand and Smith, 1990). Generally, we expect observa-

8
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Figure 2: Autocorrelation plots for toy example 1

tions generated through the Metropolis-Hastings algorithm to be positively correlated,
but this correlation has not to be too high. We can quantify this correlation by using
an autocorrelation function. This helps us to detect lack of convergence in situations
where the sample trace appears to be well mixing, but small jumps induce autocorre-
lations between successive observations. Considering a sequence θ1, . . . , θn of length n,
ρk(θi, θi+k) is the k-th order autocorrelation between observations θi and θi+k, where
k is the time lag. The k-th order autocorrelation can be estimated by ρ̂k = Cov(θi,θi+k)

V ar(θi)
.

Autocorrelation plots show the k-th order autocorrelation as a function of the time
lag k. Figure (2) shows the autocorrelation plots for the parameters estimated in toy
example 1. For all the four parameters (θ1, . . . , θ4) autocorrelations is very close to
zero indicating stability of convergence to the target distribution.

4.2 Simulation results for the second toy example

In the second toy example, as in the previous case, we run 10000 iterations, after a
burn-in period of 1000. In figure (3) the sample paths of the parameters (θ1, . . . , θ4)
are displayed form top to bottom. The acceptance rate of the algorithm is 0.73273,
lying perfectly in Besag’s interval [20%; 80%] (Besag et al., 1995). Again the picture
shows well-mixing chains, that converge to the target distribution.

9
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Figure 3: Sample paths for toy example 2

Figure (4) illustrates the autocorrelations for the second example. Results are good
and suggest stable convergence.

5 The Zero Variance Principle

Now our purpose is to get more efficient estimates of the model parameters. This
problem is particularly important when the number of observations is very low, as in
many applications of the Multinomial model. The Zero Variance Principle allows us
to construct a different estimator with the same mean but with a huge reduction of
the variance.

Suppose that X1, ..., Xk is an i.i.d. sample from a probability distribution π defined
on a space E ⊂ Rn and let f be a real function defined on E, then, under suitable
conditions, an estimator of

Eπ(f) =
∫
E
f(x)π(x)dx

is the empirical mean

Sn(f) =
1
k

k∑
i=1

f(x). (6)

10
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Figure 4: Autocorrelation plots for toy example 2

Assaraf and Caffarel (1999) have introduced a technique to estimate more efficiently
moments in Monte Carlo simulations. The idea is to construct an estimator of the
moments Sn(f̃) through a function f̃ with the following properties: i) Eπ(f) = Eπ(f̃),
ii) σ2

f ≤ σ2
f̃
, where σ2

f , σ2
f̃

are the variances with respect to π, respectively of f and f̃ .
Therefore, instead of reducing the estimator variance by changing the updating law

of the Markov Chain, Assaraf and Caffarel (1999) suggest to modify the estimator by
replacing the function f with f̃ . In this way, the expected values of f and f̃ are equal,
but the variance of f̃ is always lower.

In order to construct f̃ , the Zero Variance principle requires the definition of an
operator H and a function ψ. H has to be an hermitian operator and it has to satisfy
the following equation: ∫

H(x, y)
√
π(x)dx = 0.

We also assume that ψ is a twice differentiable function.
Then, once defined H and ψ, we construct f̃ in such a way that

f̃(x) = f(x) +
∫
H(x, y)ψ(y)dy√

π(x)
. (7)

This choice of f̃ , as explained above, is such that the function has the properties:

11
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1. Eπ(f) = Eπ(f̃)

2. σ2
f ≤ σ2

f̃
.

In order to have optimal outcomes, our goal would be to construct the function f̃
in such a way that σ2

f̃
is exactly equal to zero. In this case f̃ is equal to a constant

which is the expected value of f under π. By setting f̃ = Eπ(f) into the (7) we obtain∫
H(x, y)ψ(y)dy = −

√
π(x)[f(x)− Eπ(f)]. (8)

The solution of the previous equation leads to the definition of the best choice for ψ.
Optimal choices for H differ in the discrete and continuous case. A choice for a

discrete space could be:

H(x, y) =

√
π(x)
π(y)

[P (x, y)− δx(y)]

where P (x, y) is the transition matrix of a Markov Chain, reversible with respect to π
and δx(y) is the Dirac delta, which is equal to 1 if x = y and zero otherwise.

However, here we focus on a continuous space E ⊂ Rn and thus we choose a H
operator such that

H = −1
2

n∑
i=1

∂2

∂x2
i

+
1

2
√
π(x)

n∑
i=1

∂2
√
π(x)

∂x2
i

.

The last operator satisfies that
H(
√
π(x)) = 0

and equation (7) can be written in the following way

f̃(x) = f(x) +
Hψ(x)√
π(x)

.

Note that, for every function ψ, we have that σ2
f̃
≤ σ2

f . In particular, if ψ satisfies
the equation

(Hψ)(x) =
√
π(f(x)− Eπ(f)), (9)

from the (8) in the continuous case, we have that σ2
f̃

= 0. Clearly, in most of practical
application, a ”zero variance ψ” is not available, so it is necessary to construct ψ’s
that ensure a great reduction of variance. To achieve this objective for the applications
studied in this paper, in the next section we calculate some zero variance ψ’s for
the multivariate Dirichlet distribution. The hope is to have some suggestions on the
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structure of the ψ’s functions. Throughout the paper we will call the zero variance ψ’s
as ”exact ψ’s”.

Note that in the continuous case, the determination of (Hψ)(x) is a time consuming
process, requiring the numerical computation of the first and second order derivatives of
the target distribution. However, we can avoid this problem by reducing the evaluation
of (Hψ)(x) to the first derivative. If the ψ function has the form

ψ(x) = P (x)
√
π(x)

where P (x) is a polynomial, then the expression of (Hψ)(x) may be written in the
following form

(Hψ)(x) = −1
2

n∑
i=1

[√
π(x)

∂2

∂x2
i

P (x) + 2
(
∂

∂xi
P (x)

)(
∂

∂xi

√
π(x)

)]
.

The previous expression for (Hψ)(x) simplifies the calculations allowing to speed up
the simulation.

5.1 Exact ψ for the Multivariate Dirichlet distribution

In this section we calculate the exact ψ’s for the Multivariate Dirichlet distribution for
the functions

• f1i(x) = xi

• f2i(x) = x2
i

where i = 1, . . . , n and x = (x1, . . . , xn).
The target distribution is, up to a normalizing constant,

π(x) ∝ xα1−1
1 xα2−1

2 · · ·xαn−1
n

where αi > 0 for all i = 1, . . . , n. If α =
∑n

i=1 αi, then the ψ functions that solve
equation (8) are, respectively for f1i(x) and f2i(x),

ψ1i(x) =

2
3

1
αi + 1

x3
i −

1
n− 1

αi
α

n∑
j=1,j 6=i

x2
j

αj

√π(x)

ψ2i(x) =

1
2

1
αi + 2

x4
i −

1
n− 1

αi(1 + αi)
α(1 + α)

n∑
j=1,j 6=i

x2
j

αj

√π(x).

(10)
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6 Application of the Zero Variance Principle

Now, we apply the Zero Variance technique to the two toy examples introduced in
section 4. Our aim is to estimate the first moment of each component. The target
distribution π(x) is the posterior defined in the new Multinomial Model. Since the
zero variance ψ is not available for our model, we use the exact ψ1i(x) (expressed by
the (10)) calculated for the Multivariate Dirichlet distribution in the previous section.

6.1 Simulation results for the first toy example

Table (1) lists the final outcomes for the first toy example we have introduced in sec-
tion 4.1. The table displays results for the four components (θ1, . . . , θ4) on the rows
and for the classical Multinomial-Dirichlet model and the new Multinomial model on
the columns. For each component the table shows the parameter estimate Sn and its
variance σ̂2. For the new Multinomial model we computed the estimates Sn and the
variances σ̂2 for f and f̃ , listing the outcomes in the last two columns respectively.
Results show a sensible difference in the estimates of the new Multinomial model com-

Multinomial- New Multinomial Model
Dirichlet

f f̃

θ1 Sn 0.15 0.15488 0.13952
first component σ̂2 0.00679 0.006395 5.3655e-05

θ2 Sn 0.2 0.1956 0.20581
second component σ̂2 0.00762 0.00717 1.14549e-04

θ3 Sn 0.2 0.17941 0.22121
third component σ̂2 0.00762 0.00615 3.54589e-04

θ4 Sn 0.45 0.47011 0.41675
fourth component σ̂2 0.01179 0.01124 1.48421e-04

Table 1: Final results for toy example 1

pared to the Multinomial-Dirichlet, thus indicating the different behavior of the new
model. Moreover (as illustrated in the last column of table (1)), the application of
the Zero Variance principle allows a great reduction of the variance values. The esti-
mates Sn are more precise and they are different from the estimates computed with
the function f .
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6.2 Simulation results for the second toy example

Table (2) illustrates the final results for the second toy example. The table lists param-
eter estimates (Sn) and variances (σ̂2) for the four components (θ1, . . . , θ4). The first
column shows the outcomes for the traditional Multinomial-Dirichlet model, the sec-
ond column illustrates the results for the new Multinomial model and the third column
shows the resulting values for the new Multinomial model with the application of the
Zero Variance principle. The analysis of the outcomes bring us to similar conclusions
to the previous example. As it is clear from the last column of table (2), variances σ̂2

f̃

fall down to zero and the differences among parameter values indicate that the com-
putation of efficient estimates through the Zero Variance principle is able to show the
real value of the parameters.

Multinomial- New Multinomial Model
Dirichlet

f f̃

θ1 Sn 0.44872 0.45741 0.45029
first component σ̂2 0.00313 0.00329 2.7171e-05

θ2 Sn 0.05128 0.05145 0.05268
second component σ̂2 0.00062 0.00060 5.286e-07

θ3 Sn 0.38462 0.36250 0.42155
third component σ̂2 0.00299 0.00285 4.4314e-05

θ4 Sn 0.11538 0.12864 0.10082
fourth component σ̂2 0.00129 0.00133 1.12e-05

Table 2: Final results for toy example 2

7 Concluding remarks

We proposed a new Multinomial Model with the specification of an a priori distribu-
tion which is different from the traditional conjugate prior. We employed the ”Stick
Breaking transformation” of the Multivariate Beta of Olkin (see Olkin and Liu (2003))
to construct a new prior distribution. We derived the posterior and we implemented the
Metropolis-Hastings algorithm (Metropolis et al. (1953), Hastings (1970)) to sample
from the posterior distribution. The application of our Multinomial model to toy exam-
ples shew excellent results in terms of convergence to the target distribution: chains are
well-mixing and autocorrelations are close to zero. Then we applied the Zero Variance
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Principle allowing us to estimate the parameters of the distribution with a dramatic
reduction of their variances.

The efficient estimation of model parameters is a great advantage in every appli-
cation, but especially in case of lack of data, where it is easier to obtain less precise
estimates.

Moreover, we remark that the differences in the resulting values of parameter es-
timates denote the different characteristic of our Multinomial model compared the
traditional Multinomial-Dirichlet model.

Further work will concern the testing of our model on real data in order to go into
more depth study of both its limitations and its potential compared to other models.
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