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ABSTRACT 

 

Prognosis of basal breast cancers is poor but heterogeneous. Medullary 

breast cancers (MBC) display a basal profile, but a favorable prognosis. W e 

hypothesized that a previously published 368-gene expression signature associated 

with MBC might serve to define a prognostic classifier in basal cancers. We collected 

public gene expression and histoclinical data of 2145 invasive early breast 

adenocarcinomas. We developed a Support Vector Machine (SVM) classifier based 

on this 368-gene list in a learning set, and tested its predictive performances in an 

independent validation set. Then, we assessed its prognostic value and that of six 

prognostic signatures for disease-free survival (DFS) in the remaining 2034 samples. 

The SVM model accurately classified all MBC samples in the learning and validation 

sets. A total of 466 cases were basal across other sets. The SVM classifier separated 

them into two subgroups, subgroup 1 (resembling MBC) and subgroup 2 (not 

resembling MBC). Subgroup 1 exhibited 71% 5-year DFS, whereas subgroup 2 

exhibited 50% (p=9.93E-05). The classifier outperformed the classical prognostic 

variables in multivariate analysis, conferring lesser risk for relapse in subgroup 1 

(HR=0.52, p=3.9E-04). This prognostic value was specific to the basal subtype, in 

which none of the other prognostic signatures was informative. Ontology analysis 

revealed effective immune response, enhanced tumor cell apoptosis, elevated levels 

of metastasis-inhibiting factors and low levels of metastasis-promoting factors in the 

good-prognosis subgroup, and a more developed cell migration system in the poor-

prognosis subgroup. In conclusion, based on this 368-gene SVM model derived from 

an MBC signature, basal breast cancers were classified in two prognostic subgroups, 

suggesting that MBC and basal breast cancers share similar molecular alterations 
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associated with aggressiveness. This signature could help define the prognosis, 

adapt the systemic treatment, and identify new therapeutic targets. 
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INTRODUCTION 

Prognosis of breast cancer is heterogeneous and imperfectly captured by 

classical histoclinical features, making clinical evolution difficult to predict for a given 

patient and treatment not perfectly adapted. Over the past decade [1], gene 

expression profiling revealed five molecular subtypes of breast cancer based on the 

expression patterns of an intrinsic gene set: luminal A and B, basal, ERBB2 and 

normal-like [2]. These subtypes represent different disease entities associated with 

specific molecular alterations and histoclinical features [3-7]. This classification 

correlates with major prognostic variables. Thus, its added prognostic value remains 

unclear. However, it provides the opportunity to investigate biological questions, such 

as the identification of prognostic or therapeutic targets, in more homogenous entities, 

and therefore enrich for a signal relevant in a specific subtype, which would be 

diluted and undetectable in the whole breast cancer population [8]. For example, the 

predictive value of P53 mutations regarding the response to chemotherapy is 

opposite according to luminal A or basal subtype [9]. In a recent meta-analysis [10], 

similar observations were done with seven prognostic multigene expression 

signatures [11-18], which were highly informative of clinical outcome in ER+/ERBB2- 

cases, but much less informative and never significant in ER-/ERBB2- and ERBB2+ 

cases. One of the reason is that three of the four signatures defined by supervised 

analysis had been initially defined in ER+ tumors [13,15], or by separately analyzing 

ER+ and ER- tumors but with a few ER- cases and without taking into account the 

heterogeneity of ER- tumors [17]. Few studies have attempted to derive prognostic 

signatures of ER- breast cancer [19-22], and all showed the difficulty of the task.  

The basal subtype represents around 15% of invasive breast cancers. Most 

basal breast cancers are of ductal type [23]. Despite a relative chemosensitivity when 
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compared to other subtypes they display a poor prognosis after treatment, which 

generally includes adjuvant chemotherapy. However, this subtype shows prognostic 

heterogeneity since not all basal breast cancer patients have an unfavorable 

outcome. To date, reliable identification of basal breast cancer patients with a good 

or a poor prognosis is difficult and based only on histological features thus far from 

optimal [24,25]. If optimized, this would help tailor treatment by using more or less 

aggressive approaches based on the prediction of outcome, all the more so as 

different types of chemotherapy are available, and promising targeted molecular 

therapies are under development for these tumors [26,27]. Furthermore, such 

optimization, if based on molecular data, should help identify new potential 

therapeutic targets. 

Medullary breast cancers (MBC) represent less than 2% of breast cancers. 

Despite features of aggressiveness and the fact that they frequently display a basal 

profile [28,29], MBC are associated with a favorable prognosis. Using whole-genome 

oligonucleotide microarrays, we recently reported a list of 368 genes differentially 

expressed between basal MBC and nonMBC. Here, we used MBC as a model of 

good-prognosis basal breast cancer and tested the hypothesis that this gene 

signature might be used to derive a gene classifier predictive for disease-free survival 

(DFS) in a large pooled data set of basal breast cancers. 

 

 

MATERIALS AND METHODS  

 

Tumor samples 



 7 

We collected personal and public data from breast cancer samples profiled 

using DNA microarrays. Inclusion criteria included: pre-treatment sample of an 

invasive adenocarcinoma, non-inflammatory and non-metastatic, with available 

histoclinical data, and profiled using Affymetrix or Agilent oligonucleotide microarrays. 

All data sets were retrospective. They are described in Supplementary Table 1. The 

Weigelt‟s set [30] was used to validate the MBC-nonMBC SVM classifier. Other sets 

(thereafter designated “prognostic series”) were pooled to test the prognostic impact 

of this classifier in basal breast cancers and other subtypes; they included our series 

(Institut Paoli-Calmettes – IPC) and 15 public series. The IPC series contained frozen 

tumor samples obtained from 266 early breast cancer patients who underwent initial 

surgery in our institution between 1992 and 2004. They included 227 cases 

previously reported [31] and 39 additional cases, all similarly profiled using Affymetrix 

U133 Plus 2.0 human oligonucleotide microarrays as previously described [31]. The 

study was approved by the IPC review board, and informed consent was available for 

each case. This IPC series did not include the 37 cases from which we had derived 

the 368-gene list. The 15 public series originated from 15 publications [11-13,17,32-

42]. Overall, data from a total of 3409 patient‟s samples were collected. When 

different publications included the same patients, the redundancy was eliminated, 

resulting in 2145 different patient‟s samples (111 in the Weigelt‟s set and 2034 in the 

“prognostic series”). Gene expression and histoclinical data of public series were 

retrieved from NCBI GEO databases and authors‟ website. Histoclinical data of our 

IPC series are available in Supplementary Table 2. 

 

Gene expression data pre-processing 
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Before analysis, we mapped hybridization probes across the two technological 

oligonucleotide-based platforms (Agilent and Affymetrix) used across the series. 

Affymetrix gene chips annotations were updated using NetAffx Annotation files 

(www.affymetrix.com; release from 01/12/2008). Agilent gene chips annotations were 

retrieved and updated using both SOURCE (http://smd.stanford.edu/cgi-

bin/source/sourceSearch) and EntrezGene (Homo sapiens gene information db, 

release from 09/12/2008, ftp://ftp.ncbi.nlm.nih.gov/gene/). All probes were thus 

mapped based on their EntrezGeneID. When multiple probes were mapped to the 

same GeneID, the one with the highest variance in a particular dataset was selected 

to represent the GeneID.  

Data sets were then processed as follows. For the Agilent-based sets, we 

applied quantile normalization to available processed data. Regarding the Affymetrix-

based data sets, we used Robust Multichip Average (RMA) [43] with the non-

parametric quantile algorithm as normalization parameter. RMA was applied to the 

raw data from the other series and the IPC series. Quantile normalization or RMA 

was done in R using Bioconductor and associated packages. 

 

Gene expression data analysis 

Analysis of each processed data set was done separately to guarantee a 

larger number of genes common with the intrinsic gene set, the 368-gene list, and the 

published prognostic signatures. 

The molecular subtypes related to the intrinsic breast cancer classification 

were determined using Hu‟s Single Sample Predictor (SSP) classifier based on a list 

of 306 intrinsic genes [35]. We first identified the genes common between the intrinsic 

gene set and each expression data set. We then used Distance Weighted 

http://www.affymetrix.com/
http://smd.stanford.edu/cgi-bin/source/sourceSearch
http://smd.stanford.edu/cgi-bin/source/sourceSearch
ftp://ftp.ncbi.nlm.nih.gov/gene/
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Discrimination (DWD) [44] to normalize each data set in order to be comparable to 

the 315 samples of the Hu‟s combined test sample set. Next, we defined the 

expression centroid of each subtype for the common probe sets in this combined test 

sample set [35]. Finally, we measured the correlation of each sample with each 

centroid. The sample was attributed the subtype corresponding to the most 

correlated centroid.  

Before constructing our classifier based on the 368-gene list and testing its 

performances, as well as those of other prognostic signatures, in several 

independent data sets, gene expression levels of each data set were standardized 

using the luminal A population as reference, thus allowing to make comparable all 

data sets. In a previous study [28], we had identified 534 probe sets differentially 

expressed between basal MBC and basal nonMBC. They represented 368 unique 

genes. We hypothesized that some nonMBC might have an expression profile close 

to that of MBC for these genes, and perhaps better prognosis than other nonMBC. 

Based on this 368-gene list (Supplementary Table 3), we defined a genomic classifier 

using Support Vector Machine (SVM). The initial outcome of interest for this SVM 

classifier was the separation MBC-nonMBC, with the secondary objective, in the case 

where all nonMBC would not be correctly classified, to compare the clinical outcome 

of these two nonMBC subgroups. Briefly, the SVM algorithm finds in the learning set 

the hyperplane separating the two subgroups with maximized margins in Euclidean 

space. This approach allows separation by mapping the data into a high-dimensional 

feature space that can be linearly separated via a kernel function. Once trained, the 

classification only requires the linear computation using the learned hyperplane 

equation. The resulting SVM classification score defines the distance from the 

hyperplane and so the membership to one of the two subgroups First, we established 
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the SVM model in our original 37-sample data set (learning set: 16 basal nonMBC 

and 21 basal MBC) [28], with a polynomial kernel of degree 3. This model classified 

samples in two subgroups (1 and 2). To test the stability of the SVM model according 

to the composition of the learning set, we applied 100 random subsamplings to the 

37 sample-set by splitting it into training (two thirds of samples) and validation data 

(remaining one third). For each iteration, the predictive accuracy of the model fitted to 

the training data was assessed using the validation data, and the results were then 

averaged over the 100 splits. After having identified the genes common between the 

368-gene list and each data set, the SVM model was applied within each set, notably 

the Weigelt‟s independent validation set, to attribute each sample to subgroup 1 or 2.  

For comparison with our classifier, we tested the predictive value of six major 

recently reported prognostic breast cancer signatures: the 70-gene signature [11,12], 

the 76-gene signature [17], the invasiveness gene signature [18], the wound 

response signature [14], the genomic grade index [13], and the 21-gene recurrence 

score [15]. Each signature was applied to each expression data set separately to 

compute a relapse risk to each sample. We first identified the genes common 

between the signature and each data set. We then strictly applied the same 

methodology (score or Pearson correlation, and scaling methods) as that reported in 

the original publications to classify each sample. The original cut-off then defined the 

membership to the predicted good-prognosis group or the predicted poor-prognosis 

group. More details are available in Supplementary Table 4. 

The 368-gene list was interrogated using Ingenuity software (Redwood City, 

CA, USA) to assess significant representation of biological pathways 

 

Statistical analysis 
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Correlations between sample groups and histoclinical factors were calculated 

with the Fisher‟s exact test for qualitative variables with discrete categories, and the 

Mann-Whitney test for continuous variables. Disease-free survival (DFS) was 

calculated from the date of diagnosis until date of first relapse whatever its location 

(local, regional or distant) or date of death (when the relapse data was not available) 

using the Kaplan-Meier method. Survival was compared between groups with the 

log-rank test. Follow-up was measured from the date of diagnosis to the date of last 

news for patients without any event. In the “prognostic series” (2034 patients), follow-

up was available for 1752 patients (median 88 months) and the 5-year DFS was 

68%. Univariate and multivariate analyses were done using Cox regression analysis. 

The variables tested in univariate analyses included age of patients, pathological 

tumor size, axillary lymph node status, and SBR grade, ER, PR, ERBB2, and Ki67 

IHC status, our SVM model and several published prognostic multigene signatures. 

Multivariate analysis was done by incorporating all variables with a p-value inferior to 

0.05 in univariate analysis. The p-values were based on the Wald test, and patients 

with one or more missing data regarding the retained variables were excluded. All 

statistical tests were two-sided at the 5% level of significance. Statistical analysis was 

done using the survival package (version 2.30), in the R software (version 2.9.1). 

 

 

RESULTS  

 

Intrinsic molecular subtypes 

We collected publicly available gene expression and histoclinical data of a 

total of 2145 distinct invasive breast adenocarcinomas. We determined the molecular 



 12 

subtype of tumors in each data set separately by using the SSP method [35]. The 

percent of genes common to each set and the intrinsic 306-gene set ranged from 88 

to 100%.  

In the Weigelt‟s series [30], which contained 10 MBC and 101 non-MBC, 32 

tumors were determined as basal. As previously reported by us and others [28,29], 

all 10 MBC were basal subtype. In this series, only the pathological type was 

available. 

In the “prognostic series” (2034 samples), available histoclinical data allowed 

us to verify the coherence of the subtypes, notably the basal subtype, in term of 

histoclinical correlations (Table 1). As expected, basal tumors (466 cases) were 

diagnosed in younger patients when compared with luminal A tumors. They were 

also more frequently ductal, with higher pathological size and grade; they were more 

frequently negative for ER and PR as defined by immunohistochemistry (IHC), but 

more often positive for P53 and Ki67. Clinical outcome, available for 1752 patients, 

strongly correlated with subtypes with 5-year DFS of 80% for luminal A (149 events), 

57% for luminal B (152 events), 72% for normal-like (78 events), 60% for basal (157 

events), and 60% for ERBB2+ (107 events). These results, obtained in a large series 

of samples, confirmed previous observations, and the coherence of our data set.  

 

The 368-gene model defines two subgroups of basal breast cancers 

We used the 37 IPC samples (16 nonMBC and 21 MBC) from which we had 

generated the 368-gene signature to construct a SVM classifier. As expected, its 

application onto this learning set resulted in a correct classification of all MBC  in 

subgroup 1 and 14 out of 16 nonMBC in subgroup 2  (Figure 1A). By cross-validation 

using 100 random iterations, the mean predictive accuracy was 73% (95%CI, [69 – 
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76]), suggesting the robustness of our SVM model. Its robustness was further tested 

in an independent public data set [30], which included 10 MBC and 101 nonMBC, of 

which 32 were basal. The SVM model applied to these 32 tumors (Figure 1B) 

correctly classified all 10 MBC samples in subgroup 1, whereas 10 out of 22 nonMBC 

were classified in subgroup 2 and 12 in subgroup 1. This observation suggested that 

the model is very sensitive for MBC prediction, and that basal nonMBC are 

heterogeneous regarding the model, with some cases (subgroup 1) resembling more 

than other cases (subgroup 2) to MBC. This confirmed our initial hypothesis and 

allowed us to compare the prognosis of these two nonMBC subgroups. 

Finally, to test for a prognostic value of such subgrouping, the SVM classifier 

was applied to each public series separately. The percent of genes common between 

the 368-gene list and each data set ranged from 72 to 100%. In each set, two tumor 

subgroups were obtained. Among the 466 pooled basal samples, 217 samples were 

in subgroup 1 and 249 in subgroup 2 (Figure 2A).  

 

Histoclinical features and prognosis of the two basal subgroups 

We compared the histoclinical features of the two subgroups of basal tumors 

defined by the SVM classifier (Table 2). Out of the nine tested variables, differences 

(Fisher‟s exact test) were observed only for age of patients and ER status, with 

younger patients (p=4.95E-03) and more ER- cases (p=9.14E-04) in subgroup 1. 

There was no significant difference regarding pathological tumor size, axillary lymph 

node status, grade, and IHC status for PR, ERBB2, P53 and KI67. Survival 

information was available for 392 of 466 patients. The survival curves are shown in 

Figure 2B. With a median follow-up of 81 months, 5-year DFS was better - despite a 

longer follow-up - for subgroup 1 patients (71% DFS) than for subgroup 2 patients 
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(50% DFS, p=9.93E-05, log-rank test). Analysis by data set showed that the mean 

difference of 5-year DFS between subgroups 1 and 2 was 17% (95%CI, [4 – 30], 

p=0.016). For comparison, the 5-year DFS of our 21 basal MBC [28] was 89%. Thus, 

our 368-gene classifier identified within basal tumors two subgroups with different 

prognosis. Subgroup 1 was associated with relatively good prognosis, close to that of 

normal-like subtype. 

Because the prognosis of basal breast cancer is usually unfavorable, most 

patients are treated using adjuvant chemotherapy. To determine more precisely the 

link of our predictor with metastatic risk and/or with chemosensitivity, we analyzed 

patients‟ subgroups based upon the systemic treatment they received. A total of 116 

out of the 392 basal breast cancer patients with available follow-up had not received 

any adjuvant chemotherapy and hormonal therapy after surgery. With a median 

follow-up of 102 months, the 5-year DFS was 68% in subgroup 1 and 44% in 

subgroup 2 (p=7E-03, log-rank test). Thirty basal samples were available in the Hess„ 

series treated with primary chemotherapy before surgery, allowing assessment of 

response to chemotherapy. The pathological complete response (pCR) rate was 58% 

in subgroup 1 vs only 17% in subgroup 2 (not significant). Altogether, these 

observations suggested that our genomic predictor is at least associated with 

prognosis in term of relapse risk, whereas its likely association with response to 

chemotherapy needs to be tested in larger series.  

 

Univariate and multivariate analyses 

We performed univariate and multivariate Cox survival analysis in the 

combined data set of 466 basal tumors to compare the prognostic performance of the 

368-gene classifier (subgroups 1 and 2) with that of histoclinical variables. These 
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included age of patients, pathological tumor size, axillary lymph node status, SBR 

grade, and ER, PR, ERBB2, and Ki67 IHC status (Table 3A). In univariate analysis, 

the HR for relapse was 0.53 for subgroup 1 basal tumors compared to subgroup 2 

tumors (95%CI [0.38 – 0.73], p=1.30E-04). Positive lymph node status was 

associated with DFS whereas age, pathological tumor size, grade, and ER, PR 

ERBB2, and Ki67 status were not. 

Multivariate analysis was done on the 343 out of 466 samples with available 

information regarding the two significant variables in univariate analysis (lymph node 

status and 368-gene classifier). Both remained significant (Table 3A), suggesting 

their independent prognostic value. The multigene classifier was the most significant, 

with a HR for relapse of 0.52 for subgroup 1 basal tumors compared to subgroup 2 

tumors (95%CI [0.36 – 0.74], p=3.9E-04), suggesting a higher prognostic value than 

the lymph node status (pN). This gene classifier added prognostic information when 

combined with pN. Indeed, a clinico-genomic model combining pN and the gene 

classifier performed better than pN alone regarding the prediction of DFS (p=1.7E-4 

vs p=9.5E-3 respectively, Wald test). By contrast, predictive performances were very 

close for the clinico-genomic model and the gene classifier alone (p=1.7E-4 vs 

p=1.2E-4 respectively, Wald test). 

 

Comparison of our model with two immune response signatures 

Two prognostic immune signatures have been reported in ER- breast cancer: 

the 7-gene immune response (IR) signature [20,21] and the T-cell metagene [19]. 

Since our model was enriched with immune response genes (see below), we 

evaluated its correlation with these two signatures. No gene overlapped our model 

and the IR signature. Comparison of the classifications of the 466 basal samples 
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based upon our SVM model and the IR signature showed concordance (both 

subgroup 1 and IR good-prognosis, or both subgroup 2 and IR poor-prognosis) for 

only 249 samples (53%). The same analysis was done with the T-cell metagene (50 

genes) and our SVM model, revealing only 2 overlapping genes and 66% of 

concordant classification.  

For further comparison, we repeated the prognostic analysis by incorporating 

the classifications based on these two immune signatures (Table 3B). The 7-gene 

immune response signature was not significant in univariate analysis, whereas the T-

cell metagene was. In multivariate analysis incorporating the three variables 

significant in univariate analysis, the 368-gene classifier was still the strongest 

predictor of DFS, independently of the lymph node status, whereas the T-cell 

metagene lost its prognostic value.  

These observations confirm that our model, which includes immune genes and 

many others, is different from these immune signatures. However, they still highlight 

the role of immunity in the prognosis of basal breast cancer. To try to elucidate the 

type of immune response observed in good-prognosis subgroup 1, we searched for 

correlations between our classification and any of the cell-type specific gene 

expression profiles of leukocytes. Therefore, we determined if the genes that belong 

to publicly available B-cell, T-cell, CD8+ T-cell, lymphocyte, and granulocyte 

signatures [45] were overrepresented in the list of differentially expressed genes 

between subgroup 1 and subgroup 2 using our 75-basal sample IPC data set. Using 

the gene set enrichment analysis (GSEA) algorithm [46] and 1.000 permutations, we 

obtained significance for the B-cell, T-cell, and CD8+ T-cell signatures 

(Supplementary Figure 1). 
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The prognostic impact of the 368-gene classifier is specific to the basal 

subtype 

We investigated whether our 368-gene classifier had a prognostic value in the 

whole population of tumors and in the other subtypes across the “prognostic series” 

of 2034 samples. The results are summarized in Table 4. When tested in the whole 

population (1752 patients with annotated follow-up), the 368-gene classifier did not 

retain any prognostic value. For the analysis per subtype, survival information was 

available in 243 patients with ERBB2 tumor, 578 patients with luminal A tumor, 304 

with luminal B tumor, and 235 with normal-like tumor, with a median follow-up 

ranging from 77 to 95 months according to the subtype. In each non basal subtype, 

survival differences between subgroups 1 and 2 were not significant. These results 

revealed the prognostic specificity of the 368-gene classifier, limited to the basal 

subtype. 

 

Absence of prognostic impact of other prognostic breast cancer 

signatures in the basal subtype 

We assessed the predictive value of six major prognostic expression 

signatures recently reported in early breast cancer. In each data set, each sample 

was assigned a good or a poor prognosis based on each signature. Data sets were 

then pooled and survival was compared between the predicted good-prognosis and 

poor-prognosis subgroups. Results of univariate analysis are shown in Table 4. In the 

whole population, each signature-based classification was strongly associated with 

DFS, further confirming their robustness. However, when the same analysis was 

done per molecular subtype none of the signatures retained any prognostic value in 

the basal tumors, whereas one remained associated with survival in the ERBB2 
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subtype, four in the luminal B and normal-like subtypes, and six in the luminal A 

subtype. These results show the subtype-dependence of these signatures regarding 

their prognostic value, and notably the absence of informative value in the basal 

subtype, by contrast with our classifier.  

 

 

DISCUSSION 

The extent of the differences between the molecular subtypes evidenced by 

high-throughput gene profiling makes it necessary to redefine prognostic and 

predictive markers in each subtype [8]. The interest in such an approach has already 

been evidenced by the fact that several prognostic multigene signatures [12-18] are 

highly informative regarding the prediction of clinical outcome in ER+/ERBB2- tumors, 

but much less in other tumors. Another recent meta-analysis confirmed the interest of 

the analysis per subtype for developing a more accurate prognostic signature [47]. 

The rare studies reported for ER- tumors show the difficulty of identifying prognostic 

multigene signatures in this group [19-22]. This could be because ER- tumors include 

both basal and ERBB2 samples although these two subtypes are different at the 

molecular level. No current signature is associated with basal tumors. To our 

knowledge, the present study is the first one that focuses specifically on basal breast 

cancers. 

We demonstrate that basal breast cancers can be divided into two prognostic 

subgroups based on a 368-gene expression classifier associated with MBC, a rare 

histological type associated with a basal profile but a good prognosis. Subgroup 1 

exhibited greater DFS (71 vs 50%) than subgroup 2, with a HR for relapse was 0.52. 

Although DFS of subgroup 1 remains insufficient - and cannot preclude the use of 
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adjuvant systemic therapy - these differences suggest that subgroup 2 patients 

should need a more aggressive treatment than subgroup 1 patients. Clinico-

pathological differences between both subgroups were slight. Like MBC, subgroup 1 

tumors were more frequently ER- than subgroup 2 tumors. However, they were not 

different with respect to the other histological variables, except for age, younger in 

subgroup 1. This is one of the aims of genomics: to identify molecular subgroups with 

prognostic relevance within tumors similar at the clinico-pathological level but 

different regarding their clinical outcome. Multivariate analysis showed that the 

classifier outperformed the classical histoclinical variables. Its prognostic value was 

specific to basal tumors. By contrast, none of six major prognostic breast cancer 

signatures was associated with DFS in these tumors, whereas all were strongly 

significant in the whole population, and in the luminal A good-prognosis molecular 

subtype. This observation reinforces the value of our 368-gene classifier in the basal 

tumors as well as the interest of the per subtype approach.  

The strength of our results lies also in the original “bottom-up” approach that 

we have applied. Unlike the classical “top-down” supervised approach [48], the 

“bottom-up” approach is based on a starting hypothesis. It consists in first identifying, 

often in a relatively reduced series, a signature associated with a phenotypic feature 

relevant to the relapse process (MBC vs nonMBC here), and then subsequently 

testing for its correlation with outcome in a large and independent series of samples, 

avoiding the problem of overfitting. In the past, prognostic signatures associated with 

wound repair [49], stem cells [18], P53 mutations [16], pathological grade [13], or 

inflammatory breast cancer status [50] have been established this way, thereby 

linking these concepts to tumor cell aggressiveness. Here, we used MBC as a model 

of non-aggressive basal breast cancer, and showed that the associated signature 
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holds the fingerprints of the relative more favorable prognosis of this histological type, 

and that the underlying biological bases are also relevant in basal breast cancers in 

general. 

Since our two basal subgroups were very similar at the clinico-pathological 

level, specific molecular differences should reside in the 368-gene classifier. What 

genes and functions represented in this classifier might be associated with a more or 

less aggressive phenotype is a crucial issue as their identification will help develop 

targeted therapeutic strategies. Ontology analysis revealed several potentially 

interesting pathways. Using the Onto-Express algorithm we had previously shown 

[28] that “Immune response” was the biological process the most represented among 

the 202 signature genes overexpressed in the good-prognosis subgroup 1 tumors, 

followed by processes related to apoptosis, and proteolysis. Even if speculative, it is 

tempting to associate these processes with the better prognosis observed. Ingenuity 

analysis of canonical pathways confirmed these results (Supplementary Table 5). 

Our previous analysis had revealed the implication of TH1 cells in immune response, 

and a likely high global cytotoxic activity. Two Ingenuity pathways were associated 

with IL-15 and IL-12. IL-15 is a critical factor for the proliferation and activation of NK 

and CD8+ T cells. IL-12, and more recently IL-15 and IL-27, demonstrated anti-tumor 

activity in murine models [51]. The presence of NFkB2 and NFkBIE, an inhibitor of 

NFkB, in pathways respectively associated with subgroup 1 and subgroup 2, agrees 

with an activation of the transcriptional machinery of cytotoxic cells in subgroup 1 

[52]. Our GSEA analysis confirmed these results, and also suggested a likely 

involvement of B-cells. The favorable prognostic impact of the immune system has 

been suggested by other studies. In colon cancer, increased levels of mRNA for 

products of TH1 cells are associated with prolonged survival [53]. The four prognostic 
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expression studies dedicated to ER- breast cancers [19-22], as well as a meta-

analysis [10], revealed that immune response favorably impacted the clinical 

outcome. Similar observations were recently reported in highly proliferative tumors 

that included a majority of ER- samples [54]. Our data also agree with the favorable 

contribution of the immune response to response to chemotherapy recently reported 

in breast cancer [19,55,56]. Altogether, these observations suggest a potential 

interest for therapeutic strategies aimed at stimulating the immune defenses in basal 

breast cancer. Despite this enrichment for genes involved in immunity, we showed 

that our model differed from two previously published prognostic immune signatures 

[19-21]. Indeed, beside the immune system, other overrepresented Ingenuity 

pathways involved PKR, PPAR and RXR. PKR is a P53 target protein kinase, which 

plays a crucial role in the tumor-suppressor function of P53 and apoptosis [57]. 

PPARgamma is a ligand-activated transcription factor that regulates cell proliferation 

and differentiation. PPARgamma ligands, through the downregulation of gelatinases, 

inhibit the invasive capacities of breast cancer cells in vitro [58], and repress 

TGFbeta signaling involved in metastasis [59]. Finally, bexarotene (Targretin), an 

RXR (retinoid X receptor) agonist, inhibits angiogenesis and metastasis in vitro after 

activation of its heterodimerization partner PPARgamma [60].  

Regarding the 166 genes overexpressed in the poor-prognosis subgroup 2, 

we had previously identified [28] several Onto-Express biological processes related 

to cytoskeleton, muscle biology, adhesion and tyrosine kinase signaling. Similarly, 

Ingenuity analysis (Supplementary Table 5) identified several pathways related to cell 

migration such as “caveolar-mediated endocytosis”, “virus entry via endocytic 

pathways”, “tight junction signaling”, “agrin interactions at neuromuscular junction”, 

“actin cytoskeleton signaling”, and “clathrin-mediated endocytosis” [61,62]. Indeed, 
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many genes are involved in the architecture and remodeling of cytoskeleton and 

adhesion. Examples include ACTA2, ACTG2, FLNA, FLNC, ACTN1, MYL9, TPM2, 

MYLK, M-RIP, CALD1, CNN2, TAGLN, DAAM1, MTSS1, SMTN, PARVA, FLH1, and 

ADAM12. Other pathways potentially related to tumor aggressiveness included 

“VEGF signaling, “G-protein coupled receptor signaling”, or “NF-kB activation by 

viruses”. Finally, the presence of genes coding for smooth muscle-specific proteins 

(ACTG2, ACTA2, TPM2, MYL9, M-RIP, CALD1, CNN2, SMTN, KCNMB1, TAGLN, 

ACTN1, APEG1, BOC) and of genes upregulated by TGFbeta [63-65] (TAGLN, 

ACTG2, FHL2, TPM2, ACTN1, CNN2, FSTL1, BGN, TGFB1I1) may suggest some 

degree of epithelial-to-mesenchymal transition in the poor-prognosis subgroup, which 

calls for complementary analyses for confirming this hypothesis. . Of note, our 

analysis did not reveal any differential implication of cell cycle and cell proliferation 

pathways, in agreement with the high grade of basal tumors, equally distributed 

between our two prognostic subgroups.  

 

In conclusion, we have shown that early basal breast cancers can be 

classified in two subgroups with different DFS based on a 368-gene model. This new 

prognostic classifier was validated in a series of 466 basal breast cancers and 

outperformed the classical histoclinical features in multivariate analysis. The 

difference for clinical outcome might be due, at least in part, to an effective host 

immune TH1 response, enhanced tumor cell apoptosis, elevated levels of metastasis-

inhibiting factors and low levels of metastasis-promoting factors in the good-

prognosis subgroup, and a more developed cell migration system in the poor-

prognosis subgroup. Clinically, the identification of poor or good prognosis cases 

within basal breast cancers should help select the appropriate systemic treatment, 
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while the identification of biologically relevant genes or pathways included in the 

classifier should provide new potential therapeutical targets. Further validation of our 

model in a larger retrospective series, then in a prospective series is warranted.  
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Table 1. Molecular subtypes and histoclinical correlations 
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Table 2. Histoclinical characteristics of the two basal tumor subgroups 
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Table 3. Univariate and multivariate DFS analyses by Cox regression of 

basal tumors. A/ without, and B/ with the immune response (IR) signature-

based classification. 
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Table 4. Prognostic classification of breast cancers using the 368-gene 

classifier and six prognostic breast cancer signatures.  
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Supplementary Table 1. Description of the breast cancer data sets 

 

Supplementary table 2: IPC data set histoclinical data 

 

Supplementary Table 3. List of 368 genes differentially expressed 

between basal MBC and nonMBC. 

 

Supplementary Table 4: Application of six major prognostic breast 

cancer signatures to our pooled series 

 

Supplementary Table 5. Ingenuity canonical pathways overrepresented 

in the good-prognosis and the poor-prognosis basal breast cancer 

subgroups.  
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 Supplementary Figure 1. GSEA shows correlations between our SVM 

model-based classification of basal breast cancers and cell-type specific gene 

expression signatures of leucocytes. 

A/ Results of GSEA with the five tested signatures. NES, normalized enrichment 

score; FDR, false discovery rate. 

B/ Enrichment plots for the three significant signatures: B-cell, T-cell, and CD8+ T-

cell (from left to right).  
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FIGURE LEGENDS 

 

Fig. 1 Classification of basal MBC and nonMBC based on the 368-gene 

SVM model 

A/ Learning set. SVM model-based classification of 37 IPC basal breast cancers (16 

nonMBC, and 21 MBC) from which we had generated the 368-gene signature and 

defined the SVM model [28]. Top: cross-table. Middle: Box plots of the SVM 

prediction score in MBC and nonMBC samples. The dashed horizontal line indicates 

the threshold 0 that separates two subgroups of samples: subgroup 1 (above the 

line) and subgroup 2 (under the line). Bottom: Classification of samples based on the 

SVM score. The vertical orange line indicates the threshold 0 that separates the two 

subgroups of samples (left of the line, subgroup 1; right to the line, subgroup 2). The 

histological type and the SVM score are color-coded as indicated. B/ Validation set. 

The legend is similar to A, but applies to the validation set (basal samples from [30]). 

 

Fig. 2 Disease-free survival of the two basal breast cancer subgroups 

A/ The 368-gene SVM model was applied to 466 basal breast cancers and defined 

two subgroups 1 and 2. B/ Kaplan-Meier disease-free survival curves of the two basal 

breast cancer subgroups defined in A.  
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Table 2. Histoclinical characteristics of the two basal tumor subgroups  

Characteristics (N) 

Subgroup 1 Subgroup 2 

p-value N=217 N=249 

N (% of evaluated cases) 

Age (378)   4.95E-03 

     ≤ 50 years 115 (65%) 100 (50%)  

     > 50 years 63 (35%) 100 (50%)  

Pathological tumor size pT (370)   0.25 

Table 1: Molecular subtypes and histoclinical correlations    

              

Characteristics (N) 

Basal ERBB2 Luminal A Luminal B Normal-like 

p-value N=466 N=280 N=653 N=359 N=276 

N (% of evaluated cases) 

Age (1661)      3E-05 

     ≤ 50 years 215 (57%) 139 (58%) 231 (43%) 149 (52%) 99 (46%)  

     > 50 years 163 (43%) 99 (42%) 312 (57%) 137 (48%) 117 (54%)  

Histological type (558)      1.46E-02 

     ductal 135 (92%) 49 (92%) 149 (79%) 96 (85%) 41 (72%)  

     lobular 4 (3%) 0 (0%) 17 (9%) 6 (5%) 7 (12%)  

     mixt 3 (2%) 1 (2%) 13 (7%) 6 (5%) 5 (9%)  

     other* 5 (3%) 3 (6%) 9 (5%) 5 (4%) 4 (7%)  

Pathological tumor size pT (1622)      1.00E-05 

     pT1 105 (28%) 90 (38%) 231 (43%) 90 (32%) 98 (49%)  

     pT2-4 265 (72%) 144 (62%) 306 (57%) 190 (68%) 103 (51%)  

Pathological lymph node status pN (1664)      2.77E-03 

     negative 260 (65%) 99 (51%) 346 (62%) 173 (61%) 156 (68%)  

     positive 138 (35%) 96 (49%) 213 (38%) 111 (39%) 72 (32%)  

Tumor grade (1658)      1.00E-05 

     SBR 1 14 (4%) 16 (7%) 148 (28%) 30 (10%) 69 (32%)  

     SBR 2-3 364 (96%) 226 (93%) 389 (72%) 258 (90%) 144 (68%)  

ER IHC status (1923)      1.00E-05 

     negative 340 (78%) 110 (42%) 68 (11%) 25 (7%) 71 (28%)  

     positive 100 (22%) 155 (58%) 556 (89%) 319 (93%) 179 (72%)  

PR IHC status (657)      1.00E-05 

     negative 132 (85%) 47 (64%) 42 (18%) 30 (26%) 28 (33%)  

     positive 24 (15%) 27 (36%) 187 (82%) 84 (74%) 56 (67%)  

ERBB2 IHC status (375)      1.00E-05 

     negative 89 (86%) 14 (40%) 119 (94%) 66 (82%) 26 (84%)  

     positive 14 (14%) 21 (60%) 7 (6%) 14 (18%) 5 (16%)  

P53 IHC status (194)      1.00E-05 

     negative 20 (40%) 4 (27%) 61 (82%) 24 (71%) 16 (76%)  

     positive 30 (60%) 11 (73%) 13 (18%) 10 (29%) 5 (24%)  

KI67 IHC status (202)      1.00E-05 

     negative 5 (8%) 2 (11%) 40 (57%) 5 (14%) 6 (35%)  

     positive 55 (92%) 16 (89%) 30 (43%) 32 (86%) 11 (65%)  

Follow-up, months (1752)      0.1374** 

     median 81 77 89 91 95  

Disease-free survival (1752)      6.91E-13 

     5-year DFS 60% (392) 60% (243) 80% (578) 57% (304) 72% (235)   

N, number of tumor samples - out of the 2034 samples - with available information for the corresponding characteristic  

*, other types include tubular (n=12), metaplastic (n=6), mucinous (n=5), apocrine (n=1), histiocytoid (n=1) and unknown (n=1) 

**, ANOVA test       
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     pT1 44 (25%) 61 (31%)  

     pT2-4 130 (75%) 135 (69%)  

Pathological lymph node status pN (398)   0.25 

     negative 129 (68%) 131 (63%)  

     positive 60 (32%) 78 (37%)  

Tumor grade (378)   0.43 

     SBR 1 5 (3%) 9 (4%)  

     SBR 2-3 172 (97%) 192 (96%)  

ER IHC status (440)   9.14E-04 

     negative 181 (84%) 159 (71%)  

     positive 34 (16%) 66 (29%)  

PR IHC status (156)   0.82 

     negative 77 (86%) 55 (83%)  

     positive 13 (14%) 11 (17%)  

ERBB2 IHC status (103)   1.00 

     negative 58 (87%) 31 (86%)  

     positive 9 (13%) 5 (14%)  

P53 IHC status (50)   0.39 

     negative 13 (46%) 7 (32%)  

     positive 15 (54%) 15 (68%)  

KI67 IHC status (60)   0.19 

     negative 1 (3%) 4 (14%)  

     positive 30 (97%) 25 (86%)  

Follow-up, months (392)   1.18E-02 

     median 94 62  

Disease-free survival (392)   9.93E-05 

     5-year DFS 71% (177) 50% (215)   

 

 

Table 3A: Univariate and multivariate DFS analyses by Cox regression of basal tumors       

                  

 Univariate Analysis  Multivariate Analysis 

  N Hazard Ratio 95% CI p-value   N Hazard Ratio 95% CI p-value 

Age > 50 years (vs ≤ 50 years) 323 1.04 0.73-1.47 0.83      

ER IHC status positive (vs negative) 385 0.75 0.51-1.11 0.15      

PR IHC status positive (vs negative) 106 0.68 0.24-1.97 0.48      

Pathological tumor size pT2-4 (vs pT1) 316 1.38 0.92-2.08 0.12      

Pathological lymph node status positive (vs negative) 343 1.6 1.12-2.28 0.0095  343 1.5 1.05-2.14 0.0271 

ERBB2 IHC status positive (vs negative) 69 1.19 0.28-5.13 0.82      

Tumor grade SBR 2-3 (vs SBR 1) 318 2.04 0.65-6.42 0.22      

KI67 IHC status positive (vs negative) 60 0.46 0.10-2.00 0.30      

SVM classifier-based subgroup 1 (vs sugroup 2) 392 0.53 0.38-0.73 0.000127   343 0.52 0.36-0.74 0.000393 

N is the number of patients with data available regarding the analyzed variables        

          

Table 3B: Similar, but including two immune signature-based classifications (Immune Response IR and T-cell metagene) as additional variables 

                  

 Univariate Analysis  Multivariate Analysis 

  N Hazard Ratio 95% CI p-value   N Hazard Ratio 95% CI p-value 

Age > 50 years (vs ≤ 50 years) 323 1.04 0.73-1.47 0.83      
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ER IHC status positive (vs negative) 385 0.75 0.51-1.11 0.15      

PR IHC status positive (vs negative) 106 0.68 0.24-1.97 0.48      

Pathological tumor size pT2-4 (vs pT1) 316 1.38 0.92-2.08 0.12      

Pathological lymph node status positive (vs negative) 343 1.6 1.12-2.28 0.0095  343 1.56 1.08-2.24 0.0160 

ERBB2 IHC status positive (vs negative) 69 1.19 0.28-5.13 0.82      

Tumor grade SBR 2-3 (vs SBR 1) 318 2.04 0.65-6.42 0.22      

KI67 IHC status positive (vs negative) 60 0.46 0.10-2.00 0.30      

IR signature Good (vs Poor) 392 0.76 0.56-1.04 0.0913      

T-cell metagene Good (vs Poor) 392 0.6 0.43-0.84 0.0031  343 0.75 0.50-1.11 0.15 

SVM classifier-based subgroup 1 (vs sugroup 2) 392 0.53 0.38-0.73 0.000127   343 0.58 0.39-0.85 0.006140 

N is the number of patients with data available regarding the analyzed variables        

 

 

Table 4: Prognostic classification of breast cancers using the 368-gene classifier and six prognostic breast cancer signatures 

           

Pronostic signatures 
All breast cancers Basal   ERBB2   

N  HR* [95% CI]  p-value  N  HR* [95% CI]  p-value  N  HR* [95% CI]  p-value  

MBC signature Subgroup 2  vs 1 1752  1.00 [0.83-1.20] 0.98 392  1.89 [1.37-2.63] 0.00013 243  1.19 [0.73-1.79] 0.4 

70-gene signature Poor  vs Good 1752  2.36 [1.90-2.93] 6.7E-15 392  NaN  NaN 243  1.37 [0.60-3.12] 0.46 

Genomic grade index  Poor  vs Good 1752  2.15 [1.82-2.54] <1E-16 392  0.55 [0.23-1.35] 0.19 243  1.15 [0.71-1.88] 0.57 

76-gene signature  Poor  vs Good 1728  1.78 [1.51-2.09] 2E-12 387  1.37 [0.98-1.92] 0.067 238  1.77 [1.18-2.65] 5.60E-03 

Recurrence score  Intermediate  vs Good 
1752 

 1.76 [1.40-2.21] 1.20E-06 
392 

Inf [0-Inf] 0.99 
243 

 0.63 [0.20-1.97] 0.42 

  Poor  vs Good  2.22 [1.85-2.67] <1E-16 Inf [0-Inf] 0.99  0.97 [0.35-2.63] 0.95 

Wound response signature  Poor  vs Good 1752  1.91 [1.55-2.35] 1.4E-09 392  1.33 [0.19-9.50] 0.78 243  0.94 [0.43-2.02] 0.87 

Invasiveness gene signature  Poor  vs Good 1752  1.64 [1.40-1.91] 6.9E-10 392  0.76 [0.52-1.11] 0.15 243  1.43 [0.88-2.33] 0.15 

           

           

Pronostic signatures 
Luminal A   Luminal B   Normal   

N  HR* [95% CI]  p-value  N  HR* [95% CI]  p-value  N  HR* [95% CI]  p-value  

MBC signature Subgroup 2  vs 1 578  0.89 [0.44-1.82] 0.75 304  0.89 [0.60-1.35] 0.59 235  0.79 [0.25-2.50] 0.7 

70-gene signature Poor  vs Good 578  1.54 [1.11-2.13] 9.50E-03 304  2.98 [1.39-6.36] 4.90E-03 235  2.85 [1.68-4.84] 9.90E-05 

Genomic grade index  Poor  vs Good 578  2.64 [1.85-3.78] 1.10E-07 304  2.21 [1.39-3.52] 7.90E-04 235  3.02 [1.75-5.21] 7.20E-05 

76-gene signature  Poor  vs Good 570  1.44 [1.03-2.00] 3.20E-02 303  1.83 [1.05-3.17] 3.20E-02 230  1.34 [0.82-2.20] 0.24 

Recurrence score  Intermediate  vs Good 
578 

 1.74 [1.19-2.54] 4.00E-03 
304 

 1.16 [0.75-1.77] 0.51 
235 

 2.22 [1.31-3.74] 2.90E-03 

  Poor  vs Good  2.02 [1.16-3.51] 1.30E-02  1.79 [1.21-2.65] 3.50E-03  3.32 [1.88-5.86] 3.30E-05 

Wound response signature  Poor  vs Good 578  1.49 [1.06-2.09] 2.10E-02 304  1.18 [0.52-2.66] 0.7 235  1.97 [1.26-3.08] 3.00E-03 

Invasiveness gene signature  Poor  vs Good 578  1.69 [1.16-2.46] 5.90E-03 304  1.41 [1.00-1.99] 0.052 235  1.45 [0.86-2.46] 0.17 

           

*HR, hazard ratio           
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