N
N

N

HAL

open science

VDM semantics of programming languages: combinators
and monads
Peter D. Mosses

» To cite this version:

Peter D. Mosses. VDM semantics of programming languages: combinators and monads.

Aspects of Computing, 2010, 23 (2), pp.221-238. 10.1007/s00165-009-0145-4 . hal-00583552

HAL Id: hal-00583552
https://hal.science/hal-00583552

Submitted on 6 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Formal

https://hal.science/hal-00583552
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects of Computing

VDM Semantics of Programming
Languages: Combinators and Monads

Peter D. Mosses

Department of Computer Science, Swansea University, UK
E-mail: p.d.mosses@swan.ac.uk

Abstract. VDM was developed in the early 1970s as a variant of denotational semantics. VDM descrip-
tions of programming languages differ from the original Scott—Strachey style by making extensive use of
combinators which have a fixed operational interpretation. After recalling the main features of denotational
semantics and the Scott—Strachey style, we examine the combinators of the VDM specification language,
and relate them to monads, which were introduced more than 15 years later. We also suggest that use of
further monadic combinators in VDM could be beneficial. Finally, we provide an overview of published VDM
semantic descriptions of major programming languages.

Keywords: Programming language semantics; Denotational semantics; VDM; Combinators; Monads.

1. Introduction

The Vienna Development Method, VDM, is a major framework for the formal specification and rigorous
development of software systems. In this paper, we focus on the use of VDM for semantic description of
programming languages, which was the original motivation for the framework.

VDM evolved from the operational semantics framework known as VDL, the Vienna Definition Language
[Weg72], in the early 1970s [Jon01]. The main change in the transition from VDL to VDM was the adoption
of the fundamental principles of denotational semantics, which had already been established by Dana Scott
and Christopher Strachey [SSTI1].

One of the innovations in the VDM style of denotational semantics was the introduction of a number
of combinators having a fixed operational interpretation. We shall see that the combinators introduced in
VDM for the definition of PL/I in 1974 [Jon01] are closely related to the monadic style of denotational
semantics, which was introduced by Eugenio Moggi only in 1989 [Mog89]. The VDM combinators were first
defined to give a side-effect monad, and then redefined to give a monad that also supports exception raising
and handling — essentially by using a monad transformer. In the later Meta-IV and VDM-SL versions of
VDM, however, a seemingly minor difference in the definitions of the combinators meant that they no longer
provided an exception monad.

Correspondence and offprint requests to: P. D. Mosses

2 P. D. Mosses

In fact Scott and Strachey had already introduced combinators that determine a side-effect monad in
their seminal paper in 1971 [SST1]. But after the introduction of continuations in 1974 [SW00], combinators
were generally avoided in the Scott—Strachey style, since denotations could be expressed easily enough using
the corresponding patterns of A-abstraction and application.

The contribution of this paper is elucidation of the relationship between various styles of denotational
semantics that were introduced in the 1970s and '80s. Since readers cannot be assumed to be familiar with
the details of these styles, we shall start by giving an introductory overview of each, recalling the main con-
cepts and notation and highlighting the distinguishing features: Sect. [2] recalls the fundamental principles of
denotational semantics; Sect. [3|illustrates the original Scott—Strachey style adopted in denotational descrip-
tions at Oxford, both before and after the introduction of continuations; Sect. [4 illustrates the VDM style,
explaining the main differences between it and the Scott—Strachey style; and Sect. [5| presents the concepts
and notation used in the monadic style of denotational semantics. Section [6] then considers the relationship
of monads both to the Scott—Strachey style and to the VDM style; it also examines the possibility of using
monadic notation to a greater extent in VDM. Section [7] gives an overview of published VDM semantic
descriptions of major programming languages, and proposes to establish an online repository for semantic
descriptions of programming languages in all frameworks. Section [§| concludes by summarising the main
points.

This is a revised and extended version of a paper published in the Bjgrner—Zhou Festschrift [Mos07].
The main changes are as follows: detailed definitions of the mentioned monad transformers have been added
in Sect. [5} the previous Sect. 5.1.3 is now Sect. [6] and a suggestion for how an exception monad could be
defined in Meta-IV has been added; and the main contribution of the paper has been made more explicit.

2. Denotational Semantics

The development of denotational semantics was initiated by Strachey in the 1960s [Str66], [Str00]. Originally
it was based on mapping phrases of programs to the untyped)\—calculusﬂ At the time, it was conjectured
that there was no mathematical model of self-applicable functions, which were allowed by the untyped A-
calculus and used to define the so-called paradoxical combinator Y (needed by Strachey for expressing the
semantics of loops and recursive procedures). In 1969, Scott, while on sabbatical and visiting Strachey in
Oxford, discovered how to construct the missing model, and developed a theory of domains, providing solid
foundations for denotational descriptions [Sco70} [SS71].

This section recalls the fundamental principles of denotational semantics. Details specific to the original
Scott—Strachey style, and the differences between the VDM and Scott—Strachey styles, will be covered in the
following two sections.

A denotational semantics of a programming language maps each phrase of the language to its denotation.
The denotation represents the contribution of the phrase to the overall behaviour of any complete program
that contains it; in particular, the denotation of a complete program represents its entire behaviour when
run with particular input. The denotation of a phrase is composed from the denotations of its subphrases,
and is independent of its context.

A programming language is essentially just a set of strings (the texts of the syntactically legal programs)
together with some criteria for implementations of the language to be regarded as conforming. A language
can have many different denotational semantics, depending on the choice of:

e phrase structure: how programs can be uniquely decomposed into phrases;

e program behaviour: when programs are regarded as equivalent; and
e denotations: how contributions to behaviour are represented by abstract entities.

The above differences concern the semantic function that maps phrases to denotations, and are independent
of the framework used to specify that function. Let us consider them in a bit more detail.

Phrase structure: A set of strings can have many different phrase structures. The choice of a particu-
lar phrase structure determines the compositional structure of denotations, which may in turn affect the
possibilities for choosing denotations.

1 Peter Landin’s approach [Lan65] was superficially similar, but involved an extended A-calculus with imperative features.

VDM: Combinators and Monads 3

For example, consider the set of binary numerals: a string of Os and 1s could be grouped to the left or to
the right (or even both ways). Suppose that the leftmost digit of a binary numeral is the most significant,
and that the ‘behaviour’ of a numeral is its numerical value; then grouping to the left is the obvious choice
(since the value of a compound numeral such as 100 can then be computed by doubling the value of 10,
whereas with grouping to the right the value of 100 depends on the length of 00 as well as on its value, so
denotations would then be pairs of numbers).

Phrase structure for use in denotational semantics is specified by some form of context-free grammar,
together with a correspondence relating program texts uniquely to derivation trees according to the grammar.
The grammar could be an unambiguous concrete grammar, involving the symbols used in program texts;
but usually it is an abstract grammar, defining a set of abstract syntax trees whose structure is significantly
simpler than that of derivation trees for a concrete grammar. The relationship between program texts and
abstract syntax trees is generally left to be inferred from the use of suggestive symbols in the abstract
grammar, augmented by some informal explanations.

Semantic functions, mapping phrases to their denotations, are defined on abstract syntax trees. The
semantic function for a particular language is specified inductively, by giving for each production of the
abstract grammar a semantic equation of the form:

M- Vi Vo] = FMA], ..., M[Vi]) W)

where V7, ..., V, are metavariables ranging over sets of abstract syntax trees, and f expresses how the denota-
tions M[V4], ..., M[V,] of the subphrases are composed to give the denotation of the phrase -V -+ V, -+ -".
The double brackets ‘[...]” enclose the notation expressing syntactic phrases of the described programming
language, separating it from the notation used for expressing the mathematical entities used as denotations.

Program behaviour: Program behaviour is an abstract representation of what is supposed to be ob-
servable when programs are compiled and run. It corresponds to the behaviour exhibited by conforming
implementations of the programming language.

Compilation usually involves checking for consistency between declaration and use of identifiers through-
out the program; the abstract behaviour might then include a list of error messages, or merely a boolean
value.

When running the program, its input and output are regarded as observable, so its abstract behaviour
always has to represent the input-output relationship. In contrast, potentially observable properties such as
how long it takes to run the program (when it terminates), how much memory is required, which machine
is used, etc., are generally regarded as irrelevant to the conformance of implementations, and therefore not
included in the abstract behaviour of programs.

Denotations: After a phrase structure has been chosen, the denotations of phrases can be specified, subject
only to the following constraints:

e the denotation of each phrase is composed from the denotations of its subphrases, and
e the abstract behaviour of each program is determined by its denotation.

Denotations are elements of domains. The mathematical nature of domains as particular kinds of partially-
ordered sets (each having a least element, and closed under limits) is of much theoretical interest, but does not
substantially affect how denotational semantic descriptions are formulated in practice. The crucial properties
provided by Scott’s domain theory [Sco70], [SST1] are that both domains and elements of domains can be
defined recursively as (least) solutions of systems of equations:

e Domain equations involve domain constructors (e.g., domains of continuous functions, tuples, tagged
values) and given domains (truth values, integers, etc.). The least solution of a system of domain equations
can be understood as the limit of a series of approximations, starting from trivial domains. Recursive
domain equations are needed for denotations of phrases involving self-applicable procedures (which are
found not only in the untyped A-calculus, but also in many imperative programming languages).

e FElement equations are expressed using A-notation. The least solution of an element equation z = f(z) in
a domain D is a fixed point of the function f on D, and can be understood as the limit of the approxi-
mations f™(Lp), where L p is the least element of D, representing nontermination or undefinedness. The
function Y mapping each function f on D to its least fixed point Y'(f) corresponds to the paradoxical

4 P. D. Mosses

combinator used in Strachey’s early work, and is needed for expressing the denotations of loops and
recursive procedures.

Two phrases (of the same sort) are interchangeable when replacing one of them by the other in any
program does not affect the overall program behaviour. Clearly, phrases that have the same denotation
are necessarily interchangeable. In the other direction, denotations are said to be fully abstract when two
interchangeable phrases always have the same denotation. When denotations are less than fully abstract, two
phrases with different denotations may in fact be interchangeable. Although full abstraction is desirable, it can
be difficult (sometimes even impossible) to obtain using standard frameworks for specifying denotationsﬂ
and lack of full abstraction does not prevent the use of denotational semantics for defining the class of
conforming implementations of a language.

The denotation of a phrase is generally a function of an environment p € Env that represents the bindings
created by the context of the phrase. Environments are themselves functions, mapping identifiers to the
entities to which they are bound. Landin and Strachey’s original approach in the 1960s was to map program
identifiers to bound variables in the A-calculus, and to map blocks with local declarations to applications of
A-abstractions; Scott suggested to use explicit environments in 1969, and they were introduced and illustrated
in his seminal joint paper with Strachey in 1971 [SST1].

In the semantics of imperative languages, the denotation of a phrase is moreover a function of a store
o € S that represents the effects of assignments to variables. Stores generally include functions mapping
each (currently allocated) location o € L to the value § € V last stored in it. Simple variable declarations
compute environments in which variable identifiers are bound to locations; inspecting the value of a simple
variable involves looking up the location to which the identifier is bound in the environment, then looking
up the current value of that location in the store.

3. The Scott—Strachey Style

Strachey established the Programming Research Group in Oxford in 1965. He was already developing his
own approach to semantics [Str66] (see also [Str00, Sect. 3.3]). Following Scott’s discovery of a model for the
untyped A-calculus [Sco70] while on sabbatical at Oxford in 1969, and Strachey’s subsequent collaboration
with Scott in the early 1970s [SST1], the development of denotational semantics accelerated rapidly. All in
Strachey’s group — and many outside it — shared his firm conviction that the denotational approach would now
do for semantics what BNF had already done for syntax (as witnessed by the Algol 60 Report |BBGT63]) and
that within a few years, all major programming languages should have been given a denotational semantics.

Initial case studies of denotational descriptions of major programming languages (e.g. Algol 60 [Mos74],
Pascal [Ten7]) were encouraging. The distinctive Scott—Strachey style is particularly concise, and it was
adopted in many textbooks and articles on semantics, e.g. [Mos90, [Sch86 [StoT77, [Ten76]. The conciseness
facilitates (pencil and paper) proofs about semantic properties and is strongly favoured by many theoreti-
cians — but unfortunately, it does not seem to appeal much to practitioners such as compiler writers and
programmers. In contrast, the VDM style appears to be relatively palatable to practitioners; we shall con-
sider a possible reason for this difference in Sect.[d} The only currently used language that has a published
Scott-Strachey style denotational semantics is Scheme [FMOQ9].

The original Scott—Strachey style of denotational semantics described here is sometimes referred to as
‘the Oxford style’. However, that could be confusing, since a rather different style of denotational semantics
was also developed at Oxford, by Tony Hoare and He Jifeng, in connection with their Unifying Theories of
Programming (UTP) framework [HH98]. The characteristic features of that approach are quite different from
those of the Scott—Strachey style: in UTP, denotations of programs are predicates that relate initial states
to final states (rather than state transformation functions), and the treatment of iteration and recursion is
not based on Scott’s domain theory (although notions of continuity and least fixed points are still required).

Let us now look at some simple examples in the Scott—Strachey style, which have been selected to
illustrate the modest extent to which combinators were used.

2 Fully abstract denotations can always be defined as equivalence classes of phrases.

VDM: Combinators and Monads 5

v € Cmd commands
e € Exp expressions
v u= dummy |71 | €=>Y0,71 | €0i=E1 | - ..
€ = ...

Fig. 1. Abstract syntax fragment, Scott—Strachey style

Table 1. Operations on arbitrary domains

pairing P:A— (B—(AxB)) (Pa)b)=(ab)
pair projections My:(AxB)— A Mo(a,b) =a
M :(AxB)— B Mi(a,b) = b
sum injections _in(A+B): A— (A+B)
_in(A+B): B — (A+B)
sum projections _|A: (A+B) — A (ain(A+B))|[A=a
(bin(A+B))|A= 1
_|B:(A+B) — B (ain(A+B))|B= L
(bin(A+B))|B =10
least fixed points Y:(D—D)—D Y(f)=fY(f))
identity I:D—D I(d) =

3.1. Abstract Syntax

Recall that abstract syntax trees are essentially derivation trees for an abstract context-free grammar. The
Scott—Strachey style of specifying abstract syntax, illustrated in Fig. [I} is to give a simplified BNF-like
grammar using the same terminal symbols as in concrete syntax: reserved words, mathematical signs, and
separators. This makes the intended mapping from program texts to abstract syntax trees rather easy to
imagine, even though there is usually some grouping ambiguity.

The nonterminal symbols of the grammar are written as metavariables ranging over the corresponding
sets of abstract syntax trees; metavariables over the same set are distinguished by subscripts and/or primes.

3.2. Domains and Operations

The domain constructors used in the Scott—Strachey style include:

e A x B: Cartesian product domain, with elements of the form (a,b) for a € A,b € B;

e A+ B: separated sum domain, with elements from the disjoint union of A and B, together with a fresh
least element;

e A — B: continuous function domain, with elements expressed by A-abstractions of the form Az.t, where
x is a variable ranging over A, and ¢ expresses elements of B (usually involving x).

The above domains are equipped with some natural operations. Scott and Strachey [SSTI] used those shown
in Table [T} They also introduced the two combinators shown in Table [2] simply as abbreviations. Finally,
they introduced the operations shown in Table [3] in connection with the given domain T of truth values
and an (unspecified) domain S of stores with locations « € L and stored values 8 € V. Later papers by
other authors introduced considerably more auxiliary notation — mainly to improve the readability of the
M-expressions used to define denotations.

Table 2. Combinators

plain composition fog:A—-C when f: B—-C, ¢g:A— B
(fog)(a) = f(g(a))
curried composition fx*xg: A — C when f: By — (B1 — C), g:A— (Bo X B1)

(f*g)(a) = f(bo)(b1) ~ when g(a) = (bo,b1)

6 P. D. Mosses

Table 3. Operations on given domains

truth values T' Cond: (Ax A) — (T — A) Cond(ag, a1)(true) = agp
Cond(ao, a1)(false) = a1

stores S Contents: L — (S — V) Contents(a)(o) = the value in o at «
Assign: (Lx V) — (S —8) Assign(a, 3)(c) = o’ s.t. the value at « is 3,
otherwise the same values as in o

Table 4. Reversed combinators

reverse plain composition fog:A—=C when f: A— B, g:B—C
(fog)(a) =g(f(a))
reverse curried composition fxg: A —C when f: A— (Box B1), ¢g:Byg— B —C

(
(/% 9)(a) = glbo)(b1) when F(a) = (bo. by

3.3. Denotations

Let us first recall how Scott and Strachey defined denotations in their joint paper in 1971 [SST1], before
reviewing the more commonly used continuation-passing style.

3.3.1. Direct Semantics

Scott and Strachey’s choice of denotations in [SS71] is called direct semantics. The basic idea is that denota-
tions of commands are functions from environments to store transformers, i.e. elements of Fnv — (S — S).
The semantic function C maps commands to their denotationsEI

C:Cmd— Env— S — S (2)

Similarly, the denotations of expressions (whose evaluations might have side-effects) should be functions
from environments to value-returning store transformers. The semantic function £ maps expressions to their
denotations:

E:FExp— Fnv—S—>VxS (3)

Using the combinators defined in Table [2| the denotations of various commands and expressions can be
expressed without explicit reference to the store o:

Clvos il = Ap. Clmil(p) o Clvol(p) (4)
Cle=>v0,m] = Ap. (AB.Cond(C[0] (p), C[11](p))(BIT) * E[] (p) (5)

However, Scott and Strachey were apparently not satisfied with the relatively complicated notation required
for expressing the denotations of assignment commands, and resorted to an informal explanation of the steps
involved. Here is how they might have written the formal deﬁnitionﬁ

Cleo:=e1] = Ap-(ABo.(AB1.Assign(Bo|L, 51)) * E[1](p)) * E[eo] (p) (6)

Reading the above equation involves associating the values computed by the expressions ¢ and €; with the
A-abstractions on (g, respectively 31, which is not immediately obvious without close inspection of the term.

Suppose, however, that we were to use the converses & and * of the combinators o and *, taking their
operands in the reverse order, as defined in Table [} The same denotations that we defined above can now
be expressed as follows:

Clhosml = Ap- Clol(p) 5 Clml(p) (7)
Cle=>v0,m] = Ap- E[e](p) * AB-Cond(C[10](p), Cl1](p))(BIT) (8)
Cleo:=e1] = Ap- E[eo](p) * ABo-E[e1](p) * AB1.Assign(Bo|L, 1) (9)

3 Henceforth we exploit the usual convention that A — B — C is grouped as A — (B — C),and A — Bx C as A — (B x O).
4 For simplicity, we assume that dereferencing of variables is made explicit in the abstract syntax of expressions.

VDM: Combinators and Monads 7

This minor change of notation has allowed the terms to be read more operationally, from left to right, with
the A-abstractions simply naming the values computed by the preceding terms. (It also substantially reduces
the number of required parentheses.) In Sect. we shall consider a further aspect of these combinators.

3.3.2. Continuation Semantics

Scott and Strachey’s original denotations for commands and expressions, based on store transformers, can
represent both normal termination and nonterminating behaviour. To represent abrupt termination, due to
escapes (such as break or return) and jumps to labels, the denotations need to be enriched. The standard
technique in the Scott—Strachey style (often used also for languages that do not involve abrupt termination)
is to replace store transformers by continuation transformers, where continuations are themselves some
kind of functions on stores [SWO00]. The semantics of abrupt termination involves ignoring the argument
continuation and applying a different one. As we shall see in the next section, the VDM style avoids the
use of continuations by letting store transformers return extra values that indicate whether termination is
normal or abrupt, and by introducing combinators to propagate and detect the extra values; see [Jon82)] for
a detailed comparison of the two techniques.

Any ordinary store transformer 6 can be converted to a continuation transformer which, given a con-
tinuation 6’ returns the continuation that maps any store o to the result of 6'(f(c)). This continuation
transformer can be expressed by A0’. 6’ o . The original store transformer can be retrieved from the contin-
uation transformer by applying it to the identity continuation.

Denotations of commands now map environments to continuation transformers:

C:Cmd— Env— C —C

where the domain C' of command continuations 6 can be defined as S — A for any domain A (e.g. A could
simply be S). The denotation of command sequencing using continuations is defined as follows:

Clvos7] = Ap-A0. Clvol(p){CI(p){0}} (10)

(Continuation arguments are conventionally grouped using braces ‘{...} instead of ordinary parentheses.)
The domain K of expression continuations x is defined as V' — C' the continuation is normally applied to
the value of the expression. Denotations of expressions are given by the semantic function:

E:Ep— Env— K —-C

The continuation semantics of conditional commands is defined by:

Cle=>v0,ml = Ap-A8. E[e] (p){AB. Cond(Clr0](p), Clml () (BIT){6}} (11)
and that of assignment commands by:
Cleo:=¢e1] = Mo M0. E[eo](p){\Bo-E[e1](p){NB1. Assign’ (Bo| L, £1)}} (12)

where Assign’ : L x V — C — C is the continuation-passing version of Assign.

An alternative to the use of braces is to introduce an infix operation corresponding to application, but
grouping to the right. Bob Tennent [Ten76] and Mike Gordon [Gor79] used semicolons for this purpose,
writing e.g.:

Clvos il = Ap-A8. Clvol (p); Clml(p); 0 (13)

However, we shall see that fundamentally, this operation is of quite a different nature from the combinators
introduced by Scott and Strachey.

4. The VDM Style

This section focusses on the distinctive features of the VDM style of denotational semantics, which was
already quite stable by 1974 [BBH"84]. The illustrations and explanations given here are based primarily
on the presentation of VDM in the book by Dines Bjorner and Cliff Jones from 1982 [BJ82], since it is
essentially that version of the VDM specification language, known as Meta-IV, which has been used for almost
all published VDM semantic descriptions of major programming languages (see Sect. |z| for references). A

8 P. D. Mosses

Stmt = Compound | If | Assign |
Ezpr = ...

Compound :: Stmt*
If :: Ezpr Stmt Stmt
Assign :: Ezpr Ezpr

Fig. 2. Abstract syntax fragment, VDM style

subsequent version, VDM-SL, was standardised by ISO in 1996 (see [PL.92]), and used for defining the formal
semantics of Modula-2 (see [PS96]). Minor differences between Meta-IV and VDM-SL will be indicated below
when introducing the notation.

In contrast to the Scott—Strachey style of denotational semantics, illustrated in the previous section,
the VDM style is quite verbose, generally using (abbreviated) English words rather than Greek letters and
mathematical signs. Another stylistic difference is that in VDM, the notation used for abstract syntax (in-
herited from VDL) does not involve the concrete symbols of the described language. The VDM style appears
to have been more successful than the Scott—Strachey style for describing larger programming languages.
The author’s conjecture is that this is a consequence primarily of the much greater use of combinators in
VDM, together with their fixed operational interpretation. However, both styles suffer from a lack of explicit
modular structure; this issue has been addressed by the monadic style of denotational semantics, which is
discussed in Sect. Bl

4.1. Abstract Syntax

The VDM style of specifying abstract syntax is illustrated in Fig. 2l The absence of terminal symbols from
the concrete syntax of the described language makes the mapping from program texts to abstract syntax trees
somewhat less obvious than in the Scott—Strachey style, although the words used as nonterminal symbols in
the abstract syntax are usually quite suggestive.

Another difference from the Scott—Strachey style is that the nonterminal symbols of the abstract grammar
are the names of the sets of abstract syntax trees themselves, rather than metavariables over those sets.
Moreover, VDM requires a separate nonterminal to be introduced for each kind of statement, expression,
etc. A grammar rule of the form ¥ = N1 |... |Nm defines N to be the union of N1, ..., Nm; in contrast, a rule
of the form N :: N1...Nm defines N to be the set of trees constructed by terms of the form mk-N(t1, ..., tm)
— essentially, the roots of these trees are labelled by the name N. The use of Stmt* in the abstract grammar
is reminiscent of regular expressions in concrete syntax, but it is interpreted as the set of tuples of Stmt
trees, so the trees in the set Compound are constructed by terms of the form mk-Compound(si,...,sn) for
all n > 0.

An interesting feature of the VDM treatment of abstract syntax (not illustrated here) is that it allows
trees to have sets and maps as components, as well as tuples. Sets are used when the order of the components
of a node is (semantically) irrelevant; maps can be used to reflect that declarations or formal parameters
bind distinct identifiers.

4.2. Domains and Operations

The domain constructions available in VDM (both Meta-IV and VDM-SL, except where indicated) include:

e A X B: a smash product domain, whose non-_1 elements are of the form <a, b> for non-1L a € 4, b € B;

e 4 | B: a union domain, whose non-1 elements are of those of 4 and B (when 4 and B are ‘union-
compatible’);

[4]: an optional domain, containing the elements of 4 and the special element nil (used to indicate the
absence of an element of 4); o

e D :: Al...An:arule declaring a tree domain D, whose non- | elements are of the form mk-D (a1, ..., an)
for non-1 af € 41, ..., an € An;

VDM: Combinators and Monads 9

e A— B and A B: total, respectively partial function domainsEI with elements expressed by A-abstractions
of the form Az. t where z is a variable ranging over 4, and t expresses elements of B (usually involving z);
and

e A4 B: a finite map domainﬂwith elements of the form [al+— b1,...,an+— bn] fornon-1 al,...,an¢€
4 and b1,...,bn € B (when 4 is flat).

VDM provides also various further domain constructions, as well as some basic domains (booleans, numbers,
characters and tokens).

A distinctive feature of VDM is its imperative combinators, which are used for expressing state transfor-
mations, i.e. functions from STATE to STATE (where STATE generally includes STORE, mapping locations to
their assigned values, as a component). Continuations are not normally used in VDM semantics [Jon82].

A significant difference between these combinators and those introduced by Scott and Strachey is that
each combinator provided by VDM has a fized operational interpretation, whereas its definition in A-notation
varies according to what kind of transformations are to be composed. In contrast, each combinator used in
the Scott—Strachey style has a fized definition in A-notation, but its operational interpretation varies.

For example, the VDM combinator written ‘s1;s2’ always represents sequential composition of state
transformations (starting from s1, and continuing with s2 when s1 terminates normally) and its definition
depends on that of the domain of state transformations. In the Scott—Strachey style, in contrast, the combi-
nator fog is defined as an abbreviation for Az.f(g(x)), and what it represents operationally varies. Tennent
[Ten76] and Gordon [Gor79] introduced an operation ‘f;¢’, which might appear to express sequencing in
continuation semantics; but in fact it is merely an alternative notation for application of a continuation
transformer f to a continuation g, and not associative, so it does not correspond to VDM’s ‘s1;s2’.

The abbreviation ‘=>’ in the Meta-IV version of VDM stands for the domain of pure state transforma-
tions, and ‘=>R’ stands for the domain of transformations that return values in R. The domain of functions
from D to => is written ‘D=>’; similarly, the domain of functions from D to =>R is written ‘D=>R’

The main imperative combinators provided by the VDM style of denotational semantics are as follows
(in Meta-IV notation), assuming that s1, s2, ... are in =>, e is in =>V, and f is in V=> or V=>R:

e sequencing ‘def z: e; f(z)’ applies the transformation e, followed by the transformation obtained by
applying f to the value z returned by e;
e ‘return v’ simply returns the value v without transforming the state;

e ‘I’ is the identity transformation on states;

e assignment ‘r:=e’ first applies e, then replaces the component of the state selected by » by the value
returned by e;

e contents ‘c 7’ returns the component of the state selected by r without transforming the state;

e sequencing ‘s1; s2’ applies s2 to the state obtained by applying s1;

e conditional ‘¢f b then sl else s2’ applies s1 or s2, depending on whether the boolean value b is
trueor false;

7

e iteration ‘for 7 = m to n do s(4)’ abbreviates ‘sm; ...; sn’.
Some further combinators are used in connection with abrupt termination:

e ‘exit v’ terminates abruptly, returning a non-nil abnormal value v;

e ‘trap = with f(z) in s’ handles abrupt termination of s with the transformation obtained by apply-
ing f to the abnormal value z returned by s;

e ‘tize m in s’ handles abrupt termination of s by applying the transformation to which the abnormal
value returned by s is mapped by m (repeatedly), propagating the abrupt termination if the value is not
in the domain of m;

e ‘always s2 in sl1’ applies si1, then applies s2, regardless of whether termination of s1 was normal or
abnormal (s?is not supposed to terminate abnormally).

5 VDM-SL uses the notation A — B for total function domains, and interprets 4 — B as a domain of partial functions.
6 VDM-SL uses the notation 4 - B for finite map domains.
7 In VDM-SL, state transformations are called operations, and domains of operations are written using 2 instead of =>.

10 P. D. Mosses

All the above combinators are defined by translation to A-notation, making the state explicit. In the
absence of abrupt termination, ‘=>" and ‘=>V’ are defined as follows:

STATE — STATE
STATE = STATE X V

=>
=> V

When the possibility of abrupt termination is introduced, ‘=>’ is redefined as:
=> = STATE — STATE x [ABNORMAL]

In the VDM semantics of PL/I from 1974 [BBHT84], ‘=>V" is redefined using a disjoint union:
=>V = STATE = STATE X (E Vo abn ABNORMAL)

In the later books by Bjgrner and Jones [BJ78| [BJ82], however, ‘=>V’ is redefined somewhat differently:
=>V = STATE - STATE x [ABNORMAL] x V

In both cases, redefining ‘=>’ and ‘=>V’ requires redefinition of all the imperative combinators, but the
operational interpretation and usage of the combinators in the semantic equations does not change.

In Sect. we shall see that some of the VDM combinators are closely related to standard operations
of the monads used in the monadic style of denotational semantics. Moreover, the redefinitions required
when abrupt termination is introduced in [BBH84] correspond to the so-called lifting of operations when
applying the standard monad transformer for exception-handling. Thus it appears that VDM, right from
the start in the early 1970s, was already using significant elements of the monadic style that was developed
by Moggi in the late 1980s [Mog89).

4.3. Denotations

The following examples illustrate the use of the most basic VDM combinators for defining the denotations
of the syntactic constructs shown in Fig. [2] which correspond directly to those used to illustrate the Scott—
Strachey style in Sect.

As in the Scott—Strachey style, denotations of statements (i.e. commands) are functions of environments.
The semantic function ¥ maps statements to their denotations:

M : Stmt — ENV =>
The same semantic function also maps expressions to their denotations:
M : Ezpr — ENV => VALUE

The abbreviations ‘=>" and ‘=> VALUE’ indicate that both statements and expressions are modelled as state
transformations. Whether these transformations involve the possibility of abnormal termination does not
need to be specified until later, since it does not affect how denotations are expressed. However, to specify
the denotations of assignment statements, we shall need to know how to select the store from a state. This
is specified by indicating the name of the selector function next to the store component of the state:

STATE :: STR:STORE ...

(The elided further components might support input and output, for example.)
The denotation of a compound statement involves combining the denotations of an arbitrary number of
sub-statements, which can be expressed using the VDM combinator corresponding to a definite iteration:

M[mk-Compound (s1)] (env) = for i = 1 to len sl do M[sl](env)

The following is a special case of the above, and is equivalent to the definition of binary statement sequencing
in the Scott—Strachey direct semantics style, given in Sect.

M[mk-Compound (<s1,s2>)] (env) = M[s1] (env); M[s2] (env)

Also the VDM definition of the denotations of conditional statements is rather similar to the corresponding
definition in the Scott—Strachey style:

VDM: Combinators and Monads 11

M[mk-If(e,th,el)] (env) =
def b: M[e] (env);
if b then M[th](env) else M[el] (env)

Our final illustration of the VDM style of denotational semantics is the assignment statement:

M[mk-Assign(lrs,rhs)] (env) =
def 1: M[lhs] (env);
def v: M[rhs] (env);
STR := c STR + [l+ v]

5. The Monadic Style

This style of denotational semantics was introduced by Moggi at the end of the 1980s [Mog89, [Mog91]. His
original motivation was to generalise the categorical semantics of partiality to “other notions of computation”;
he subsequently realised that it also allows a much higher degree of modularity and extensibility in semantic
descriptions.

The main technical innovations were to let denotations be elements of monads, and to construct monads
incrementally using monad transformers. Monads and monad transformers provide various combinators,
which are closely related to some of those used by Scott and Strachey, and even more closely to some of
those provided by VDM. Like the latter, the monadic combinators have a simple operational reading. The
monadic style of denotational semantics has been exploited in several theoretical studies [LH96, WH97] but
it appears that, despite its advantages regarding modularity, it has not yet been used to describe any major
programming language.

5.1. Domains and Operations

The monads used in the monadic style of denotational semantics provide the denotations of phrases of
programs, and are generally defined in terms of domains.

5.1.1. Monads

The category-theoretic concept of a monad was defined by Mac Lane [MLTI], in terms of functors and
natural transformations. However, monads are in 1-1 correspondence with Kleisli triples [Man76], which in
turn can be presented simply as domain constructors 7', mapping value domains D to computation domains
T(D), together with two polymorphic operations:

e Return: D — T(D);

e >=:T(A) x (A—T(B)) — T(B)
The trivial computation Return(d) simply returns the value d as its result. When the computation e computes
the value a and f is a function mapping values to computations, e >>= f follows the computation e with

the computation f(a). (The symbol ‘>>=’, pronounced ‘bind’, is from the notation provided by the language
Haskell.) The operations Return and >>= are required to satisfy three laws:

(Return(d) >=f) = f(d) (14)
(e >= Return) = e (15)
(ex>=[f)>=g) = (e>=.(f(x)>=g)) (16)

where & must not be free in f or ¢ in the last law above. Let us follow common practice and identify a triple
(T, Return, >>=) that satisfies the above laws with the monad determined by the corresponding Kleisli triple.

The Identity Monad: The simplest possible example of a monad is the identity monad id = (T, Return, >>=)
where T(D) = D, Return(d) = d, and (e >= f) = f(e).

12 P. D. Mosses

5.1.2. Monad Transformers

Particular kinds of monads provide further operations. Such monads can often be constructed by applying
standard monad transformers [Mog89) [LHI6] to existing monads.

Side-Effect Monads: Given domains L of locations a and V of values 3, let S = L — V be the domain
of stores o (representing the values currently stored at the locations). Given any monad T, a side-effect (or
state) monad seT with operations Update,r : L x V — seT() and Inspecter : L — seT(V') is constructed
by defining:
seT(D)=S—T(D x S) (17)
Returnse (d) = Ao. Return(d, o) (18)
e>>=c 1 [= Ao. e(0) >= \(d,d’).f(d)(c") (19)
Updatesr(a, B) = Ao. Return((), ola — f]) (20)
Inspect,, () = Ao. Return(o(a), o) (21)

Environment Monads: Given domains I of identifiers and V of values, let Env = I — V be the domain
of environments p (representing the values currently bound to the identifiers). Given any monad 7', an
environment (or read-only state) monad enT with operations GetEnvenr : enT(Env) and UseEnvent :
Env— enT (D) — enT(D) is constructed by defining:
enT(D) = Env— T(D) (22)

Returnen 7(d) = Ap. Return(d) (23)

e >>=er f = Ap. e(p) >= Ad.f(d)(p) (24)
GetEnvenT = Ap. Return(p) (25)
UseBntenr(p)(€) = M. e(p) (26)

Exception Monads: Given a domain X of exception identifiers and any monad 7', an exception monad

exT with operations Raise : X — exT(D) and Handle : X X exT(D) x exT (D) — exT(D) is constructed
by defining;:

exT(D)=T(D+ X) (27)

Returnecr(d) = Return(din (D+X)) (28)

e =g [= e >= cases(Ad. f(d), \x. Return(z in (D+X))) (29)

Raiseex 7(x) = Return(xin (D+X)) (30)

HandleexT(, €1, €2) = e1 >>= cases(Ad. Return(d in (D+X)), (31)

Az’ Cond(es, Return(z’ in (D+X)))(z = 2'))

where cases : (A — C) x (B — C) — ((A4+B) — () is defined by cases(f,g)(ain (A+B)) = f(a) and
cases(f, g)(bin (A+B)) = g(b).

Continuation Monads: Given a domain A of answers and any monad 7', a continuation monad ccT with
operation CallCC: (D — ccT (D)) — ccT(D)) — ccT(D) is constructed by defining:
ccT(D) = (D — T(A)) — T(A) (32)
Returnee(d) = Ak. k(d) (33)
e>>=cr [= Ak. e(Ad. f(d)(k)) (34)
CallCCu7(g) = M6 g(IN K K(d)) (k) (35)

When a monad transformer is applied to a monad, the required operations Return and >>= are lifted to
the monad resulting from the transformation. However, all the other operations defined on the argument
monad need to be lifted too, which can be problematic; this is one of the drawbacks of the use of monad
transformers.

VDM: Combinators and Monads 13

The operations defined above satisfy some axioms, which allow algebraic reasoning about equivalence.
Gordon Plotkin and John Power develop such axioms, distinguishing between algebraic operations and effects;
see [PP04] for an overview of their approach. The exact statement of the axioms that characterise particular
classes of monads is highly non-trivial, and out of the scope of this article.

5.2. Denotations

Let us conclude this section by showing how simple it is to define the denotations of our illustrative phrases
in the monadic style. We do not need to define the monad T, since the details of its definition do not affect
how denotations are expressed, nor their operational understanding. We do however assume that T is a
side-effect monad, so that the operation Update(c, 3) is available.

Let C: Cmd — T() and € : Exzp — T(V), where V is a domain of values whose definition depends on
the language being described, but is here assumed to include both L (locations) and T (truth values) as
summands. Thanks to the use of monadic notation, the denotations of various commands and expressions
can be defined without notational clutter regarding propagation of the environment p and the store o, and
the possibility of abrupt termination:

Clvo;71] = Clvo] >= A()- C[n] (36)
Cle=>v0,m] = €[e]l = AB. Cond(Clo], C[n])(BIT) (37)
C[[Eo :=Eﬂ] = 5[[50]] >>=)\ﬁo 5[[81]] >=)\51 Update(ﬁo|L, 51) (38)

The reader is invited to compare the above semantic equations with those given in the Scott—Strachey style

(Sect. and in the VDM style (Sect. [4.3)).

6. Monads in the Scott—Strachey and VDM Styles

Let us now review some examples of notation defined by the Scott-Strachey and VDM styles of denonta-
tional semantics, and see how closely they correspond to monads that can be constructed using the monad
transformers presented in Sect.

6.1. Scott—Strachey Style
6.1.1. Direct Semantics

Scott and Strachey [SSTI] used the domain S — V x S, which is provided by the monad seid obtained by
applying the side-effect monad transformer to the identity monad. Scott and Strachey’s combinators P and
% are special cases of Return and >>= (the latter with the arguments reversed, corresponding directly to
as defined in Sect. . They also used the domain S — S, which is isomorphic to the domain S — () x S
provided by the monad, and their Assign(«, 3) operation corresponds to the provided Update(c, 3) operation
under that isomorphism.

Scott and Strachey did not introduce any combinators in connection with environments, apparently
preferring to exhibit the propagation of environments. However, it would be straightforward to lift their
notation to the environment monad constructed by enseid, and remove the explicit environment arguments
from the semantic equations shown in Sect. [3:3.1]

6.1.2. Continuation Semantics

The domain of denotations of expressions in Sect. was Env — K — C where K = V — C and
C = S — A. This domain is provided by the monad constructed by enccseid. However, operations corre-
sponding to Return and >>= were never introduced in continuation semantics, since the direct use of function
application in A-notation was regarded as sufficiently succinct and perspicuous. As previously mentioned,
the operation an operation ‘f; ¢’ introduced by Tennent [Ten76] and Gordon [Gor79] does not correspond
to a monadic combinator.

14 P. D. Mosses

6.2. VDM Style
6.2.1. Normal Termination

Let T'(D) be =>D, which, in the absence of abnormal termination, is STATE = STATE x D. Let Return be the
VDM combinator return, and let e>>= f be defined as def z: e; f(z). This provides a monad. Assuming
that the store component of the state is selected by STR, Update(1, v) can be defined to be STR := (¢ STR)+
[1+ wv], and Inspect(1) to be return((c STR) (1)). The result is a side-effect monad, corresponding closely
to the monad seid, and has been exploited in VDM since the early 1970s.

6.2.2. Abnormal Termination

The redefinition of =>D to allow abrupt termination given in the PL/I semantics from 1974 [BBH"84] is:
=>V = STATE = STATE x (res V | abn ABNORMAL)

The values are tagged with res or abn to distinguish between normal and abrupt termination. The redefined
combinators return and def still provide a monad: this is essentially an instance of applying a monad trans-
former, and all the original combinators are redefined to take account of the new domains. Moreover, the
resulting monad is easily made into an exception monad: define Raise(z) to be exit =, and Handle(z, e, &)
as trap z with e in €. It is remarkable that VDM was already using monads and monad transform-
ers — albeit unaware of their mathematical foundations — more than 15 years before the monadic style of
denotational semantics had been developed.

However, a different redefinition of =>D was given in Meta-IV in 1978 [BJ78| and again in 1982 [BJ82]:

=>V = STATE = STATE x [ABNORMAL] x V

This domain construction does not allow the combinators return and def to be defined to give a monad
The problem is that when e terminates abruptly, so does e >>= f, with the same result; but if e is in =>
and f is in A=>B, the combination e >>= f is in =>B, and this gives rise to inconsistency when 4 and B are
disjoint.

To obtain a monad, it appears that the VDM definition of =>V used in the PL/I semantics would have
to be reformulated in Meta-I VE| as follows (since the tagged union domain constructor is not provided):

=2V = STATE = STATE x OUTCOME(V)
OUTCOME(V) = RES(V) | ABN
RES(V) ::V
ABN :: ABNORMAL

6.3. Comparison

The basic monadic combinators provided in the original Scott—Strachey style of denotational semantics al-
lowed it to get close to the simplicity of the monadic style illustrated in Sect. [o} However, the subsequent
adoption of continuations led to the use of combinators being abandoned, until Moggi realised their signifi-
cance in connection with monads, and reintroduced them in a general and systematic way.

VDM has the advantage of a fixed operational interpretation for its combinators, and originally used
what is essentially a monad transformer when adding the possibility of abnormal termination. Moreover, it
seems that the domains defined for abnormal termination in Meta-IV and VDM-SL could be adjusted to
restore the monadic properties, as suggested above. VDM already includes notation corresponding to side-
effect and exception monads; adding notation for environment monads would allow omission of propagated
‘env’ arguments, and support for further monad transformers would significantly enhance the (inherent)
modularity of VDM semantics of programming languages.

8 Thanks to Moggi for drawing attention to this point.
9 Corresponding domain constructors could presumably be defined in VDM-SL using parameterised modules.

VDM: Combinators and Monads 15

7. Published VDM Semantic Descriptions

VDM was originally developed for giving a formal definition of PL/I and providing a formal basis for the
development of a compiler [Jon0I]. Other major programming languages that have been described using
VDM include Algol 60, Pascal, Ada, and Modula-2. The aim here is merely to give a general overview of
the cited descriptions. In general, the descriptions are out of print; this section concludes by proposing the
establishment of an online repository for semantic descriptions, so that these major contributions can be
preserved and made more easily accessible to the research community.

PL/I: The technical report A Formal Definition of a PL/I Subset by Hans Beki¢, Dines Bjgrner, Wolfgang
Henhapl, Cliff Jones, and Peter Lucas was published by the IBM Laboratory in Vienna in 1974 [BBH84].
Covering 201 pages, its length was modest compared to the size of the language described (and to that of
the earlier definition of PL/T given in the operational VDL framework). The described subset is essentially
the version of PL/I described in the ECMA/ANSI standard (which does not include tasking) but omitting
Input/Output. Section 4 of the chapter on Notation introduces and defines the VDM combinators concerned
with state transformations, imperative variables, exit, and arbitrary ordering.

Although the original technical report is out of print, 61 pages from it were reprinted in a volume of
LNCS containing a selection of papers by Beki¢ [BBH84]. The development of a compiler based on the
semantic description stopped prematurely in 1975, when IBM cancelled the project to build the intended
target machine [JonO1I].

Algol 60: A VDM semantics for Algol 60 by Wolfgang Henhapl and Cliff Jones was published as Chapter 6
of the book Formal Specification and Software Development in 1982 [HI82]; it is a revision of a previous
paper by the same authors published in the 1978 LNCS volume on VDM [BJ78]. In 33 pages it specifies
the abstract syntax and semantics of the language described in the 1975 Modified Report on Algol 60, and
provides a list of abbreviations as well as an index of object and function definitions. The specifications of
the abstract syntax, static semantics and dynamic semantics are interleaved, so that the static and dynamic
semantics for the same construct are given close to each other.

The definition of the arbitrary order of evaluation allowed by Algol 60 is deliberately not addressed; a
few other minor deviations from the intended semantics of Algol 60 are indicated in comments. Neither the
concrete syntax nor its translation to the abstract syntax are given, although some of the comments refer to
various expansions made by “the translator”.

Pascal: A VDM semantics for Pascal by Derek Andrews and Wolfgang Henhapl was published as Chapter 7
of the book Formal Specification and Software Development in 1982 [AHS82|]. As with the VDM semantics
for Algol 60 that it follows, it is a revision of a previous paper published in the 1978 LNCS volume on VDM
[BJ78]. After an introduction commenting on various aspects of the VDM semantics of Pascal, it takes 60
pages to specify the abstract syntax and semantics of the language described in the BSI/ISO Standard for
Pascal.

In contrast to the VDM semantics of Algol 60, the specifications of the abstract syntax, static semantics,
and dynamic semantics of Pascal are not interleaved. The abstract syntax was chosen to be “fairly close” to
the concrete syntax of Pascal, making their relationship “more obvious”. The specification of the abstract
syntax is about 6 pages, including some detailed notes about the intended concrete to abstract transla-
tion (which involves the introduction of fresh identifiers “not used elsewhere”). The static semantics takes
22 pages, and the dynamic semantics 30 pages.

Ada: A VDM semantics for full Ada was initially developed by Dines Bjgrner and several MSc students
under his supervision at the Danish Technical University, and published as a volume of LNCS with the
title Towards a Formal Description of Ada in 1980 [BO8O]. This description was subsequently revised and
finalised in a series of technical reports, published by Dansk Datamatik Center (DDC) in 1981-2, which
provided the basis for the rigorous development of an Ada compiler [CO84]. The compiler was released in
1983, and became renowned not only for its quality, but also as commercially successful. The unqualified
success of this application of VDM was a clear vindication of Bjgrner’s trust in the suitability of the VDM
specification language for describing the semantics of large languages such as Ada, as well as a welcome,
highly visible demonstration of the potential usefulness of research in formal semantics.

VDM was later used also in the official Draft Formal Definition of Ada, but only for the static semantics

16 P. D. Mosses

[BSP&7]. The dynamic semantics [BNK8T7, [GMRZ86] was specified using SMoLCS [AR87], which uses a
“VDM-like” style of denotational semantics to map Ada programs into a semantic algebra, where behaviour
(including concurrency) is specified using a combination of labelled transition rules and algebraic axioms.
The semantic algebra includes the combinators used in VDM.

Modula-2: VDM was used, along with English text, for defining the semantics of Modula-2 in its ISO/IEC
base standard, which was developed from 1987 to 1996. The formal definition and the English text are
regarded as having equal importance. According to an article about the process of producing the standard
[PS96], it contains about “200 type definitions, 1800 function and operation definitions and some 20,000
lines of VDM-SL code”. All the VDM-SL specifications were “tested for syntactical accuracy and semantic
constraints” using a front end for VDM-SL developed at Delft University of Technology. ISO/IEC did not
allow publication of the standard on the web [PS03], although a draft version is availablem

Online access: The VDM Portaﬂ provides online access to many VDM documents, including examples
of specifications in VDM-SL and VDM++. However, it appears that only fwo VDM semantic descriptions
of programming languages are currently available through the portal: one for a language called NewSpeak
from 1994, the other for a tutorial-style example of static and dynamic semantics of a simple programming
language. Fortunately the VDM descriptions of PL/I, Algol 60 and Pascal, together with the original VDM
description of Ada, have all been scanned to pdf, and are currently available online

A different and more general problem with providing online access to large VDM specifications is to allow
efficient searching for particular items of interest. For semantic descriptions of programming languages, it
would be useful to search for the parts concerning particular (concrete or abstract) constructs. Searching for
mathematical formulae is inherently difficult, and addressed on the web by using special markup languages
such as MathML; but this would not help with existing, older documents. A possible solution might be to
add bookmarks to pdfs, identifying the pages concerned with particular constructs.

There is also the issue of copyright. Presumably all authors of semantic descriptions would be happy
to see their work made accessible online, but some publishers seem unlikely to allow open access in the
near future. A compromise might be to provide open access only to summary information about semantic
descriptions, sufficient to support searching for descriptions of particular constructs, but require login as a
registered user to obtain the pdf of the description itself.

The author is currently investigating the possibility of establishing a repository for semantic descriptions
of programming languages in all major frameworks; VDM would be among the first to be covered. Readers
who have copies of significant semantic descriptions of programming languages (in any format) are kindly
requested to contact the author, indicating what they could provide, and who holds the copyright.

8. Conclusion

The fundamental principles of denotational semantics were established by Scott and Strachey at Oxford in
the early 1970s. VDM adopted these principles, but also introduced some innovations: in particular, VDM
made much greater use of combinators than was usual in the original Scott—Strachey style. Significantly, each
combinator in VDM has a fixed operational interpretation, whereas its definition in A-notation can vary; see
also [Mos77]. We have seen that some of the VDM combinators introduced in the early 1970s correspond
directly to operations provided in the monadic style of denotational semantics, which was developed at
the end of the 1980s; moreover, the way their definitions vary corresponded to the lifting of operations by
particular monad transformers.

VDM semantic descriptions of some major programming languages have been published, including PL/I,
Algol 60, Pascal, Ada, and Modula-2. They are valuable sources of examples of how to describe a wide range
of programming constructs using VDM, and deserve to be much more easily accessible to researchers and
students than at present; including them in the proposed online repository of semantic descriptions would
not only make them electronically available, but should also allow searching for descriptions of particular
kinds of constructs.

10 'ftp://ftp.mathematik.uni-ulm.de/pub/soft/modula/standard/draft4/
I http://www.vdmportal.org/
12 http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-1library.html

ftp://ftp.mathematik.uni-ulm.de/pub/soft/modula/standard/draft4/
http://www.vdmportal.org/
http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library.html

VDM: Combinators and Monads 17

Acknowledgment This is a revised and extended version of an essay written in honour of Dines Bjgrner
and Zhou Chaochen on the occasion of their 70th birthdays.

As one of the originators of VDM, through his many articles and books about VDM, and by his use
of VDM in major projects such as the formal descriptions of PL/T and Ada, Dines has had a profound
influence on the development and practical application of denotational semantics. Personally, I have benefited
immensely from contact with him since we first met in Denmark in the late 1970s. His expertise, friendship
and hospitality have always seemed limitless.

Thanks to Cliff Jones, Eugenio Moggi and Gordon Plotkin for helpful comments related to previous
versions of this paper, and to the anonymous referees for constructive suggestions for improvement of the
submitted version.

References

[AHS82] Derek J. Andrews and Wolfgang Henhapl. Pascal. In Formal Specification and Software Development [BJ82,
chapter 7, pages 175-252.

[ARS8T] Egidio Astesiano and Gianna Reggio. Direct semantics of concurrent languages in the SMoLCS approach. IBM J.

Res. Dev., 31(5):512-534, 1987.

[BBGt63] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois,
J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Revised report on the algorithmic language ALGOL 60.
Commun. ACM, 6(1):1-17, 1963.

[BBH*84] Hans Beki¢, Dines Bjgrner, Wolfgang Henhapl, Cliff B. Jones, and Peter Lucas. On the formal definition of a PL/I
subset (selected parts). In Programming Languages and Their Definition — Hans Beki¢ (1986-1982), volume 177
of LNCS, pages 107-155. Springer, 1984. Available at http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/
LNCS177-Bekic/. Full version published as Technical Report 25.139, IBM Lab. Vienna, Dec. 1974; available at
http://homepages.cs.ncl.ac.uk/cliff. jones/ftp-stuff/TR25139/.

[BJ78] Dines Bjgrner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language, volume 61 of
LNCS. Springer, 1978.

[BJ82] Dines Bjgrner and CIliff B. Jones. Formal Specification and Software Development. Computer Sci-
ence Series. Prentice-Hall Int., 1982. Available at http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/
BjornerJones1982/|

[BNKS87] Claus Bendix Nielsen and E. W. Karlsen. The draft formal definition of Ada, the dynamic semantics definition,
vols 1-3. Technical report, Dansk Datamatik Center, Lyngby, Denmark, January 1987.

[BO8O] Dines Bjgrner and Ole N. Oest. Towards a Formal Description of Ada, volume 98 of LNCS. Springer, 1980.

[BSP87] N. Botta and Jan Storbank Pedersen. The draft formal definition of Ada, the static semantics definition, vols 1-4.
Technical report, Dansk Datamatik Center, Lyngby, Denmark, January 1987.

[CO84] Geert B. Clemmensen and Ole N. Oest. Formal specification and development of an Ada compiler — a VDM case
study. In ICSE ’84: Proc. Tth Int. Conf. on Software Engineering, pages 430-440. IEEE Press, 1984.
[FMO09] Robert Bruce Findler and Jacob Matthews. Revised® report on the algorithmic language Scheme, App. A: Formal

semantics. J. Funct. Program., 19(S1):125-145, 2009.
[GMRZ86] Alessandro Giovini, Franco Mazzanti, Gianna Reggio, and Elena Zucca. The draft formal definition of Ada, the
dynamic semantics definition, vol 4. Technical report, Dansk Datamatik Center, Lyngby, Denmark, December

1986.

[GorT9] Michael J. C. Gordon. The Denotational Description of Programming Languages: An Introduction. Springer, 1979.

[HH98] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall, 1998.

[HJ82] Wolfgang Henhapl and Cliff B. Jones. ALGOL 60. In Formal Specification and Software Development [BJ82],
chapter 6, pages 141-173.

[Jon82] CIiff B. Jones. More on exception mechanisms. In Formal Specification and Software Development [BJ82|, chapter 5,
pages 125-140.

[JonO01] CIliff B. Jones. The transition from VDL to VDM. J. UCS, 7(8):631-640, 2001.

[Lan65] Peter J. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation: Part I. Commun. ACM,
8(2):89-101, 1965.

[LH96] Sheng Liang and Paul Hudak. Modular denotational semantics for compiler construction. In ESOP’96, volume

1058 of LNCS, pages 219-234. Springer, 1996.

[ManT6] Ernest G. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics. Springer, 1976.

[ML71] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics.
Springer, 1971.

[Mog89] Eugenio Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113, Edinburgh

Univ., 1989.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55-92, 1991.

[Mos74] Peter D. Mosses. The mathematical semantics of Algol60. Technical Monograph PRG-12, Oxford Univ. Comp.
Lab., 1974.

[MosT7] Peter D. Mosses. Making denotational semantics less concrete. In Proc. Int. Workshop on Semantics of Program-

ming Languages, Bad Honnef, number 41 in Bericht, pages 102—109. Abteilung Informatik, Universitdt Dortmund,
1977.

http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/LNCS177-Bekic/
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/LNCS177-Bekic/
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/TR25139/
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/BjornerJones1982/
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/BjornerJones1982/

18

[Mos90]
[Mos07]

[PL92]
[PPO4]

[PS96]
[PS03]
[Sch86]

[Sco70]

[SS71]

[Sto77]

[Str66]

[Str00]
[SW00]
[Ten76]
[TenT77)

[Weg72]
[WHO7]

P. D. Mosses

Peter D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, chapter 11. Elsevier Science Publishers, Amsterdam; and MIT Press, 1990.

Peter D. Mosses. VDM semantics of programming languages: Combinators and monads. In Formal Methods and
Hybrid Real-Time Systems, volume 4700 of LNCS, pages 483-503. Springer, 2007.

Nico Plat and Peter Gorm Larsen. An overview of the ISO/VDM-SL standard. SIGPLAN Not., 27(8):76-82, 1992.
Gordon D. Plotkin and A. John Power. Computational effects and operations: An overview. In Proc. Workshop
on Domains VI, volume 73 of Electr. Notes Theor. Comput. Sci., pages 149-163. Elsevier, 2004.

C. Pronk and M. Schénhacker. ISO/IEC 105141, the standard for Modula-2: Process aspects. SIGPLAN Not.,
31(8):74-83, 1996.

C. Pronk and M. Schénhacker. Formal definition of programming language standards. SIGPLAN Not., 38(8):20-21,
2003.

David A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and Bacon, 1986.
Available at http://people.cis.ksu.edu/~schmidt/text/densem.html.

Dana S. Scott. Outline of a mathematical theory of computation. In Proc. Fourth Annual Princeton Conf. on
Information Sciences and Systems, pages 169-176. Princeton University, 1970. Superseded by Technical Monograph
PRG-2, Oxford Univ. Comp. Lab., Nov. 1970.

Dana S. Scott and Christopher Strachey. Towards a mathematical semantics for computer languages. In Proc.
Symp. on Computers and Automata, volume 21 of Microwave Research Inst. Symposia, pages 19-46. Polytechnic
Institute of Brooklyn, 1971. Also Technical Monograph PRG-6, Oxford Univ. Comp. Lab., Aug. 1971.

Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, volume 1
of The MIT Press Series in Computer Science. The MIT Press, 1977.

Christopher Strachey. Towards a formal semantics. In T. B. Steel, Jr., editor, Formal Language Description
Languages for Computer Programming, Proc. IFIP Work. Conf., Vienna, 1964, pages 198-220. North-Holland,
Amsterdam, 1966.

Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and Symbolic Computation,
13(1/2):11-49, 2000. Originally lecture notes, NATO Copenhagen Summer School, 1967.

Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathematical semantics for handling full
jumps. Higher Order Symbol. Comput., 13(1-2):135-152, 2000. Originally published as Technical Monograph
PRG-11, Oxford Univ. Comput. Lab., Jan. 1974.

Robert D. Tennent. The denotational semantics of programming languages. Commun. ACM, 19(8):437-453, 1976.
Robert D. Tennent. A denotational definition of the programming language Pascal. Technical Report 77-47,
Queen’s Univ., Kingston, Ont., 1977.

Peter Wegner. The Vienna Definition Language. ACM Comput. Surv., 4(1):5-63, 1972.

Keith Wansbrough and John Hamer. A modular monadic action semantics. In DSL’97. USENIX, 1997.

http://people.cis.ksu.edu/~schmidt/text/densem.html

	Introduction
	Denotational Semantics
	The Scott--Strachey Style
	Abstract Syntax
	Domains and Operations
	Denotations

	The VDM Style
	Abstract Syntax
	Domains and Operations
	Denotations

	The Monadic Style
	Domains and Operations
	Denotations

	Monads in the Scott--Strachey and VDM Styles
	Scott--Strachey Style
	VDM Style
	Comparison

	Published VDM Semantic Descriptions
	Conclusion
	References

