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A COMPARISON OF ESTIMATION METHODS ON THE COVERAGE 

PROBABILITY OF SATTERTHWAITE CONFIDENCE INTERVALS FOR ASSAY 

PRECISION WITH UNBALANCED DATA 

 

Edwin R. van den Heuvel
2
 

Faculty of Mathematics & Natural Sciences 

University of Groningen, 

Nijenborg 9, 9747 AG Groningen,  

The Netherlands 

 

Abstract 

Construction of closed-form confidence intervals on linear combinations of variance components were 

developed generically for balanced data and studied mainly for one-way and two-way random effects 

analysis of variance models. The Satterthwaite approach is easily generalized to unbalanced data 

and modified to increase its coverage probability. They are applied on measures of assay precision in 

combination with (restricted) maximum likelihood and Henderson III Type 1 & 3 estimation. 

Simulations of interlaboratory studies with unbalanced data and with small sample sizes do not show 

superiority of any of the possible combinations of estimation methods and Satterthwaite approaches 

on three measures of assay precision. However, the modified Satterthwaite approach with Henderson 

III Type 3 estimation is often preferred above the other combinations. 

 

KEY WORDS: 

Henderson III Moment Estimators, Likelihood Estimators, Measures of Precision, Satterthwaite 

Confidence Intervals, Unbalanced data, Variance Components. 

 

1. INTRODUCTION 

Statistical experimentation is frequently used to estimate measures of assay precision, which describe 

the variation induced by the measurement or assay processes. For example, method transfer studies 

                                                 
2
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 2 

(or interlaboratory studies) are performed regularly in pharmaceutical industry for biological and 

(bio)chemical assays to simulate the assay variation within and between laboratories for routine use 

of these assays. Studies like this focus on the measures of precision “repeatability”, “intermediate 

precision” and “reproducibility”, see for instance the international guideline ICH (1996). In statistical 

terms, measures of precision are defined by specific linear combinations of variance components 

which represent the random effects of (combinations of) assay sources of variation. The variance 

components are generally defined through the effects of sources of variation incorporated in the 

mixed or random effects analysis of variance models used to analyze the experimental data. The 

linear combinations are often the sum of individual variance components. 

 

The choice of estimation method for the individual variance components in unbalanced designs has 

been debated in the statistical literature for a long time. Henderson (1953) provided three methods 

which are based on the moments of particular sets of sums of squares. The moment estimators are 

not unique because there are different ways of partitioning the sums of squares of sources of variation 

in unbalanced designs. Henderson’s third method is most generally applicable, since it can be applied 

to any random or mixed effects analysis of variance model. But also for this method there exist 

different sets of sums of squares. The order of including terms for the sources of variation in the 

analysis of variance model determines the different sets of sums of squares, see Searle, Casella and 

McCulloch (1992) and Littell, Milliken, Stroup, Wolfinger and Schabenberger (2006). All these choices 

reduce to the same unique set of sums of squares for balanced designs, which then posseses nice 

properties. Indeed, the sums of squares are mutually independently distributed and they are 

distributed as multiples of chi-square random variables. In unbalanced designs these properties no 

longer hold in general.  

 

Restricted maximum likelihood (REML) estimation is often preferred above other methods of 

estimation for unbalanced data, see McCulloch and Searle (2001). REML estimation provides an 

unique set of non-negative variance component estimates, but it does require the (strong) assumption 

of normality. The argument for REML estimation is for instance supported by Swallow and Monahan 

(1984). Their simulation study for the one-way (balanced) random effects analysis of variance model 
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 3 

concludes that the likelihood based estimators have in general similar or smaller biases and mean 

squared errors than the moment estimators. 

 

Whatever estimation method is applied, it is good statistical practice to construct appropriate 

confidence intervals on assay precision. Burdick and Graybill (1992) give a nice overview of several 

generic approaches, but the closed-form approaches are essentially developed for balanced analysis 

of variance models because they require the nice properties of the sums of squares in balanced 

designs. Not much attention has yet been given to confidence intervals for measures of precision for 

unbalanced data, except though for the one-way random effects analysis of variance model, see Li 

and Li (2005) and Burdick, Quiroz and Iyer (2006), because then the mathematical complexity is 

limited. However, the Satterthwaite approach, described by for instance Satterthwaite (1946), Welch 

(1956) or Burdick and Graybill (1992), can easily be adapted to general unbalanced designs and it 

can also be applied to any method of variance component estimation. This original approach can then 

also be modified to increase its coverage probability and make it possibly conservative, because the 

original Satterthwaite approach is known to lead to too small coverage probabilities in some cases. 

 

The goal of this article is to study coverage probabilities of the original and modified Satterthwaite 

approach to confidence intervals on measures of assay precision for unbalanced data using 

maximum likelihood, restricted maximum likelihood, Henderson III Type1 and Henderson III Type 3 

variance component estimators. Simulation studies are conducted to investigate three measures of 

precision for a particular three-way classification random effects analysis of variance model. This 

model is often applied to data of interlaboratory studies, see Nijhuis and Van den Heuvel (2007). 

Emphasize is given to experiments with small sample sizes and to situations were individual variance 

components may be close to zero. A detailed description of the original and modified Satterhwaite 

approach and a detailed description of the four estimation methods are provided too. 

 

2. GENERAL THEORY 

Suppose a random or mixed effects analysis of variance model is used to describe the data from the 

(unbalanced) experimental (interlaboratory) study to estimate the assay precision. The random effects 
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 4 

are categorized into an “assay related” group and an “assay unrelated” group of variation sources. 

The general statistical model is then presented by 

(1) ∑∑
==

++=
m

j

jj

n

i

ii VUXy
11

εγβ , 

with y  the vector of N  observations, X an ( pN × ) matrix of known constants of rank p , β  a 

vector of p  unknown fixed parameters, iU  an ( iqN × ) matrix of known constants, iγ  a random 

vector of iq  independent normally distributed “assay unrelated” variables with mean 0 and variance 

2

1+−+ inmσ , jV  an ( jrN × ) matrix of known constants, jε  a random vector of jr  independent normally 

distributed “assay related” variables with mean 0 and variance 
2

1+− jmσ , and all random vectors 

mutually independently distributed. 

 

The variance components for the “assay related” group are now defined by 
2

1σ , 
2

2σ ,…..,
2

mσ , with 

2

1σ  the “residual” variance component, representing the last term in model (1). The n  variance 

components for the “assay unrelated” group are indexed by 
2

1+mσ , 
2

2+mσ ,….., 
2

nm+σ . The order in the 

indices for the variance components is directly related to the inverse order in the random effects in 

model (1). For all or most assay precision studies, the contribution in the variation of the observations 

y  is firstly determined by “assay unrelated” sources of variation and secondly by “assay related” 

sources of variation. Indeed, differences between for instance batches will enter the response before 

it is measured and then it will be (possibly) increased when it is observed with the assay. Within the 

“assay related” group, a similar reasoning and ordening can often be made, but within the “assay 

unrelated” group this is less relevant since we are interested in the estimation of the assay precision. 

 

The “assay related” group may contain random effects that represent interaction effects between 

“assay related” sources of variation and “assay unrelated” sources of variation, since they are 

considered to represent assay variation. For instance, the interaction effect between batches and 

laboratories is considered part of the assay variation, because it will be assumed that batches are 

homogeneous and their mean levels are constant during the time period of the study. 
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 5 

A measure of assay precision is now defined by the linear combination of variance components for 

the first 0m  random effects in the “assay related” group, i.e. 

(2) ∑
=

=
0

0

1

22
m

q

qqm c σγ ,  0≥qc . 

The coefficients in (2) are considered non-negative since we are interested in (part of) the total 

contribution of assay variation. Moreover, the coefficients are often equal to one, but other choices 

may be applicable in particular when a “reportable value” is some kind of average from replicated 

results. For repeatability, 0m  is usually one, while for intermediate precision 0m  is selected in such a 

way that all sources of variation contributing to the within laboratory variation (intermediate precision) 

are included in (2). For reproducibility 0m  is equal to m , including all assay related sources of 

variation. Thus the different measures of assay precision are strictly ordered in size. 

 

2.1 HENDERSON III MOMENT ESTIMATORS 

For the terms contained in the analysis of variance model a set of “mean squares” may be defined, 

see Henderson (1953) or Searle et al. (1992). Let kM  be the mean square for the source of variation 

related to variance component 
2

kσ . A characteristic of the set of mean squares for Henderson’s third 

method is that the expectation (or expected mean square) is of the form 

(3) ( ) ∑
=

==
k

q

qqkkk aM
1

2

,E σθ . 

Here E  is the symbol for expectation and 11, =ka , 02, ≥ka ,….., 01, ≥−kka , 0, >kka  are known 

constants related to the matrices for the random effects in model (1). Due to the order or hierarchy of 

the terms in the model, the variance components 
2

1+kσ , 
2

2+kσ ,…..,
2

nm+σ  are not involved in the 

expectation of kM  and are therefore not present in (3), see page 104 of Searle et al. (1992). For 

balanced designs and normally distributed observations the statistic kkkk MnX θ≡  follows a Chi-

square distribution with kn  degrees of freedom. The number of degrees of freedom kn  is related to 

the number of levels kq  or kr  for the source of variation in model (1) for the “assay unrelated” or 

“assay related” group, respectively. 
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 6 

 

Based on the expected mean squares in (3), the variance components can be expressed as linear 

combinations of the expected mean squares, i.e. 

(4) ( )∑
=

=
k

q

qk,qk Ma
1

2 E~σ , 

with 1,
~
ka , 2,

~
ka ,….., kka ,

~  known functions of the constants 1,1a , 1,2a , 2,2a , 1,3a ,…, 3,3a ,….., 

1,0m
a ,…,

00 ,mma . Then the standard moment estimator for the variance component 
2

kσ  denoted as 

2ˆ
kσ  is obtained by substituting qM  for the expected mean square ( )qME  in (4). 

 

Substituting the standard moment estimators for the variance components in (2) and using relation (4) 

we obtain the moment estimator 
2

0
ˆ
mγ  for the measure of precision in (2), i.e. 

(5) ∑∑
==

=≡
00

0

11

22 ~ˆˆ
m

q

qq

m

q

qqm Mcc σγ ,  

where 1
~c , 2

~c ,….., 
0

~
mc  are known functions of the constants 1c , 2c ,….., 

0m
c  and 1,1

~a , 1,2
~a , 2,2

~a , 

1,3
~a ,…, 3,3

~a ,….., 1,0

~
ma ,…,

00 ,
~

mma . For balanced designs the constants 1
~c , 2

~c ,….., 
0

~
mc  in (4) are non-

negative when 1c = 2c =…=
0m

c =1, but this is not necessarily true for unbalanced situations. 

 

The first moment of the estimator in (5) is of course the true measure of precision in (2), since the 

estimator is based on the first moments of the mean squares. The variance of the estimator in (5) is of 

the form 

(6) ( ) ( ) ( )∑ ∑∑
−

= +==

+=−=
1

1 1

22

1

222222

ˆ

0 00

00
2

0

ˆ,ˆcov2ˆvarˆ
m

q

m

qr

rqrq

m

q

qqmm cccE
m

σσσγγσ
γ

. 

which in case the experimental design is balanced reduces to 

∑
=

⋅=
0

2

0
1

222

ˆ

~2
m

q

qqq nc
m

θσ
γ

. 

This follows from the Chi-square distribution related to the mean squares kM . 
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 7 

It is well known that, except for the residual variance, the standard moment estimates for individual 

variance components can become negative for both balanced and unbalanced designs, see for 

instance Searle et al. (1992) and McCulloch and Searle (2001). Although the standard moment 

estimators are unbiased, they have the disadvantage that different and specifically ordered measures 

of precision may become incorrectly ordered when the standard moment estimators are used, due to 

the negative variance component estimates for individual variance components. For example, the 

estimator in (5) may be less than the standard moment estimator 1M  for the residual variance 
2

1σ . 

Nijhuis and Van den Heuvel (2007) proposed to use the adjusted or truncated moment estimators to 

maintain a proper order in the estimates for the measures of precision. 

 

The adjusted moment estimators are defined by the standard moment estimators truncated to non-

negative variance components estimators. This method of estimation is similar to the (but not exactly 

the same as) restricted maximum likelihood estimation method, see Subsection 2.2. The estimator for 

the measure of precision when the adjusted moment estimators are applied becomes 

(7) [ ) ( )∑
=

∞⋅≡
0

0

1

2

,0

22 ˆ1ˆ~
m

q

qqqm c σσγ , 

with 
2ˆ
kσ  the standard moment estimator for the variance component 

2

kσ  and ( )xA1  the indicator 

function being 1 if x  is an element of set A  and zero elsewhere. The adjusted moment estimators 

will be used for the estimation of measures of precision here as well. 

 

Henderson III moment estimators are not unique. Different ways of positioning the sums of squares 

are possible. The positioning has much to do with the order in which the statistical terms enter the 

statistical model (1), see for instance Searle et al. (1992). Although general rules may not be given, 

for assay precision studies the order of terms in the model is not at all complicated. Recall that the 

contribution of variation into the observations is induced by the “assay unrelated” sources of variation 

first and then followed by the “assay related” sources of variation. More specific, the order of terms in 

the model is usually related to the order in time in which variation may have entered the response. 

This Henderson III estimation method is referred to the Type 1 estimation method, see Searle et al. 

(1992) and Littell et al. (2006). Another way is the Type 3 method, which calculates the additional sum 

of squares of each term when it would be added to the model as the last term (but remaining the 
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identifiability of the terms of the full model). For this type of estimation the order of terms in model (1) 

is not relevant at all, see Littell et al. (2006). It should be clear that the residual variance component 

estimator 
2

1σ̂  is the same for both Type 1 and Type 3 estimation method. It is also the only variance 

component estimator which always follows a Chi-square distribution (when appropriately normalized). 

It is expected that the Type 3 estimation method is less sensitive to unbalanced data than the Type 1 

method, since it is less susceptive to extreme results, in particular for small sample sizes. 

 

2.2 MAXIMUM LIKELIHOOD BASED ESTIMATORS 

Maximum likelihood estimation for random and mixed effects analysis of variance models is an 

estimation method that determines the fixed and random model parameters by maximizing the 

likelihood function for the selected linear model. A disadvantage of maximum likelihood estimation is 

that the variance component estimators are biased, see McCulloch and Searle (2001). The restricted 

maximum likelihood (REML) estimation method for estimating variance components in random and 

mixed effects analysis of variance models is the maximum likelihood estimation method applied to a 

linear transformation of the observations which do not contain any of the fixed effects anymore 

(expectation zero), see page 176 of McCulloch and Searle (2001).  

 

For balanced data sets and non-negative standard moment estimates for variance components, the 

REML estimates are equal to the standard moment estimates, see page 177 of McCulloch and Searle 

(2001). REML estimates and maximum likelihood estimators though are always non-negative even if 

(some of) the standard moment estimates are negative. The non-negative estimates are essentially 

obtained by removing or dropping the appropriate terms from the random or mixed effects analysis of 

variance model, see Searle et al. (1992), page 235. This implies that the restricted maximum 

likelihood estimators are indeed similar to the adjusted moment estimators, with the small distinction 

that the adjusted moment estimation method does not drop any terms from the model. 

 

Dropping terms from the model is in our opinion a (philosophical) disadvantage of the (restricted) 

maximum likelihood estimation method, in particular if small sample sizes are used. Indeed, for small 

sample sizes relevant contributions of variation sources may not necessarily be positively estimated 

since they could be less in size with respect to the contribution of other sources of variation. 
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Eliminating this relevant source of variation on the basis of an observed negative variance component 

estimate is then actually incorrectly allocating the effect of this source of variation to other sources of 

variation. Thus a possible consequence of the (restricted) maximum likelihood estimation method is 

that not only the “truncated” variance component estimators are biased (due to the truncation itself), 

but also several other variance component estimators which has incorporated the variation of the 

eliminated sources of variation. This would be the case for both balanced as unbalanced designs. On 

the other hand, this disadvantage does not imply that the (restricted) maximum likelihood estimation 

method does not work very well in practice. 

 

Using the likelihood equations (cf. Searle et al. (1992)), the likelihood based estimation method would 

provide estimators 
2

1s , 
2

2s ,…,
2

0m
s , which could represent ML or REML estimators, for the variance 

components 
2

1σ , 
2

2σ ,…,
2

0m
σ . Let 

2

0m
γ&  be the (restricted) maximum likelihood estimator of the 

measure of precision given by 

(8) ∑
=

=
0

0

1

22
m

q

qqm scγ& . 

The first moment for the (restricted) maximum likelihood estimator in (8) is not necessarily an 

unbiased estimator for the true measure of precision. However, asymptotically the (restricted) 

maximum likelihood estimator in (8) will be unbiased when sample sizes converge to infinity in an 

appropriate way. The variance of the estimator in (8) is of the same form as (6), i.e. 

(9) ( ) ( ) ( )∑ ∑∑
−

= +==

+=−=
1

1 1

22

1

222222
0 00

00
2

0

,cov2var
m

q

m

qr

rqrq

m

q

qqmm ssccscE
m

γγσ
γ

&
&

 

The variances and covariances in (9) are obtained by asymptotics using Fisher’s Information matrix or 

the inverse Hessian matrix, which is defined by the second derivatives of the likelihood function with 

respect to the model parameters, see Searle et al. (1992) and Littell et al. (2006).  

 

2.3 SATTERTHWAITE APPROACH 

The approach of Satterthwaite (1946) is quite simple and is based on an approximation of the 

estimator as a Chi-square variable. Let 
0m

T  be an arbitrary estimator for the measure of precision in 

(2) and let 
0m

Tτ  be its corresponding standard error. The Satterthwaite approach approximates the 
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distribution of the estimator 
0m

T  with the distribution of the random variable ( ) Sm dfXT ⋅
0

E , where 

( )
0

E mT  is the expected value of the estimator 
0m

T , with X  a Chi-square distributed variable, and 

with Sdf  the number of degrees of freedom defined by  

 ( )( )2
00

2
mTmS TEdf τ⋅= . 

Observe that this number of degrees of freedom makes the first two moments of 
0m

T  and 

( ) Sm dfXT ⋅
0

E  exactly equal and that the expected value ( )
0

E mT  does not necessarily have to be 

unbiased for the measure of precision 
2

0m
γ  in (2). Since the number of degrees of freedom is 

unknown it should be estimated before it can be used in practice. The usual estimator is  

(10) ( )2
00

ˆ2ˆ
mTmS Tfd τ⋅= , 

where 
0

ˆ
mT

τ is an estimator for the standard error 
0m

Tτ . This approximation can be applied to any 

estimator and not just to estimators for the measures of precision, but the approximation seems to 

make sense when the estimator is somewhat related to a Chi-square distributed variable as for 

measures of precision.  

 

Confidence intervals are now constructed using the standard theory for Chi-square distributed random 

variables. A ( α−1 )100% confidence interval for the measure of precision is defined by  

(11) ( ) ( )[ ]2ˆ;21ˆ 2
ˆ

2
ˆ 00

αχαχ −− ⋅−⋅
SS fdmSfdmS TfdTfd  

with ( )pd

2−χ  is the p th
 percentile of the Chi-square distribution with d  degrees of freedom. The 

approximate confidence interval in (11) works best when the tails of the distributions of 
0m

T  and 

( ) Sm dfXT ⋅
0

E  resemble each other. 

 

In the literature, the intuitive interpretation of the number of degrees of freedom has never been 

connected with Satterthwaite approach, because Satterthwaite approach has only been described as 

a way of approximating the variance estimator at hand, whatever the outcome of the number of 

degrees of freedom. But the number of degrees of freedom also indicates the available amount of 
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independent information used to estimate a variance component from observations of a normal 

distribution. Thus for a data set with N  observations, the maximum number of degrees of freedom 

would be 1−N . Obviously, the minimum number of degrees of freedom to estimate a variance 

component would be at least equal to one since it takes at least two observations to estimate a 

variance component. Thus a consequence of the intuitive interpretation is that the number of degrees 

of freedom in (10) should be bounded from below by (at least) 1 and from above with (at most) 1−N , 

because the data does not contain any less or any more information than 1 and 1−N , respectively. 

 

The literature on Satterthwaite approximation has described its performance and it does not always 

provide good coverage probabilities for the estimation of linear combinations of variance components, 

see Burdick and Graybill (1992). The performance becomes less when one or more of the coefficients 

1c , 2c ,….., 
0m

c are negative. However, for positive coefficients, the performance is diminished as 

well when sample sizes and variance components vary substantially in size. Some researchers have 

tried to improve the Satterthwaite approximation. Ames and Webster (1991) tried to correct the bias in 

the estimator for the number of degrees of freedom by changing the estimator in (10). They indeed 

improved the estimator, but their solution was developed for the situation that the estimator in (7) 

contains only two mean squares ( 20 =m ). A generalization of this work seems not straightforward. 

Zou and McDermott (1999) extended the Satterthwaite approach by including higher order moments 

of the Chi-square distribution to obtain the best number of degrees of freedom. Their simulation study 

shows that the coverage probability becomes conservative, which may be positive for some situations. 

However, the complexity to unbalanced experimental designs will become too high for practical 

considerations. 

 

The main disadvantage of Satterthwaite’s approximation is in our view the use of the “estimate” for 

the number of degrees of freedom. We believe that the method would perform better when the 

number of degrees of freedom does not have to be estimated. Practically, this is of course impossible, 

but it indicates that the variation from the estimator may have a negative effect on the performance of 

the coverage probability. Thus limiting the variation of the estimator, by using the bounds 1 and 
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1−N  or even tighter constraints may certainly be helpful in increasing the performance of 

Satterthwaite’s approximation. 

 

Henderson III Moment Estimators 

For the construction of confidence intervals for the measure of precision in (2) using Henderson III 

moment estimators, the estimator 
0m

T  in (10) and (11) should first be replaced by the adjusted 

moment estimator 
2

0

~
mγ  from (7). The first and second moments of this estimator can be established 

for balanced designs but they become too complicated for unbalanced designs, due to the loss of nice 

properties of the mean squares. Therefore, we will approximate the standard error by  

(12) ( ) ( ) [ )( ) ( ) [ )( ) [ )( )∑ ∑∑
−

= +=

∞∞

=

∞ +=
1

1 1

2

,0

2

,0

22

1

2

,0

222
~

0 00

2

0

ˆ1ˆ1ˆ,ˆcov2ˆ1ˆvar1
m

q

m

qr

rqrqrq

m

q

qqq ccc
m

σσσσσσσ
γ

, 

with 
2ˆ
qσ  the standard moment estimator for the variance component 

2

qσ . The variances and 

covariances in (12) can be estimated, see Searle et al. (1992). The estimates will be denoted by rq ,ν̂  

with ( )2

,
ˆvar qqq σν =  and ( )22

,
ˆ,ˆcov rqrq σσν = , when rq ≠ . The estimator for the standard error of 

the moment estimator 
2

0

~
mγ  in (7) is now denoted by ( )1ˆ 2

~ 2

0m
γ

σ . This standard error reduces to the usual 

form in Satterthwaite (1946) for balanced designs, when all variance component estimates are non-

negative. 

 

The adjusted moment estimator 
2

0

~
mγ  in (7) is essentially a function of the mean squares 1M , 

2M , .....,
0m

M . This means that the number of degrees of freedom for the estimator 
2

0

~
mγ  is at least 

{ }
0

,,,min 21 mdfdfdf K  and at most 
021 mdfdfdf +++ L , with kdf  the “number of degrees of 

freedom” corresponding to the mean square kM . These bounds indeed indicate the minimum and 

maximum amount of information present in the mean squares.  

 

Using these constraints and the Satterthwaite approximation, the estimated number of degrees of 

freedom Sfd
ˆ  in (11) should be replaced by, 
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(13) ( ) { } ( ){ }{ }1ˆ~2,min,,,,minmax1ˆ 2
~

4

2121
0000 mmmmM dfdfdfdfdfdffd γσγ⋅+++= LK . 

 

It should be noted that Nijhuis and Van den Heuvel (2007) did use a different estimator for the number 

of degrees of freedom in (13). They replaced ( )1ˆ 2
~ 2

0m
γ

σ  in (13) by the estimator 
2

ˆ 2

0

ˆ
mγ

σ , which can be 

obtained by substituting the estimators rq ,ν̂  in (6). The constraints though were still the same 

because it is a property of the Satterthwaite approximation for balanced designs. It is expected that 

the estimated number of degrees of freedom in (13) would be lower than or equal to the choice given 

by Nijhuis and Van den Heuvel (2007). Hence, the approach here will result usually in larger or equal 

coverage probabilities. We consider this as beneficial, because the literature reports that one of the 

weaknesses of Satterthwaite approach is that the confidence intervals produces coverage 

probabilities which are too low in some cases, e.g. Burdick and Graybill (1992). 

 

To accommodate this even further, one could argue that the standard error for the moment estimator 

2

0

~
mγ  in (7) is better approximated by only the first sum in (12), because this term usually dominates 

the standard error and because the covariances in (12) are expected to be negative as well. Thus an 

alternative or modified approximate standard error can be defined by 

(14) ( ) ( ) [ )( )∑
=

∞=
0

2

0
1

2

,0

222
~ ˆ1ˆvar2

m

q

qqqc
m

σσσ
γ

. 

Still using the same constraints as in (13), the modified Satterthwaite approach provides the following 

number of degrees of freedom 

(15) ( ) { } ( ){ }{ }2ˆ~2,min,,,,minmax2ˆ 2
~

4

2121
0000 mmmmM dfdfdfdfdfdffd γσγ⋅++= LK , 

with ( )2ˆ 2
~ 2

0m
γ

σ  the estimator for ( )22
~ 2

0m
γ

σ  in (14), by substituting qq ,ν̂  for ( )2ˆvar qσ  in (14).  

 

It should be noted that for repeatability ( 10 =m ), the lower and upper constraint on the number of 

degrees of freedom become equal to 1df , the number of degrees of freedom for the residual variance. 

Thus the selected Satterthwaite approximation with (13) and (15) both become exact in case the 

estimator is a true mean square, such as for the residual variance component. 

Deleted:  would then become
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For the Henderson III moment estimators there are now four ways of constructing confidence intervals 

for the measure of precision in (2). The two estimation methods Type 1 and Type 3 will be combined 

with both the original and modified Satterthwaite approach for constructing standard errors of the 

estimator of the measure of precision, see the number of degrees of freedom in (13) and (15). 

 

Maximum Likelihood Based Estimators 

The variances and covariances in (9) can be estimated based on the inverse of the Hessian of the 

likelihood function or the Fisher Information matrix, see Searle et al. (1992). If these estimators are 

(also) denoted by rq ,ν̂ , with ( )2

, var qqq s=ν  and ( )22

, ,cov rqrq ss=ν  when rq ≠ , then the estimator 

for the standard error in (9) for the (restricted) maximum likelihood estimator 
2

0m
γ&  in (8) is then ( )12

2

0m

s
γ&

, 

which is obtained by substituting the estimators rq ,ν̂  into (9), i.e. 

(16) ( ) ∑ ∑∑
−

= +==

+=
1

1 1

,

1

,

22
0 00

2

0

ˆ2ˆ1
m

q

m

qr

rqrq

m

q

qqq cccs
m

νν
γ&

. 

 

The confidence interval for the measure of precision with the (restricted) maximum likelihood 

estimator is now obtained by (11), with 
0m

T  replaced by 
2

0m
γ&  and the number of degrees of freedom 

fdˆ  in (11) replaced by 

(17) ( ) ( ){ }{ }12,1min,1max1ˆ 24

00 m
sNfd mL γγ
&

&⋅−= . 

Similar to the reasoning for the Henderson III moment estimators, the dominating term in (16) would 

be the first sum alone. The confidence interval would then be constructed with the modified number of 

degrees of freedom  

(18) ( ) ( ){ }{ }22,1min,1max2ˆ 24
2

0
0 m

sNfd mL γ
γ

&
&⋅−=  

with ( )22
2

0m

s
γ&

 given by the modified estimator ( )
000

2

0
,

2

2,2

2

21,1

2

1

2 ˆˆˆ2 mmmcccs
m

ννν
γ

+++= L
&

.  

 

For the likelihood based estimators, the constraints 1 and 1−N  are used instead of “degrees of 

freedom” which are used for the moment estimators. The likelihood based estimators do not have the 
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same interpretation as the moment estimators in unbalanced designs, see Searle et al. (1992). 

Indeed, due to the possibility of dropping terms from the model for variance components which are 

estimated at zero, changes the “number of degrees of freedom” for the estimation of other variance 

components. This would also hold for repeatability, i.e. 10 =m . Another reason is that even the 

residual variance component estimator, under the assumption that the “full” analysis of variance 

model would represent the data, does not follow a chi-square distribution in general and the 

expectation of the estimator may include variance components which are unrelated to the residual 

variance component. Although it may be possible to narrow the constraints in (17) and (18) with the 

use of the “number of levels” for each term in the model, we have chosen to use only the boundaries 

in (17) and (18), which would always be correct in all situations (as described in the beginning of this 

subsection). 

 

For the likelihood based estimation method there are also four ways to construct confidence intervals 

for the measure of precision in (2). Both the maximum likelihood and the restricted maximum 

likelihood method may be used with the original and modified Satterthwaite approach for the standard 

error of the estimator of the measure of precision, see the number of degrees of freedom in (17) and 

(18). 

 

3.  SIMULATION STUDY 

A simulation study was conducted using SAS
®
 software package to investigate the performance of the 

estimation methods with the original and modified Satterthwaite approach to construct confidence 

intervals on the measures of assay precision with unbalanced data. The performance measure for the 

simulation study is the coverage probability for 95% confidence intervals. In line with Jennings (1987) 

the left tail and right tail probabilities are investigated too, to determine the symmetry or bias of the 

confidence intervals. Of particular interest is the performance of these methods in small but frequently 

applied interlaboratory studies. 

 

The simulated statistical model is a three-way random effects analysis of variance model which was 

already discussed by Nijhuis and Van den Heuvel (2007) for balanced designs. For unbalanced data 

the model is described by 
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(19) ( ) ( ) ( ) ( ) hijkihjijhiihhijky εαδδαββαµ ++++++= , 

with =h 1,2,…,H , =i 1,2,…, I , =j 1,2,…, J , and =k 1,2,…, hijK  and with  

µ :  the overall mean,  

hα :  the effect of batch h , ( )2

6,0~ σα Nh , 

iβ :  the effect of laboratory i , ( )2

5,0~ σβ Ni , 

( )hiαβ :  the interaction effect of batch h  and laboratory i , ( ) ( )2

4,0~ σαβ Nhi , 

( )ijδ :  the effect of analytical run j  within laboratory i , ( ) ( )2

3,0~ σδ Nij , 

( ) ( )ihjαδ :  the interaction effect for batch h  with analytical run j  within laboratory i , 

( ) ( ) ( )2

2,0~ σαδ Nihj   

hijkε :  the residual, ( )2

1,0~ σε Nhijk , 

and with all random terms mutually independently distributed. Note that the imbalance of the design is 

incorporated by the dependency of the repeated number of observations hijK  on batch, laboratory 

and run. 

 

The five variance components 
2
1σ , 

2
2σ , 

2
3σ , 

2
4σ , and 

2
5σ  all belong to the “assay related” group, 

because it is assumed that the batches are homogeneous. The variance component 
2
6σ  belongs to 

the “assay unrelated” group, because it quantifies the variation between production batches. The 

measures of precision repeatability, intermediate precsion and reproducibility are now defined by 

Repeatability:  
2

1

2

1 σγ = , 

(20) Intermediate Precision: 
2

3

2

2

2

1

2

3 σσσγ ++= , 

Reproducibility:  
2

5

2

4

2

3

2

2

2

1

2

5 σσσσσγ ++++= . 

 

Five “practical cases” of parameter choices for the variance components of the statistical model are 

used in the simulation study and they are presented in Table 1. Table 1 also presents the true 

measures of precision. The variance component for batch was always kept equal to 2 and the 
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residual variance is omitted in the table because it is represented by repeatability. Each case 

represents a possible situation in practice. Case E represents a method with a dominating 

repeatability. Case D has a dominating lab-to-lab variation. Case B has a dominating run-to-run 

variation, which could be caused by analysts. Case C represents a dominating interaction between 

batch and run, indicating that the assay is sensitive to the batches. This case is sometimes observed 

for biological assays. Case A has all of these effects without being one dominant. 

< Table 1 > 

 

The selected sample sizes or experimental designs for the different variation sources used in the 

simulation study are presented in Table 2. These sample sizes were all combined with the practical 

cases from Table 1. The last column in Table 2 indicates the total number of test samples in the study 

to give an impression of the size of the intralaboratory experiment. 

< Table 2 > 

 

Unbalanced data in the simulation study is implemented by introducing missing data to the complete 

statistical model in (19) that has been simulated first. The selected mechanism is “completely missing 

at random” (cf. Little and Rubin (2003)) at individual results. The missing data is generated with a 

Bernoulli random variable indicating which result is omitted from the full study. The selected 

probabilities for introducing missing data were set at 0, 0.1 and 0.2. For each selected probability all 

combinations of sample sizes in Table 2 with all practical cases in Table 1 were considered. The 

number of simulation runs for a particular set of input parameter was selected at 10000, i.e. the 

number of times model (19) is generated. This would result in a standard error of approximately 

0.0022 (or 0.22%) for the targeted coverage probability of the simulated confidence intervals. 

 

The coverage probabilities from the simulation study are summarized in Tables 3 to 9. Instead of 

presenting huge tables of coverage probabilities, only the ranges of coverage probabilities for the 

different sample sizes or experimental designs are given. Tables 3 and 4 present the results for 

intermediate precision and reproducibility for balanced data and Tables 5 and 6 present the same 

information for unbalanced data with 20% missing data. Each table presents the four estimation 

methods applied with the original (OS) and modified (MS) Satterthwaite approach and the five 
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different practical cases (A to E). Repeatability is not presented, because the coverage probabilities 

were very close to the target of 95%. Tables 7, 8, and 9 present the ranges on the left and right tail 

probabilities when 10% missing data is generated for repeatability, intermediate precision and 

reproducibility, respectively. Only the modified Satterthwaite approach is presented, but again the four 

estimation methods and the five practical cases are included. 

 

< Table 3 > 

< Table 4 > 

< Table 5 > 

< Table 6 > 

< Table 7 > 

< Table 8 > 

< Table 9 > 

 

4. CONCLUSIONS 

A few generic rules were observed from the simulation study. The original and modified Satterthwaite 

approaches are generally reasonable close to the target coverage probability of 95%, despite the 

small sample sizes and the complexity of the structure of the data. The modified Satterthwaite 

approach showed higher coverage probabilities than the original Satterthwaite approach and in some 

cases even substantially higher coverages are observed. The maximum likelihood estimation method 

seems to produce a little bit lower coverage probabilities than the restricted maximum likelihood 

method. The Henderson III Type 3 method has somewhat larger coverage probabilities than the 

Henderson III Type 1 method for intermediate precison and reproducibility (for unbalanced data of 

course). The coverage probabilities for the Henderson III methods reduce with the amount of missing 

data while the maximum likelihood methods are less affected. Henderson III Type 1 method is 

affected most by the imbalance, clearly more than any of the other estimation methods. The likelihood 

based estimation methods gave left tail probabilities which are mostly underestimated (asymmetry), 

indicating lower confidence limits that are too low, even for repeatability in some of the simulation 

cases. The Henderson III estimation methods gave less extreme asymmetrical coverage probabilities 

than the likelihood based estimation methods. When the coverage probabilities for the Henderson III 
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methods were asymmetrical, the right tail would generally give lower probabilities than the left tail, 

making the upper confidence limit conservative, except for some particular simulation cases. 

 

For balanced data two sets of simulation cases clearly stand out, namely practical case B for 

intermediate precision and practical case D for reproducibility. The ML and REML estimation methods 

do not seem to perform very well, not even when the modified Satterthwaite approach is used, 

although the modified approach does increase the coverage probabilities with respect to the original 

Satterthwaite approach. The modified Satterthwaite approach for the Henderson III Type 1 & 3 

estimation methods do seem to give more appropriate coverage probabilities for these practical cases, 

although the modified Satterthwaite approach shows too high coverage probabilities for the other 

simulation cases in general with all estimation methods. 

 

For the intermediate precision in simulation case B and for reproducibility in simulation case D, the 

likelihood based estimation methods with the modified Satterthwaite approach improve in coverage 

probability when missing data occurs. Contrary to this, Henderson III Type 3 estimation method 

reduces in coverage probability for these simulation cases and the coverage probabilities become 

similar to the coverage probabilities for the REML estimation method when both methods use the 

modified Satterthwaite approach. For the original Satterthwaite approach though, Henderson III Type 

3 estimation method remains better than REML estimation method for these two sets of simulation 

cases B and D for unbalanced data. 

 

It is quite difficult to make a firm choice between the two Satterthwaite approaches or between any of 

the estimation methods. However, REML is preferred above ML estimation and Henderson III Type 3 

is preferred above Henderson III Type 1 estimation. Thus either REML or Henderson III Type 3 

should be selected. We believe that the simulation results give a small preference to Henderson III 

Type 3 estimation method using the modified Satterthwaite approach. For particular simulation cases 

it provides similar or better results as any other combination of estimation method with one of the two 

Satterthwaite approaches and it provides in general higher coverage probabilities then aimed for, 

which makes it a good but conservative method to construct confidence intervals. Furthermore, it 

provides somewhat more symmetrical coverage probabilities than the maximum likelihood based 
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estimation methods, which produces asymmetrical confidence intervals even for repeatability. The 

REML estimation method with the modified Satterthwaite approach would be an appropriate 

alternative in our opinin. 
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Table 1:  Choices of model parameter in the simulation study.  

Variance Components Case A Case B Case C Case D Case E 

Lab 0.6 0.6 0.2 1.0 0.2 

Batch*Lab 0.3 0.1 0.1 0.1 0.1 

Run(Lab) 0.7 1.2 0.2 0.2 0.2 

Batch*Run(Lab) 0.6 0.1 1.1 0.1 0.1 

Repeatability 0.5 0.5 0.5 0.5 0.5 

Intermediate Precision 1.8 1.8 1.8 0.8 0.8 

Reproducibility 2.7 2.4 2.1 1.9 1.1 

 
Table 2:  Selected samples sizes for batches, laboratories, runs, and replicates used in the simulation study.  

 Number of 
batches  

(H) 

Number of 
laboratories  

(I) 

Number of 
analytical runs 

(J) 

Number of 
replicates 

(K) 

Total number of 
test samples 

(HIJK) 

1 2 2 2 3 24 

2 2 2 3 2 24 

3 3 2 2 2 24 

4 2 2 3 3 36 
5 3 2 2 3 36 

6 3 2 3 2 36 

7 2 2 4 3 48 

8 3 2 4 2 48 

9 3 2 3 3 54 

10 2 3 2 3 36 

11 2 3 3 2 36 

12 3 3 2 2 36 

13 2 3 3 3 54 
14 3 3 2 3 54 

15 3 3 3 2 54 

16 2 3 4 3 72 

17 3 3 4 2 72 

18 3 3 3 3 81 

 
Table 3: Ranges of coverage probabilities for intermediate precision for interlaboratory studies with balanced 

designs. 

CI-Method Case A Case B Case C Case D Case E 

OS 88.67 – 94.04 82.20 – 91.96 90.90 – 94.98 93.04 – 95.45 93.18 – 95.31 
REML 

MS 92.38 – 97.70 86.03 – 95.34 94.24 – 98.15 95.71 – 98.44 95.60 – 98.38 

OS 87.77 – 93.95 81.26 – 91.86 89.83 – 94.95 92.97 – 95.37 93.04 – 95.19 
ML 

MS 91.84 – 97.73 85.53 – 95.40 93.67 – 98.16 95.61 – 98.43 95.50 – 98.37 

OS 92.93 – 95.96 87.20 – 94.35 92.39 – 96.04 96.02 – 98.15 96.19 – 98.37 
TYPE 1&3 

MS 94.28 – 98.19 90.39 – 96.54 93.63 – 98.37 98.05 – 99.02 97.55 – 99.06 

 
Table 4: Ranges of coverage probabilities for reproducibility for interlaboratory studies with balanced designs. 

CI-Method Case A Case B Case C Case D Case E 

OS 92.91 – 94.92 90.35 – 94.85 95.39 – 96.69 78.56 – 88.28 92.75 – 95.56 
REML 

MS 95.96 – 98.39 93.20 – 97.32 97.52 – 99.14 84.56 – 94.22 96.45 – 98.58 

OS 89.67 – 93.41 86.98 – 92.97 92.83 – 96.06 72.68 – 86.04 90.69 – 94.85 
ML 

MS 94.12 – 98.04 91.41 – 96.61 96.40 – 98.98 81.52 – 93.29 95.65 – 98.33 

OS 94.72 – 98.00 94.51 – 97.26 91.35 – 97.92 85.18 – 95.87 96.62 – 98.80 
TYPE 1&3 

MS 95.76 – 99.07 96.38 – 98.58 91.23 – 99.02 89.98 – 97.46 97.55 – 99.48 
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Table 5: Ranges of coverage probabilities for intermediate precision for interlaboratory studies with 20% 
missing data. 

CI-Method Case A Case B Case C Case D Case E 

OS 90.09 – 94.04 83.18 – 92.60 90.74 – 94.91 94.38 – 95.75 93.49 – 95.63 
REML 

MS 93.61 – 98.05 87.83 – 96.07 94.38 – 98.65 96.29 – 98.30 95.90 – 98.75 

OS 89.25 – 93.93 82.50 – 92.40 89.85 – 94.83 94.23 – 95.76 93.39 – 95.55 
ML 

MS 93.29 – 98.10 87.55 – 96.01 93.90 – 98.64 96.14 – 98.32 95.87 – 98.73 

OS 88.02 – 95.41 82.47 – 91.66 86.11 – 95.37 92.90 – 96.85 92.47 – 96.88 
TYPE 1 

MS 88.47 – 97.68 84.04 – 94.15 86.53 – 97.74 92.83 – 98.45 92.31 – 98.38 

OS 90.89 – 95.66 85.11 – 92.91 89.43 – 95.61 94.00 – 96.93 93.07 – 96.97 
TYPE 3 

MS 91.60 – 97.98 87.17 – 95.45 89.92 – 97.94 94.04 – 98.31 93.24 – 98.55 

 
Table 6: Ranges of coverage probabilities for reproducibility for interlaboratory studies with 20% missing 

data. 

CI-Method Case A Case B Case C Case D Case E 

OS 93.30 – 95.54 91.54 – 94.56 95.42 – 97.02 80.74 – 89.95 93.39 – 95.94 
REML 

MS 96.47 – 98.77 94.35 – 97.64 97.69 – 99.28 87.29 – 95.14 96.87 – 98.68 

OS 90.41 – 94.28 88.32 – 92.68 93.11 – 96.27 75.16 – 87.95 91.55 – 95.41 
ML 

MS 95.25 – 98.69 92.90 – 97.13 96.55 – 99.20 85.21 – 95.00 96.26 – 98.53 

OS 87.58 – 96.73 85.51 – 94.01 82.41 – 96.77 82.23 – 94.10 90.14 – 97.67 
TYPE 1 

MS 87.71 – 98.13 85.74 – 95.61 82.45 – 97.67 84.88 – 95.96 90.13 – 98.91 

OS 91.36 – 97.33 89.62 – 95.41 86.96 – 97.17 82.03 – 94.15 91.17 – 97.61 
TYPE 3 

MS 91.59 – 98.58 90.07 – 97.26 86.87 – 98.16 84.16 – 95.40 91.12 – 98.80 

 
Table 7: Ranges of left and right tail probabilities for repeatability for interlaboratory studies with 10% 

missing data based on the modified Satterthwaite method. 

CI-Method Case A Case B Case C Case D Case E 

Left 2.31 – 2.80 1.66 – 2.31 2.27 – 3.04 1.57 – 2.57 1.74 – 2.39 
REML 

Right 2.31 – 2.87 2.35 – 3.54 2.25 – 2.85 2.56 – 3.77 2.53 – 3.62 

Left 2.32 – 2.80 1.69 – 2.31 2.26 – 3.01 1.62 – 2.57 1.78 – 2.41 
ML 

Right 2.29 – 2.88 2.35 – 3.53 2.25 – 2.85 2.55 – 3.76 2.53 – 3.67 

Left 2.31 – 2.76 2.24 – 2.65 2.26 – 2.93 2.16 – 2.88 2.16 – 2.76 
TYPE 1&3 

Right 2.23 – 2.82 2.22 – 2.67 2.27 – 2.85 2.24 – 2.66 2.34 – 2.66 

 
Table 8: Ranges of left and right tail probabilities for intermediate precision for interlaboratory studies with 

10% missing data based on the modified Satterthwaite method. 

CI-Method Case A Case B Case C Case D Case E 

Left 0.50 – 0.85 0.85 – 1.47 0.35 – 0.55 0.28 – 0.61 0.28 – 0.53 
REML 

Right 1.28 – 6.45 2.85 – 12.21 0.97 – 5.36 1.02 – 4.27 1.09 – 4.13 

Left 0.40 – 0.87 0.68 – 1.50 0.34 – 0.55 0.29 – 0.62 0.30 – 0.54 
ML 

Right 1.30 – 6.90 2.96 – 13.02 1.01 – 5.82 1.02 – 4.24 1.09 – 4.22 

Left 1.11 – 5.94 2.53 – 6.85 1.20 – 7.84 0.60 – 4.21 0.77 – 4.70 
TYPE 1 

Right 0.85 – 4.74 2.13 – 9.12 0.49 – 4.10 0.16 – 1.32 0.22 – 1.61 

Left 0.87 – 3.26 1.44 – 3.90 1.03 – 4.62 0.53 – 3.50 0.69 – 4.03 
TYPE 3 

Right 0.87 – 4.52 2.10 – 9.16 0.45 – 3.90 0.22 – 1.34 0.21 – 1.75 

 
Table 9: Ranges of left and right tail probabilities for reproducibility for interlaboratory studies with 10% 

missing data based on the modified Satterthwaite method. 

CI-Method Case A Case B Case C Case D Case E 

Left 0.19 – 0.62 0.35 – 0.86 0.12 – 0.39 0.68 – 1.05 0.07 – 0.33 
REML 

Right 1.22 – 3.44 1.93 – 5.77 0.57 – 2.25 4.20 – 13.16 1.13 – 3.28 

Left 0.15 – 0.28 0.23 – 0.45 0.14 – 0.35 0.23 – 0.50 0.07 – 0.28 
ML 

Right 1.48 – 5.09 2.60 – 7.67 0.77 – 3.21 5.12 – 16.26 1.29 – 4.10 

Left 0.57 – 7.07 1.06 – 6.51 1.03 – 13.77 0.97 – 4.62 0.27 – 5.65 
TYPE 1 

Right 0.40 – 4.13 1.02 – 6.32 0.17 – 1.57 1.46 – 10.70 0.15 – 1.78 

Left 0.33 – 4.44 0.46 – 3.63 0.92 – 9.92 0.96 – 3.96 0.28 – 4.70 
TYPE 3 

Right 0.43 – 2.85 1.01 – 4.97 0.16 – 1.44 1.94 – 11.18 0.22 – 2.10 
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