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Abstract.

We report on the realization of a sodium Bose–Einstein condensate (BEC) in a

combined red-detuned optical dipole trap, formed by two beams crossing in a horizontal

plane and a third, tightly focused dimple trap propagating vertically. We produce a

BEC in three main steps: loading of the crossed dipole trap from laser-cooled atoms, an

intermediate evaporative cooling stage which results in efficient loading of the auxiliary

dimple trap, and a final evaporative cooling stage in the dimple trap. Our protocol

is implemented in a compact setup and allows us to reach quantum degeneracy even

with relatively modest initial atom numbers and available laser power.

1. Introduction

The preparation of degenerate atomic quantum gases is interesting from both a

fundamental and an applied point of view. On the one hand, the unprecedented level of

control on these systems allows one to study of quantum many-body phenomena in the

absence of perturbing effects unavoidable in solid-state systems [1]. On the other hand,

degenerate gases are a promising starting point to reliably produce highly entangled

states, which could pave the way for a new generation of atom-based quantum sensors

(see [2, 3] and references therein).

In view of the sensitivity of these strongly correlated states to the perturbations

caused by magnetic fields fluctuations, experimental schemes in which evaporative

cooling is performed without the use of external magnetic fields are particularly

interesting. These so-called “all-optical evaporation” schemes rely on far off-resonant

optical dipole traps. They have been developed by several groups to produce Bose–

Einstein condensates (BEC) of various atomic species, in particular alkali atoms (Rb
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[4, 5, 6], Li [7], Cs [8] and Na [9]). In such all-optical setups, the trapping potential

is almost independent of the internal state, opening the route to the study of spinor

condensates [10].

Experiments relying on all-optical setups are based on a common experimental

scheme: Laser-cooled atoms are first loaded into an optical dipole trap and then

evaporatively cooled by lowering the trapping laser intensity and thus the trap depth.

In this paper we discuss how to optimize these two steps for producing an all-optical

BEC of sodium atoms, starting with relatively modest atom numbers and laser powers.

The first issue, dealing with the transfer from the magneto-optical trap (MOT) to

the optical dipole trap, has extensively been studied (see e.g. [11]). Laser cooling forces

and light-assisted losses can be strongly modified by the presence of the dipole trap

potential. The size and the depth of the trapping potential have to be adapted to the

size, density and temperature of the MOT. A convenient configuration is a laser trap

consisting of two crossed gaussian beams [12], as in our experiment. The loading of

the trap then occurs in two steps: Atoms are first captured in both arms of the trap,

and then start filling the crossing region by “free evaporation” once the near-resonant

cooling beams have been turned-off [4]. We will describe our procedure to optimize the

atom number N in the crossing region and the temperature T at the end of the free

evaporation to get a high phase-space density D and a large collision rate γcoll. We recall

that D = N (~ω/kBT )
3 and γcoll ∝ N/ω3T for a Boltzmann gas in a harmonic trap,

with ~ the Planck constant, kB the Boltzmann constant, and ω the average trapping

frequency. For a given beam size, we find that the optimal trap depth is different for

loading and free evaporation, and propose that trap-induced light-shifts on the cooling

transition are the physical mechanism behind this observation.

The second issue is related to the efficiency of evaporative cooling. In these

respect, optical traps differ in several aspects from magnetic traps. In magnetic traps,

evaporative cooling takes place in the so-called runaway regime, where the elastic

collision rate γcoll and evaporation efficiency stay constant or even increase with time

[13]. In optical traps, this regime is not easily reachable because the trap depth and trap

confinement both increase with the trapping laser power. In practice, decreasing the

trap depth to force evaporation results in a looser confinement, so that the collision rate

can decrease even if the phase-space density increases. Solutions involving modification

of the trapping potential have been demonstrated to resolve this issue. For example a

dynamical change of the beam size using a zoom lens allows one to maintain constant

confinement while reducing the trap depth [5], thus preserving a high collision rate

during evaporation. Runaway evaporation in an optical trap can also be obtained, by

using an additional expelling potential independent of the trapping laser (gravity or

“pulling” laser) in order to decouple trap confinement and potential depth [14, 15].

A third solution, based on the addition of a tighter “dimple” potential [8, 16], has

been realized and characterized theoretically [17, 18, 19]. This solution, which is the

one investigated in this paper, leads to a two-step evaporation sequence: After the

loading of a larger trap, atoms are first transferred by cooling into the “dimple” trap,
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then further cooled down in this trap. The major advantages of this technique are its

relative technical simplicity (as compared, for instance, to a “zoom-lens” method), the

increase of phase-space density during the transfer, and the high efficiency of the second

evaporation step due to the high confinement in the “dimple” trap. Here we describe

the first application of this technique to 23Na. Starting with 3 × 105 trapped atoms,

a Bose–Einstein condensate of ∼ 104 23Na atoms is produced after ∼ 2 s evaporation

time.

The paper is organized as follows. In section 2, we give an overview of our

experimental setup. In section 3, we investigate the loading of a dipole trap from a

MOT of sodium atoms and study how the compression of the trap after the atom capture

improves the initial conditions for evaporative cooling. We then present in section 4 how

evaporative cooling works in presence of the auxiliary dimple trap, detailing its filling

dynamics, and the last evaporative cooling stage to reach Bose–Einstein condensation.

2. Experimental Setup

2.1. Laser cooling

Our experiment starts with a sodium magneto-optical trap (MOT) capturing

approximately 107 atoms in 10 s from a vapor whose pressure is modulated using

light-induced atomic desorption [20]. After the MOT is formed, a far off-resonant

dipole trap is switched on (see subsection 2.2). The detunings and powers of both

the cooling (tuned to 3S1/2, F = 2 → 3P3/2, F
′ = 3 transition) and repumping (tuned to

3S1/2, F = 1 → 3P3/2, F
′ = 2 transition) lasers are modified in order to optimize the trap

loading. During a first “dark MOT” phase [21], we lower the power of the repumping

laser in about 100 ms, from Irep = 300 µW.cm−2 to Irep = 10 µW.cm−2 per beam

while keeping the magnetic gradient on. This reduces the loss rate due to light-induced

collisions by limiting the population of the excited states [11]. We keep the cooling laser

intensity at the same value as for MOT loading, Icool = 0.9 mW.cm−2 per beam, which

corresponds to one sixth of the saturation intensity (Isat = 6.3 mW.cm−2). During this

“dark MOT” phase, both the spatial density in the dipole trap and the temperature

increase. We then apply a 30 ms-long “cold MOT” phase, where the cooling beam

detuning is shifted from δcool ≈ −Γ to δcool ≈ −3.8Γ (Γ/2π ≈ 10 MHz is the natural

linewidth). The temperature of the atoms after this cooling sequence is around 50 µK.

2.2. Trapping lasers configuration

The far off-resonant dipole trap results from the combination of three beams, two

forming a crossed dipole trap (CDT) in the horizontal x− y plane and a tightly focused

one propagating vertically along the z axis (see figure 1(a)), which we refer to as “dimple

trap” (dT). The CDT is derived from a 40 W fiber laser (IPG Photonics) at 1070 nm.

This trap is formed by folding the beam onto itself at an angle θ ≃ 45◦ in the horizontal

plane. At the crossing point, both arms have a waist wCDT ≈ 42 µm. We control
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Dipole Trap ωx/2π (kHz) ωy/2π (kHz) ωz/2π (kHz) V0/kB (mK)

CDT 2.5 4.5 5.1 1.2

dT 3.7 3.7 0.021 0.10

Table 1. Trapping frequencies and trap depths at PCDT ≈ 36 W and PdT ≈ 200 mW

for the crossed dipole trap (CDT) and the dimple trap (dT), respectively.

the laser power using a motorized rotating waveplate (OWIS GmbH) followed by a

Glan-Taylor polarizer (bandwidth ∼ 10 Hz), and a control input on the current in the

laser pump diodes (bandwidth ∼ 50 kHz). The waveplate is used for coarse reduction

of laser power by changing the amount of light transmitted by the polarizer, whereas

the current control is used at the end of the evaporation ramp (low laser powers) and

for fast servo-control of the intensity to reduce fluctuations. Combining both servo

loops, we can control the laser power from its maximal value (PCDT ≈ 36 W) down to

≈ 100 mW. We can switch off the trapping potential to an extinction level greater than

90 % in less than 10 µs using the laser current input. We use motorized mirrors (Agilis,

Newport Corporation) for alignment. Special care is taken to ensure the orthogonality

of the polarization of both arms, realized by the insertion of a λ/2 waveplate that is

positioned with a precision . 0.5◦. A misalignement of only 1◦ results in a measurable

heating of the sample [20].

The auxiliary dimple trap is produced using a 500 mW laser (Mephisto-S, InnoLight

GmbH) at 1064 nm. As sketched on figure 1(a), the beam propagates vertically, and

crosses the CDT with a waist wdT ≈ 8 µm. The laser beam is transmitted through

a single-mode optical fiber, and focused to a waist size wdT using a custom-made

microscope objective (CVI Melles Griot, NA & 0.3). An acousto-optic modulator placed

before the fiber allows us to control the intensity and to quickly switch off the dT-beam.

To fix the notations that will be used in the following, we give here the expressions

of the dipole trap potentials. The expression of the CDT potential is given by

VCDT(x, y, z) = −V 0
CDT

2

[

e−2(x2+z2)/w(y)2

(w(y)/wCDT)
2 +

e−2(u2+z2)/w(v)2

(w(v)/wCDT)
2

]

, (1)

with w(y) = wCDT

√

1 + y2/y2R and with yR the Rayleigh length yR = πw2
CDT/λ ≈

5.2 mm. We have also introduced the rotated coordinates: (u, v) = (x cos(θ) +

y sin(θ),−x sin(θ) + y cos(θ)). The expression of the dT potential is given by

VdT(x, y, z) = −V 0
dT e−2(x2+y2)/w2

dT , (2)

neglecting the confinement of the dT along the z-axis, always negligible compared to

the vertical confinement of the CDT. Typical trapping frequencies and potential depths

are given in table 1.

In figure 1(c), we give schematically the temporal evolution of the powers of the two

lasers during the experimental sequence. This time evolution is optimized for loading

and evaporation, as explained in sections 3 and 4.
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2.3. Imaging

We monitor the time evolution of the trapped cloud using both fluorescence and

absorption imaging [22]. Fluorescence light is captured by the same high numerical

aperture microscope used to focus the dT. The photons are collected on a low-noise

charge-coupled device camera (PIXIS, Princeton Instruments). In figure 1(b), we show

a typical fluorescence image. We typically observe the atoms after a time-of-flight

tToF = 0.1 ms during a short pulse (tmol = 50 µs) performed with the six cooling

and repumping beams.

Absorption images are recorded with a vertically propagating resonant probe beam.

It is better suited for the analysis of the central denser part of the trapped cloud but

not very precise for the arms of the CDT. Indeed, the regions corresponding to the CDT

arms display low optical densities (< 0.1) only slightly above the noise level (∼ 0.04,

limited by residual fringes on the background). Atom counting in the arms of the CDT

is thus more accurate using fluorescence images.

3. Loading and free evaporation in the Crossed Dipole Trap

3.1. Dipole trap loading dynamics

We can distinguish two stages in the dynamics of the trap loading. At first, during

the MOT/CDT overlap period, atoms are captured mainly in the arms of the CDT

without a notable enhancement of the density in the crossing region. In the second

phase that follows the extinction of the MOT beams, which we call “free evaporation”,

the hottest atoms leave the arms and the remaining ones fill the crossing region through

thermalization. The quantity of interest is the number of atoms in the central region

NC, which corresponds approximately to the number of atoms with an energy comprised

between −V 0
CDT and −V 0

CDT/2 (as defined in equation (1)). We show in figure 2 the

potential VCDT in the z = 0 plane, truncated at three different energy levels. One can

see that atoms having energies lower than V 0
CDT/2 explore only the central region, as

expected. This dense part is the relevant component that matters for further evaporative

cooling. Although both trapping lasers (CDT and dT) are turned on simultaneously, the

CDT is much deeper than the dimple trap, the latter playing a negligible role during this

initial stage. In this section, we discuss auxiliary experiments where the dT is absent.

In order to understand the loading dynamics during the first stage, we give a brief

overview on the relevant mechanisms (see [11] for a detailed analysis). The loading rate

of atoms in the CDT is proportional to the probability of an atom to be trapped by the

dipole potential and to the atomic flux in the CDT/MOT overlap region. The first term

corresponds to the damping of the velocity of an atom when it crosses one arm of the

CDT, leading to a reduction of its total energy below the CDT potential depth. The

second term is proportional to the spatial density and the average velocity of the atoms in

the MOT, and thus depends on the temperature of the atoms. The relevant parameters

for optimizing the loading rate, namely the atomic density and the temperature, can
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be adjusted by the “dark MOT” and “cold MOT” phases (see subsection 2.1). The

presence of the dipole potential changes locally the cooling properties, due to the light

shifts induced by the CDT laser beams. During this phase, atom accumulation in the

trap crossing region is limited by light-assisted inelastic collisions, such as radiative

escape.

In the second stage, after the MOT light is extinguished, the trapped atoms

thermalize and the sample cools down by evaporative cooling (at a fixed potential

depth). Atoms concentrate in the crossing region and the phase space density increases

substantially as compared to the MOT [4].

We have experimentally tested CDT configurations with different beam sizes wCDT

(from 30 µm to 50 µm). A larger beam size helps to trap more atoms during the capture

stage due to higher overlap volume. However, at a given available power, larger beams

imply a weakening of the trap stiffness, which in return penalizes the thermalization after

capture. The data presented in this paper are taken with a beam waist wCDT ≈ 42 µm.

We obtain very similar results for wCDT ≈ 35 µm, but with different optimal powers at

each stage. In the next subsection, we will concentrate on the optimization of the laser

power to find the optimal trap depth for filling the center region.

3.2. Optimization of CDT loading

In order to characterize the filling dynamics of the crossing region, we define the filling

factor α = NC/N as the fraction of atoms in this region relatively to the total number

of atoms in the dipole trap. Images as that in figure 1(b) are processed with a multi-

component fitting routine that extracts the temperature, the density, the total atom

number N and NC. Details about the fitting procedure are presented in Appendix A.

The results of the optimization of the CDT power are presented in figure 3, where we

plot the evolution of atom number NC and filling factor α with time. We fit the function

α(t) = a(1− e−t/τ ) + b to our data.

We look first at a situation in which “free evaporation” occurs at constant CDT

power, keeping the same power during the free evaporation phase as during the capture

stage. We report in figure 3 the evolution of NC and α with time for three different

powers (PCDT = 7.9, 13.7 and 36W). The values of the loading time τ and the asymptotic

value α∞ = a + b of the filling factor obtained from the fit are shown in figure 4. We

find an optimal power PCDT = 13.7 W that maximizes both the number of atoms NC

and the stationary filling fraction α∞.

In a second set of experiments, the CDT is kept at constant PCDT = 13.7 W during

the “cold MOT” phase, and ramped up in 50 ms to another value just after switching

off the resonant lasers. As shown in figure 4, ramping up the power to the maximum

available power results in quicker loading of the central region (≃ 2 sec) and better

filling ratio (α∞ ≃ 0.6), the best values being apparently limited by the available laser

power. A slower, linear power ramp to PCDT = 36 W in 2 sec (also shown in figure 3),

leads to a slightly better loading ratio (α∞ ≃ 0.7), and also a slightly lower temperature,
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which altogether results in a higher number of atoms (about twice as many atoms in

the center of the CDT as compared to the loading at constant PCDT = 13.7 W). This

particular ramp provides the best starting point we could achieve for the evaporative

cooling stage.

The results of the two series of experiments show the existence of an optimal power

P opt
CDT = 13.7 W for the loading of the atoms during the period in which the MOT and

the CDT are simultaneously present. We interpret this observation in the following

way. The CDT laser exerts different light shifts on the various hyperfine states in the

ground (3s) and excited (3p) manifolds. These differential light shifts can perturb the

laser cooling dynamics in the CDT region and thus degrade the capture efficiency. For

instance, if we take the |g〉 = |F = 2, mF = 2〉 → |e3〉 = |F ′ = 3, mF = 3〉 transition
and a π-polarized CDT laser, we obtain that near the trap bottom, the laser detuning

changes according to

δ33 = ωL − ω33 + α33I, (3)

with ωL the cooling laser frequency, ω33 the “bare” transition frequency, I =

2PCDT/πw
2
CDT the intensity of the CDT laser ‡. For sodium, we find α33/2π ≈

27 Hz.cm2/W. For our optimal cooling beam detuning δcool = ωL − ω33 ≈ −3.8Γ

(see section 2.1) we obtain that the detuning on the cooling transition vanishes when

I ≈ |δcool|/α33 ≈ 1.4 × 106 W.cm−2. Experimentally, the optimum P opt
CDT = 13.7 W

corresponds to Iopt = 4.7 × 105 W.cm−2, close to the value calculated above, and a

change of detuning from −3.8Γ to δ33 ≈ −2.5Γ. We reached a very similar optimum

in another set of experiments with w′

CDT = 35 µm, where we found an optimum power

P ′opt
CDT = 10W corresponding to I ′opt = 5.2×105 W.cm−2 and a comparable final detuning

δ33 ≈ −2.4Γ.

One could think that tuning the cooling beam frequency further than −3.8Γ on the

red side of the |g〉 → |e3〉 transition could help to mitigate the effect, thus increasing

the optimal power and ultimately the number of atoms captured. However, two separate

effects work against this strategy. First, this compensation is efficient only near the trap

bottom and not across the whole trapping region. Second, it brings the MOT-beams

closer to resonance with neighbouring transitions that can shift in opposite ways. For

example the |g〉 = |F = 2, mF = 2〉 → |e2〉 = |F ′ = 2, mF = 2〉 transition has an

intensity dependance δ22 = ωL − ω22 − α22I, with ω22 the corresponding frequency and

α22/2π ≈ 16 Hz.cm2/W. The latter effect is limiting for 23Na, which has an hyperfine

structure splitting ω33 − ω22 much smaller than heavier alkalis (87Rb and 133Cs).

‡ For the calculation we use the data from the NIST atomic spectra database [23] and consider the

3s → 3p, 3p → 3d, 4d transitions (see also [24]).
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4. Two-stage evaporation

4.1. Evaporation in the crossed dipole trap alone

As pointed out in the introduction, lowering the laser intensity to reduce the trap depth

for evaporation is inevitably accompanied by a reduction of trap stiffness (near the

trap bottom, the trap frequency ω is proportional to
√
P/w), unlike in magnetic traps

where the depth and confinement are independent. The resulting decrease in density

and collision rate can make the cooling due to evaporation stop at low laser power. For

a harmonic trap the classical phase-space density is given by D = N (~ω/kBT )
3, where

ω stands for the mean trapping frequency. In a simple model where the evaporation

parameter η = V CDT
0 /kBT is assumed constant and where losses are neglected, the gain

in phase-space density when the trap depth is lowered from V CDT
0 to V CDT

0 /r (r > 1 is

the reduction factor) is given by [25]

D = D0r
β, β =

3

2

η2 − 7η + 11

η2 − 6η + 7
. (4)

The starting point in our experiment (about 3 × 105 atoms at T ≃ 100 µK)

corresponds to η ≈ 10 and a phase space density D0 ∼ 10−4. According to equation

(4), evaporating with a reduction factor r = 200 leads to a final phase space density of

∼ 0.2. In our experiment, an empirical optimization of a power-law ramp for the laser

power during evaporation,

VCDT(t) = V 0
CDT (1 + t/τevap)

−αevap , (5)

leads to τevap = 30 ms and αevap = 1.2. With this ramp, we have not been able to achieve

a final phase-space density greater than ∼ 10−2 in the CDT alone. This result is lower

than the prediction of equation (4). This can be explained by noticing that the model,

besides relying on rather stringent assumptions, also neglects three-body losses which

are important at the densities present in the CDT. We observe that the collision rate

after ∼ 1 s is lower than 10 s−1, which is too low to maintain efficient thermalization

and sustain the cooling process.

4.2. Evaporation in the dimple trap

To circumvent the decrease of evaporation efficiency presented in the previous

subsection, we have added a tight “dimple” to the initial trap [8, 26, 27]. We turn on the

auxiliary dT together with the main CDT, but keep it at constant power PdT = 200 mW

during the CDT ramp §. With the “dimple” addition, the atoms feel a more and more

confining potential as they cool, in stark contrast to the situation in the CDT alone. In

our experiment, we take advantage of the dissipative nature of evaporative cooling to

fill such a “dimple” trap (dT). As the atoms in the CDT are evaporatively cooled, they

get progressively trapped in the stiffer potential which results in a substantial increase

in spatial density [8, 18]. Since the temperature remains the same, this translates into

§ Keeping the dT power high causes no modification for the CDT loading and compression.
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a huge boost in the phase-space density. This is markedly different from an adiabatic

trap compression which increases spatial density but leaves the phase-space density

unchanged [28]. After 1 s evaporation in the CDT, the dT power is reduced to provide

the final stage of evaporative cooling (see figure 1(c)).

The plots in figure 5 summarize the evaporation dynamics. We show atom number

N , temperature T , dimple trap filling αd = Nd/N where Nd is the number of atoms

present in the dT, and phase space density D during the ramp, and compare it to

the evaporation without dimple trap∗. From figure 5(c), we observe that almost all

atoms accumulate rapidly (within a few 100 ms) in the dT. At this stage, the atoms

are essentially trapped by the dT in the x − y plane and by the weaker CDT in the

z−direction. We therefore call this stage “evaporative filling”. At the end of it, we obtain

a cold sodium gas with high phase-space density and collision rate (γcoll ≈ 2× 103 s−1),

well suited to start a second evaporative cooling stage.

The difference in trapping frequencies between the cases with and without dimple

trap leads to an increase of about 100 in phase-space density at t = 1 s. We quantify the

evaporation efficiency κevap leading from the starting point (N0,D0) to (N1,D1), using

the the definition given in [13],

κevap = − ln (D1/D0)

ln (N1/N0)
. (6)

Typical values in magnetic traps are κevap ∼ 1 − 2. In our experiment, we get much

better evaporation efficiencies using the dimple trap (κdT
evap ≃ 3.5) than evaporation in

the CDT alone (κCDT
evap ≃ 1.6) ♯.

We pursue the evaporation by reducing the dT depth, with an exponential ramp

from PdT = 200 mW to PdT = 2 mW in 1.5 sec, with a time constant τdT = 0.6 s.

This results in a phase-space density increase and a crossing of the BEC threshold after

∼ 1 sec ramping, with ≃ 2×104 atoms at T ≃ 1 µK. At the end of this ramp, we obtain

an almost pure BEC with ≃ 104 atoms.

Finally, we note that the dimple trap is used here in a quite different way compared

to the experiment reported in [26, 27]. In these works, the authors studied an adiabatic

process, in which the gain in phase-space density is obtained isentropically by modifying

the trap potential shape [29]. In the present work, the entropy is reduced by evaporative

cooling as the transfer between the CDT and the dT proceeds.

∗ The measurement of αd is done in the following way: The dT laser is switched off 2.8 ms after the

CDT laser, and we let the cloud expand during time-of-flight tToF = 0.2 ms before taking an absorption

image. At this time, atoms released from the CDT have expanded in the x− y plane more than those

released from the dT, which is appropriate for counting each component.
♯ We have found experimentally that turning on the dimple trap at a later stage during the evaporation

ramp still results in a boost in phase-space density. However the cooling is not as efficient, so that the

final phase-space density and the evaporation efficiency are both slightly worse.
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5. Conclusion and prospects

We have demonstrated a method to reach Bose–Einstein condensation of 23Na in an

all-optical experimental setup. We have shown the importance of adapting the trapping

potential to the magneto-optical trap cooling dynamics for optimizing the capture in

the arms of the crossed trap. In the free evaporation step that follows, an increase in

trap depth leads to a fast transfer of the atoms from the arms to the central region,

providing thus a dense sample. We have also described the implementation of a two-step

evaporation stage using a tightly focused “dimple” trap. “Evaporative filling” of the

dimple trap occurs at almost the same atom number and temperature as in the crossed

dipole trap alone. As a result, the phase-space density increases as (ωdT/ωCDT)
3, where

ωdT is the dT average frequency and ωCDT the CDT average frequency at low power.

Experimentally this corresponds to a large gain in phase-space density, of ∼ 100. After

a final evaporation stage in the dimple trap, we are able to obtain almost pure BECs

containing ∼ 104 atoms.

The efficient “evaporative filling” of the dimple trap suggests to generalize the

scheme by adding a second, even smaller dimple trap to shorten the time to reach Bose–

Einstein condensation. Such a scheme with imbricated evaporative cooling steps (like

the layers of an “atomic matryoshka”) can be taken into consideration if the aim is

the production of Bose–Einstein condensates with small atom number, confined in a

microscopic potential [30, 31, 32].
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Laboratoire Kastler Brossel is a Unité Mixte de Recherche (UMR n◦ 8552) of CNRS,

ENS, and UPMC.

Appendix A. Analysis of CDT images

A figure of merit for the loading in the CDT is the atom number in the crossing region

of the trap as mainly these atoms will participate to evaporative cooling. We will take

the ratio between the atoms in this region and the arms as an indicator of the loading

efficiency. We fit the atomic density profiles with a sum of three gaussians, two of them

fitting the arms region and the last one fitting the center region,

f2D(x, y) =
3

∑

j=1

G(Aj ; xj, yj; σjx, σjy), (A.1)

with G(A, x, y, σx, σy) = Ae−
1
2
(x/σx)2−

1
2
(y/σy)2 . Here A is the amplitude, σx and σy

the sizes of the distribution along the directions x and y. The first two components
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1, 2 model the arms so that σ1y ≫ σ1x and σ2y ≫ σ2x. The third component

models the denser crossing region. The second arm propagates with an angle θ:

(x2, y2) = (x1 cos(θ) + y1 sin(θ),−x1 sin(θ) + y1 cos(θ)). Each arm is supposed to be

radially symmetric, the size in the z direction is therefore taken equal to the radial size

in the (x, y) plane. From the sizes and the calibration of the total fluorescence counts

on the CCD with the atom number measured from an absorption image, we infer the

atom number in each component N1, N2 and N3.

In order to evaluate how well equation (A.1) can fit the density profile, we perform

the fit on a computed density profile of an atomic cloud at thermal equilibrium in a

crossed dipole trap potential U(r) = VCDT(r) (see equation (1)), for PCDT = 13.7 W

and wCDT = 42 µm. For a classical gas, the phase space density f(r,p) is given by

f(r,p) =
1

Z
e
−

p
2/2M+U(r)

kBT Θ(−p
2/2M − U(r)) (A.2)

with Z the partition function chosen such that
∫

f(r,p)d
3
rd3p

(2π~)3
= 1, and Θ the Heavyside

step function. An integration of f(r,p) along the imaging direction z yields a 2D-profile

nsim
2D (x, y)

nsim
2D (x, y) =

∫

dz

∫

f(r,p)
d3p

(2π~)3
=

∫

dz e−U(r)/kBTΓinc

(

U(r)

kBT
,
3

2

)

, (A.3)

where Γinc is the incomplete gamma function. We also calculate the density of states

ρ(ǫ) (with −V 0
CDT < ǫ < 0)

ρ(ǫ) =

∫

d3rd3p

(2π~)3
δ
(

ǫ− p
2/2M − U(r)

)

=
1

(2π)2

(

2m

~2

)3/2 ∫

dr
√

ǫ− U(r). (A.4)

This can be used to determine the number of atoms NC that have an energy between

−V 0
CDT and −V 0

CDT/2,

NC = N
(

−V 0
CDT 6 ǫ 6 −V 0

CDT/2
)

= n0Λ
3
dB

∫ V 0
CDT/2

0

dǫ ρ(ǫ)e−ǫ/kBT , (A.5)

with n0 the density in the center of the trap, and ΛdB = h/
√
2πmkBT the thermal

de Broglie wavelength. We take NC as an estimate of the number of atoms in the

central region. Equations (A.4) and (A.5) are evaluated numerically using Monte-Carlo

integration.

We apply to the simulated profiles nsim
2D the same fitting routine as used for the

experimental images. In figure A1, we compare the fit output with the parameters used

for the simulation. As one can see, the number of atoms in the center is found to be very

close to NC. This validates our method to estimate of the loading ratio α = NC/Ntot

with the result from the fit N3/(N1 +N2 +N3). Note however that the procedure sys-

tematically over-estimates the temperature in the arms by ∼ 30 %. This is due to the

gaussian shape of the trap that causes a radial density profile wider than the profile

created by a harmonic trap with the same curvature. We checked that for a truncated

harmonic trap, the fitted temperature is equal to the temperature T obtained for the

simulated profile (equation (A.3)).
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Figure 1. (a) Sketch of the laser geometry showing the crossed dipole trap (CDT)

propagating in the horizontal plane and the dimple trap (dT) propagating vertically.

(b) Fluorescence image of the atoms trapped in the CDT taken after short time-of-

flight . The thermal equilibrium state in such a potential has a characteristic spatial

structure: two elongated “arms” and a denser crossing region. (c) Evolution of the

powers of the crossed dipole trap and the dimple trap during the sequence. The first

step corresponds to the loading of the CDT from a “cold-MOT” phase, followed by a

compression that helps to fill the central trapping region. The next step consists in

evaporatively cooling the CDT and results in the filling of the dimple trap. The

last step is evaporative cooling in the dimple trap, which leads to Bose–Einstein

condensation.
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Figure 2. CDT potential in the z = 0 plane, truncated at an energy ǫ = V 0
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/4 (a),
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/2 (b), and ǫ = V 0

CDT
× 3/4 (c).
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Figure 3. Evolution of the atom number in the center of the CDT (a) and the loading

ratio α = NC/N (b) in four different loading situations: low power (circles), highest

power (diamonds), ∼ 1/3 of maximum power (crosses), ramping up in 2 s after loading

at low power (stars). The loading ratio α(t) is fitted with the function a(1− e−t/τ)+ b.

The results of the fit τ and α∞ = a+ b are indicated in (b).
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Figure 4. (a) Filling time τ and (b) center filling fraction α∞ for CDT in two different

situations: the solid curve shows the results of the experiments where the CDT laser

is hold at any time at the same power. The dashed curve denotes the compression

experiments where the power starts at PCDT = 13.7 W in the “cold MOT” phase and

is ramped up in 50 ms to the final value indicated after switching off the molasses

beams. The error-bars correspond to 90% confidence bounds on the fit coefficients

τ and α∞. For PCDT = 13.7 W, both curves should intersect as the experimental

sequence is the same. The observed difference indicates systematic variations between

different experimental runs, probably due to dipole trap pointing fluctuations and total

atom number variations. The vertical dashed line corresponds to the optimal power

PCDT = 13.7 W for the “cold MOT” phase.
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Figure 5. Evaporative cooling trajectories in the combined trap (CDT and dT)

(circles) and in the CDT alone (stars). We show the time evolution of atom number

N (a), temperature T (b), dimple filling αd (c) and phase-space density D (d).
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Figure A1. Test of the multicomponent fitting routine used to analyze CDT images.

For (a), (b) and (c), black diamonds show the result from the fit. In (a), the center

atom number is calculated from the density of states and shown as solid line. For the

solid lines in (b) and (c), n0 and D are taken from the formulas at thermal equilibrium.

In (d), we compare the temperatures extracted from the size of the arms and the size

of the central component to the one used for compute the distribution.


