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Abstract

This paper presents a micromechanical model for a porous viscoplastic material contain-
ing two populations of pressurized voids of different sizes. Three scales are distinguished:
the microscopic scale (corresponding to the size of the small voids), the mesoscopic scale
(corresponding to the size of the large voids) and the macroscopic scale. It is assumed
that the first homogenization step is performed at the microscopic scale, and, at the meso-
scopic scale, the matrix is taken to be homogeneous and compressible. At the mesoscopic
scale, the second homogenization step, on which the present study focuses, is based on a
simplified representative volume element: a hollow sphere containing a pressurized void
surrounded by a nonlinear viscoplastic compressible matrix. The nonlinear behavior of
the matrix, which is expressed using the results obtained in the first homogenization step,
is approached using a modified secant linearization procedure involving the discretiza-
tion of the hollow sphere into concentric layers. Each layer has uniform secant moduli.
The predictions of the model are compared with the more accurate numerical results
obtained using the finite element method. Good agreement is found to exist with all the
macroscopic stress triaxialities and all the porosity and nonlinearity values studied.

Keywords: Porous media, Viscoplasticity, Micro-mechanics, Double porosity

1. Introduction

The aim of this study was to develop a micromechanical model for the behavior of
porous viscoplastic media containing two populations of pressurized voids.
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The problem of modeling the behavior of viscoplastic materials containing voids is
not new. Since the seminal work by Budiansky et al. (1982) on the deformation of a
spherical void in an infinite block of nonlinear viscous matrix, several studies have been
devoted to this subject. Duva and Hutchinson (1984) proposed an explicit form for the
effective potential of nonlinear materials containing voids at dilute volume fractions and
Cocks (1989) assessed this potential in a material with an arbitrary void volume fraction,
based on variational principles.

More rigorous methods based on variational principles have been developed by Ponte Castañeda
(1991), Willis (1991) and Michel and Suquet (1992) to obtain rigorous bounds for the
effective potential of porous isotropic materials. These results are less accurate in the
case of the composite-sphere assemblage subjected to purely hydrostatic loadings, and
Michel and Suquet therefore proposed a correction of the bounds at high stress triax-
ialities (a similar correction was proposed independently by Sofronis and McMeeking
(1992)), which, in the limit case of a rigid-plastic matrix, leads to the Gurson yield cri-
terion (Gurson, 1977). Suquet (1995) has shown that these variational estimates are
equivalent to the secant approach using the secant moduli of the phases evaluated at the
second order moments of the fields in the phases.

Generalizing the notion of optimally selected linear comparison composite, Ponte Castañeda
(1996) proposed an alternative approach whereby the tangent moduli of the phases are
evaluated at the phase averages of the fields (first order moments) using a self-consistent
scheme. Nebozhyn and Ponte Castañeda (1999) subsequently proposed improved es-
timates for nonlinear porous materials taking the effect of the third invariant of the
macroscopic stress tensor into account. The latter authors also pointed out that in some
cases,this method, can violate rigorous bounds or lead to nonconvex effective energy
functions. In order to address this problem, Ponte Castañeda (2002) proposed a new
second-order method in which the second-order moments of the local fields in the lin-
ear comparison composite are used to evaluate the tangent moduli of the phases. This
new method was an improvement on the earlier method and gives more accurate esti-
mates for the effective behavior of isotropic porous nonlinear media, but as Pastor and
Ponte Castañeda (2002) noted, these estimates are too stiff at high triaxialities and non-
linearities. In a more recent study, Danas et al. (2008) used the new second-order method
along with a more sophisticated choice of linear comparison composite to obtain a model
for porous nonlinear materials which is consistent with nonlinear bounds, accounts for the
effect of the third invariant of the macroscopic stress tensor and reproduces the behavior
of the composite-sphere assemblage at high stress triaxialities (and therefore coincides
with the hydrostatic limit of the Gurson’s criterion in the limit case of ideal plasticity).

All these results were obtained on isotropic porous materials containing only one
population of voids. However, very few studies have been devoted to modeling the
behavior of porous materials containing two populations of voids of different sizes. Most
of the studies on these lines have focused on the influence of the second population of
voids on the behavior of ideally plastic porous materials. Perrin and Leblond (1990) gave
an analytical solution to the problem of a hollow sphere consisting of a Gurson material
under hydrostatic tension. Fabrègue and Pardoen (2008) carried out finite element cell
simulations to determine the influence of a second population of spherical voids on the
onset of the coalescence of a primary population of spheroidal voids. Vincent et al. (2009)
has obtained two bounds for the behavior of porous ideally plastic materials containing
two populations of pressurized voids of different sizes, which are accurate at low and high
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triaxialities, respectively. These authors also proposed an estimate based on a N -phase
model, inspired by Bilger et al. (2002), which matches the best of the two bounds at low
and high triaxialities. In the model proposed in the present paper, the N -phase model
is extended to include the case of a viscoplastic matrix.

This paper is organized as follows. Section 2 presents the class of composites under
consideration, which are characterized by three separate length-scales, called the micro-
scopic, mesoscopic and macroscopic scales. At the macroscopic scale, the composite is a
porous material containing pressurized voids embedded in a compressible matrix, and at
the mesoscopic scale, the matrix is a porous viscoplastic material. It is assumed that the
effective properties of the matrix are those resulting from a first homogenization proce-
dure. In the present study, the behavior of the matrix derives from a dissipation potential
which is an extension of Gurson’s model (Gurson, 1977) to viscous materials, proposed
by Michel and Suquet (1992) (see section 2.2.2 for details). In Section 3, a semi-analytical
model is proposed to account for the effective properties of the composite. The model
is based on the modified secant approach proposed by Suquet (1995), and involves the
use of a simplified volume element (a hollow sphere containing N concentric layers). In
Section 4, the predictions of the model are compared with the numerical results of finite
element calculations. The conclusions are presented in section 5.

Throughout the text, vectors and second-order tensors will be denoted with boldface
letters and the various types of products will be denoted by dots (e.g., u.v = uivi,
σ : ε = σijεij).

2. Problem setting

2.1. Two populations of voids of different sizes

The composites on which this study focuses are porous materials containing two
populations of voids. The difference in size between the two populations of voids is
large enough for the voids to be subdivided into two classes: “small” and “large” voids.
To express this information in a more rigorous setting, the composite is taken to be
a three-scale material showing heterogeneities at different scales, hereafter referred as
the microscopic, mesoscopic and macroscopic scales. These scales are characterized by
different lengths d, a and A (see Figure 1) corresponding to the size of the small voids (d),
the size of the large voids (a) and the size of a very large representative volume element
(A), respectively. The voids are assumed to be spherical in shape and to be isotropically
arranged at the various scales.

At the mesoscopic scale the porosity is denoted fs and represents the small void

volume fraction in the domain Ω, fs = |S|
|Ω| , where S denotes the domain of Ω occupied

by the small voids (Figure 1a). At the macroscopic scale the porosity is denoted fl
and represents the large void volume fraction in the representative volume element V ,

fl =
|L|
|V | , where L denotes the domain of V occupied by the large voids (Figure 1b). The

total porosity of the composite is therefore:

f = f̄s + fl − f̄sfl, (2.1)

where f̄s denotes the overall small void volume fraction in the domain V −L. The voids
are pressurized. We take ps and pl to denote the internal pressure in the small and large
voids, respectively. The two internal pressures ps and pl can be different.
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Figure 1: Two populations of voids of different sizes. (a) Representative volume element Ω at the
mesoscopic scale showing the microstructure. (b) Representative volume element V at the macroscopic
scale showing the mesostructure.

When the three scales are “well separated”, which means that the three lengths fur-
ther satisfy the string of inequalities d≪ a≪ A, the effective behavior of the composite
can be obtained by splitting the homogenization procedure into two successive steps.
Different notations are used to distinguish quantities at the three different scales. We
take ė, ε̇ and Ė to denote the Eulerian strain-rate at the micoscopic, mesoscopic and
macroscopic scales, respectively. Likewise, s, σ and Σ denote the Cauchy stress at the
three scales.

2.2. Microscopic, mesoscopic and macroscopic potentials

2.2.1. Microscopic potential

At the microscopic scale, the matrix phase is assumed to be an isotropic power-
law incompressible material. Its local behavior is characterized by a convex dissipation
potential ϕ(ė) such that the microscopic strain-rate ė and the microscopic stress s are
related by

s =
∂ϕ

∂ė
(ė), ϕ(ė) =

σ0ε̇0
m+ 1

(
ėeq
ε̇0

)m+1

when tr (ė) = 0, +∞ otherwise, (2.2)

where σ0 is the flow stress, ε̇0 is the reference strain-rate, m is the power exponent
(ranging between 0 and 1) and ėeq is the second isotropic invariant of ė:

ėeq =

(
2

3
ė
d · ėd

) 1
2

with ė
d = ė− ėmi and ėm =

tr (ė)

3
(2.3)
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(i is the second order identity tensor).

2.2.2. Examples of mesoscopic potentials in the case of small non pressurized voids

Let us first consider the case where the small voids are not pressurized (ps = 0). In
this case, the effective dissipation potential of the composite at the mesoscopic scale is
given by the variational principle:

ϕ̃(fs, ε̇) = Inf
v ∈ K(ε̇)

1

|Ω|

∫

Ω−S

ϕ(e(v)) dx, (2.4)

where K(ε̇) is the set of kinematically admissible velocity fields:

K(ε̇) = {v | v(x) = ε̇.x on ∂Ω, div v(x) = 0 in Ω− S} . (2.5)

The dissipation potential ϕ̃ is a convex function of the mesoscopic strain-rate ε̇. Taking
the expression (2.2) for the local dissipation potential ϕ, (2.4) specialises to:

ϕ̃(fs, ε̇) =
σ0ε̇0
m+ 1

Inf
v ∈ K(ε̇)

1

|Ω|

∫

Ω−S

(
eeq(v)

ε̇0

)m+1

dx. (2.6)

The particular case m = 1 corresponds to a linearly viscous matrix. As it is well-known,
the effective potential of linear porous materials is bounded from above by the upper
Hashin-Shtrikman bound:

ϕ̃(fs, ε̇) ≤
(1− fs)σ0

2ε̇0

(
4

fs
ε̇2m +

1

1 + 2
3fs

ε̇2eq

)
. (2.7)

The other extreme case m = 0 corresponds to a rigid ideally plastic matrix obeying the
von Mises criterion with flow stress σ0. The most widely used model for ideally plastic
porous materials is due to Gurson (1977) and it is based on the approximate analysis of
a single hollow sphere. The Gurson yield function takes the form:

σ2
eq

σ0
+ 2fs cosh

(
3

2

σm
σ0

)
− 1− f2s ≤ 0, (2.8)

where σm and σeq are the usual mean and von Mises equivalent stresses, respectively. It
can be shown (see for instance Gărăjeu et al. (2000)) that the dissipation potential ϕ̃,
associated with the Gurson yield function, reads as follows:

ϕ̃(fs, ε̇) = σ0

∫ 1

fs

(
4ε̇2m
y2

+ ε̇2eq

)1/2

dy. (2.9)

With intermediate values of m, Leblond et al. (1994) and Gărăjeu et al. (2000), gener-
alizing the analysis of Gurson with the same velocity fields, have proposed a dissipation
potential which reads:

ϕ̃(fs, ε̇) =
1

m+ 1

σ0
ε̇m0

∫ 1

fs

(
4ε̇2m
y2

+ ε̇2eq

)m+1

2

dy. (2.10)
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When m = 0, this dissipation potential (2.10) reduces to that of Gurson (2.9). When
m = 1, it coincides with the upper Hashin-Shtrikman bound (2.7) for hydrostatic loadings
but slightly exceeds this bound in the case of deviatoric loadings. Nonlinear bounds
for power-law or ideally-plastic porous materials have been obtained using variational
methods ( Ponte Castañeda (1991, 1992), Willis (1991), Suquet (1992, 1993)). Although
they are rigorous upper bounds, these nonlinear bounds improve the Gurson criterion at
low stress triaxialities but are known to be inaccurate at high stress triaxialities. Michel
and Suquet (1992) have proposed a simple estimate of the form:

ϕ̃(fs, ε̇) =
σ0ε̇0
m+ 1

[
4

A(fs,m)

(
ε̇m
ε̇0

)2

+
1

B(fs,m)

(
ε̇eq
ε̇0

)2
]m+1

2

, (2.11)

with

A(fs,m) =

(
f−m
s − 1

m

) −2

m+1

, B(fs,m) =

(
1 +

2

3
fs

)
(1− fs)

−2

m+1 . (2.12)

This estimate satisfies the bounds and reproduces the exact solution of the hollow sphere
consisting of a power-law viscous matrix under hydrostatic loading conditions (a similar
correction was proposed independently by Sofronis and McMeeking (1992)).

A more general model depending on the third invariant of the stress, based on the
second-order method by Ponte Castañeda (2002),was recently proposed by Danas et al.
(2008). Exact results on a special class of nonlinear porous materials with sequentially
laminated microstructures were obtained by Idiart (2008).

2.2.3. From small non pressurized to pressurized voids

Let us now take the case where small voids are subjected to an internal pressure ps.
The definition (2.4) needs to be changed in this case. The variational principle giving
the effective dissipation potential at the mesoscopic scale now reads:

φ(fs, ε̇, ps) = Inf
v ∈ K(ε̇)

1

|Ω|

[∫

Ω−S

ϕ(e(v)) dx+ ps

∫

∂S

v · n ds

]
, (2.13)

where n is the outer normal to ∂S (i.e., the normal pointing towards the interior of the
small voids).

Using Lemma 1 (its proof is given in the Appendix Appendix B):

Lemma 1. For any field v ∈ K(ε̇), the following holds:

1

|Ω|

∫

∂S

v · n ds =
1

|Ω|

∫

Ω−S

div v dx− tr (ε̇) , (2.14)

it follows that since the matrix is incompressible (divv = 0 in Ω − S), the last term of
(2.13) can be reduced to

1

|Ω|

∫

∂S

v · n ds = −tr (ε̇) .
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The mesoscopic effective dissipation potential therefore reads:

φ(fs, ε̇, ps) = Inf
v ∈ K(ε̇)

[
1

|Ω|

∫

Ω−S

ϕ(e(v)) dx

]
− ps tr (ε̇) ,

= ϕ̃(fs, ε̇)− ps tr (ε̇) . (2.15)

Equation (2.15) shows that in the case of an incompressible matrix, the effective
dissipation potential of the satured porous medium (voids having a non-zero internal
pressure ps) can be simply deduced from that obtained in the case when the voids are
not pressurized by the relation:

φ(fs, ε̇, ps) = ϕ̃(fs, ε̇)− 3psε̇m. (2.16)

2.2.4. Macroscopic potential

Knowing the microstructure of the representative volume element V and the pressure
pl in the large voids, and assuming that the mesoscopic effective dissipation potential
φ(fs, ε̇, ps) is known, the question is now to determine the macroscopic effective dissipa-
tion potential Φ of the composite.

The definition of Φ is similar to that of the mesoscopic potential (2.13) :

Φ(Ė)2 = Inf
v ∈ K(Ė)

1

|V |

[∫

V−L

φ(fs, ε(v), ps) dx+ pl

∫

∂L

v · n ds

]
, (2.17)

where, since the porous matrix is compressible at the mesoscopic scale, the set of kine-
matically admissible velocity fields is now defined by:

K(Ė) =
{
v | v(x) = Ė.x on ∂V

}
. (2.18)

Due to the compressibility of the porous matrix at the mesoscopic scale, the translation
rule (2.16) cannot be applied to the macroscopic dissipation potential Φ. However, using
(2.16), the variational principle (2.17) can be written in the following form:

Φ(Ė) = Inf
v ∈ K(Ė)

1

|V |

[∫

V−L

ϕ̃(fs, ε(v)) dx− ps

∫

V−L

tr (ε(v)) dx+ pl

∫

∂L

v · n ds

]
.

(2.19)
¿From Lemma 1, it follows:

1

|V |

∫

V−L

tr (ε(v)) dx =
1

|V |

∫

V−L

divv dx =
1

|V |

∫

∂L

v · n ds+ tr
(
Ė

)
.

The macroscopic effective dissipation potential is then given by:

Φ(Ė) = Inf
v ∈ K(Ė)

1

|V |

[∫

V−L

ϕ̃(fs, ε(v)) dx+ (pl − ps)

∫

∂L

v · n ds

]
− 3psĖm. (2.20)

2To simplify the notation, the dependence of Φ on fs, fl, ps and pl is omitted.
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Equation (2.20) reveals the quantity

Φ̃(fs, fl, Ė, p) = Inf
v ∈ K(Ė)

1

|V |

[∫

V−L

ϕ̃(fs, ε(v)) dx+ p

∫

∂L

v · n ds

]
, (2.21)

that is, the macroscopic effective dissipation potential of a composite with the same
microstructure, but where the small voids are stress-free and the large voids are subjected
to the difference of pressure p = pl − ps.

Remark. Equation (2.20) (see also Vincent et al. (2009) for a similar previous result)
shows that any estimate or bound for the effective dissipation potential Φ̃ will yield a
corresponding estimate or bound for the effective dissipation potential Φ. Therefore, in
what follows, only the simpler case where the small voids are not pressurized can be
considered.

To find the velocity field u̇ that realizes the infimum in (2.21), the following local
problem must be solved:





σ =
∂ϕ̃

∂ε̇
(fs, ε(u̇)) in V − L,

divσ = 0 in V − L,

σ.n = −pn on ∂L,

u̇ = Ė.x on ∂V.

(2.22)

The next section presents a semi-analytical approach to estimate the velocity field u̇

(and therefore the effective dissipation potential (2.21)) solution of (2.22).

3. Semi-analytical model

3.1. First step: a secant approach

In order to estimate the local velocity field solution of the nonlinear problem (2.22),
a secant linearization approach is used. The behavior of the porous matrix derives from
a dissipation potential ϕ̃ which is assumed to depend on the strain-rate through its first
two isotropic invariants, ϕ̃(ε̇) = ϕ̃(ε̇m, ε̇eq). The local behavior is then given by:

σ =
1

3

∂ϕ̃

∂ε̇m
i+

2

3

∂ϕ̃

∂ε̇eq

ε̇
d

ε̇eq
. (3.23)

Relation (3.23) looks like a linear stress - strain-rate relation:

σ = 3k ε̇m i+ 2µ ε̇d, (3.24)

with secant moduli k and µ depending on the local strain-rate:

k =
1

9ε̇m

∂ϕ̃

∂ε̇m
(ε̇m, ε̇eq), µ =

1

3ε̇eq

∂ϕ̃

∂ε̇eq
(ε̇m, ε̇eq). (3.25)

The porous matrix can therefore be regarded as a composite containing an infinitely large
number of linear phases with material coefficients depending on the local strain-rate field.
To the best of our knowledge, this nonlinear problem has no analytical solution.
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An approximation of this problem can be obtained by assuming that the porous
matrix contains only N linear phases with uniform moduli ki and µi, i = 1, 2, ..., N ,
which still depend on the local strain-rate, but in the following way:

ki =
1

9ǫ̇
(i)
m

∂ϕ̃

∂ε̇m
(ǫ̇(i)m , ǫ̇(i)eq ), µi =

1

3ǫ̇
(i)
eq

∂ϕ̃

∂ε̇eq
(ǫ̇(i)m , ǫ̇(i)eq ). (3.26)

In the classical secant method, ǫ̇
(i)
m and ǫ̇

(i)
eq are taken to be the average over the phase

i of ε̇m and ε̇eq, respectively, ǫ̇
(i)
m = 〈ε̇m〉i, ǫ̇

(i)
eq = 〈ε̇eq〉i (〈·〉i is the average operator over

the phase i). In the present model, use is made of the modified secant method proposed
by Suquet (1995) which is equivalent to the variational method by Ponte Castañeda
(1992). The secant moduli (3.26) are evaluated using the second-order moments of the
strain-rate field:

ǫ̇(i)m =
〈
ε̇2m

〉 1
2

i
, ǫ̇(i)eq =

〈
ε̇2eq

〉 1
2

i
. (3.27)

The secant approach makes it possible to transform the initial local problem (2.22)
into a new local problem involving a composite consisting of N linear phases. Let V (i)

denote the domain occupied by the phase i, V − L = ∪N
i=1V

(i). Then the equations for
the linearized problem are:





σ = 3ki ε̇m i+ 2µi ε̇
d in V (i),

divσ = 0 in V − L,

σ.n = −pn on ∂L,

u̇(x) = Ė.x on ∂V,

(3.28)

where the secant moduli ki and µi are given by (3.26-3.27).

Given a prescribed macroscropic strain-rate Ė, the solution of this problem is obtained
by a fixed-point procedure:

Iterate r: Being known the values of the secant moduli k
(r−1)
i and µ

(r−1)
i in all the

phases (i = 1, .., N) at the iterate r − 1:

Step 1: Solve the linear problem (3.28) with ki = k
(r−1)
i and µi = µ

(r−1)
i

in V (i), i = 1, .., N .
Step 2: Use the local strain-rate field ε̇ solution obtained at step 1 to

update the new secant moduli k
(r)
i and µ

(r)
i given by (3.26-3.27),

i = 1, .., N .
End: The procedure is stopped when the difference between secant mod-

uli is small,
∣∣∣k(r)i − k

(r−1)
i

∣∣∣ ≤ δ
∣∣∣k(r)i

∣∣∣,
∣∣∣µ(r)

i − µ
(r−1)
i

∣∣∣ ≤ δ
∣∣∣µ(r)

i

∣∣∣,
δ = 10−6, i = 1, .., N .

This approach generally requires the use of a numerical method (like the finite el-
ement method) at each iterate r in order to solve the linear problem (step 1) and a
numerical integration to calculate the averages over each phase i (step 2). The behavior
of the representative volume element V obtained using this approach is then applied in a
structure computation, which may need thousands of calls of this procedure. In order to
minimize the computation time, it is worth having analytical results on the macroscopic
behavior of the representative volume element V . The next section presents one possible
way of reaching this goal.
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3.2. Step two: a simplified volume element

In order to obtain an analytical solution to the linear problem, we consider a rep-
resentative volume element V consisting of a hollow sphere with the internal radius a
and the external radius b. The central cavity L (radius r0 = a) is pressurized (pressure
p) and the matrix is formed of N concentric layers (rN = b), all of which show linear
behavior and secant moduli ki and µi, i = 1, .., N (Figure 2).

1

N

r0

r1

rN

Figure 2: Simplified volume element: a hollow sphere containing N concentric layers.

A similar approach has been proposed by Hervé and Zaoui (1993) in the case of linear
materials containing rigid inclusions and by Bilger et al. (2002) in that of ideally plastic
porous materials. Unlike the approach presented here, the authors of these two studies
are interested in obtaining a self-consistent estimate, and the simplified volume element
is therefore embedded in an infinitely large equivalent matrix.

In line with Hervé and Zaoui (1993), since the behavior of the layers is linear, the
velocity field solution of the linear problem (3.28) can be decomposed into the sum of
three velocity fields

u̇ = u̇1 + u̇2 + u̇3, (3.29)

corresponding to the following boundary conditions, respectively:

{
σ.n = −pn on ∂L

u̇1(x) = Ėmx on ∂V
,

{
σ.n = 0 on ∂L

u̇2(x) = β̇∆12x on ∂V
,

{
σ.n = 0 on ∂L
u̇3(x) = γ̇∆13x on ∂V.

.

(3.30)
In (3.30), ∆12 and ∆13 are deviatoric tensors:

∆12 = e1 ⊗ e1 − e2 ⊗ e2, ∆13 = e1 ⊗ e1 − e3 ⊗ e3, (3.31)

where (e1, e2, e3) is the principal basis of the macroscopic strain-rate Ė, and β̇∆12 +

γ̇∆13 = Ė
d
(Ė

d
is the deviatoric part of Ė).

In the basis (er, eθ, eϕ) of spherical coordinates (r, θ, ϕ), following Christensen
(1991) and Hervé and Zaoui (1993), the solutions to these three problems in each layer
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i, i = 1, .., N , take the form:

u̇
(i)
1 = u̇(i)(r)er, u̇(i)(r) = Fi r +

Gi

r2
(3.32)

u̇
(i)
2 = u̇(i)r er + u̇

(i)
θ eθ + u̇(i)ϕ eϕ,





u̇
(i)
r = β̇ U (i)(r) sin2 θ cos 2ϕ

u̇
(i)
θ = β̇ V (i)(r) sin θ cos θ cos 2ϕ

u̇
(i)
ϕ = −β̇ V (i)(r) sin θ sin 2ϕ

(3.33)

u̇
(i)
3 = v̇(i)r er + v̇

(i)
θ eθ + v̇(i)ϕ eϕ,





v̇
(i)
r = γ̇ U (i)(r)

(
cos2 ϕ sin2 θ − cos2 θ

)

v̇
(i)
θ = γ̇ V (i)(r)

(
cos2 ϕ+ 1

)
sin θ cos θ

v̇
(i)
ϕ = −γ̇ V (i)(r) sinϕ cosϕ sin θ

(3.34)

with 



U (i)(r) = Air − 6
νi

1− 2νi
Bir

3 + 3
Ci

r4
+

5− 4νi
1− 2νi

Di

r2
,

V (i)(r) = Air −
7− 4νi
1− 2νi

Bir
3 − 2

Ci

r4
+ 2

Di

r2
.

(3.35)

Coefficients Ai, Bi, Ci, Di, Fi and Gi (i = 1, .., N) are obtained by solving two inde-
pendent linear systems: one to obtain coefficients Fi and Gi and the other to obtain Ai,
Bi, Ci and Di. As usual, the equations for these two systems express the continuity of the
velocity field and the stress vector at the interfaces between layers and the corresponding
boundary conditions (see Appendix Appendix A for more details)

The solution of these two systems cannot be obtained analytically even in the case
of a small number of layers. However, as discussed in section 4, only a few layers (10 to
20 layers) are required to be able to obtain a good approximate solution of the nonlinear
problem (2.22).

It is worth noting that the secant moduli (3.26-3.27) can be obtained analytically (no
numerical integration is required): straightforward although rather complex calculations3

give the following expressions for the second-order moments:

〈
ε̇2m

〉
i

= F 2
i +

4

5
(β̇2 + β̇γ̇ + γ̇2) [Bi, Di]P

(i)
m

[
Bi

Di

]
, (3.36)

〈
ε̇2eq

〉
i

=
4G2

i

r3i r
3
i−1

+
4

5
(β̇2 + β̇γ̇ + γ̇2)

[
Ai,

Bi

1− 2νi
, Ci,

Di

1− 2νi

]
P (i)
eq




Ai
Bi

1−2νi

Ci
Di

1−2νi


 ,(3.37)

where P
(i)
m and P

(i)
eq are the two following matrices:

P (i)
m =




7(r7i−r7
i−1)

r3
i
−r3

i−1

−
7(r2i−r2

i−1)
r3
i
−r3

i−1

−
7(r2i−r2

i−1)
r3
i
−r3

i−1

4
3r3

i−1
r3
i


 , (3.38)

3Mathematica has been used to perform these calculations.
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and

P (i)
eq =




5
3 −

7(r5i−r5
i−1)

r3
i
−r3

i−1

0 0

−
7(r5i−r5

i−1)
r3
i
−r3

i−1

(r7i−r7
i−1)(8ν

2
i
+35)

r3
i
−r3

i−1

0
4(r2i−r2

i−1)(5−7νi)νi

r3
i
−r3

i−1

0 0
40(r7i−r7

i−1)
r7
i−1

r7
i (r3i−r3

i−1)
24(r5i−r5

i−1)
r5
i−1

r5
i (r3i−r3

i−1)

0
4(r2i−r2

i−1)(5−7νi)νi

r3
i
−r3

i−1

24(r5i−r5
i−1)

r5
i−1

r5
i (r3i−r3

i−1)
8(7ν2

i
−10νi+10)

3r3
i−1

r3
i




.

(3.39)

Note also that the matrix P
(i)
m depends on the geometry of the layer i, whereas it

is independent of the secant moduli ki and µi. Therefore, in the fixed-point procedure

described at the beginning of this section, it remains unchanged. Unlike P
(i)
m , the matrix

P
(i)
eq generally changes from one step to another, since it depends on the coefficient νi.

However, in the case where the mesoscopic dissipation potential is of the form (2.11),
all the layers have the same secant Poisson coefficient ν = 2B−A

4B+A (A and B are the
coefficients (2.12)), which is independent of the second moments of the strain-rate. In

this case, P
(i)
eq also remains unchanged in the fixed-point procedure.

4. Validation of the model

In the previous section, a constitutive model for isotropic viscoplastic porous materials
containing two populations of pressurized voids of different sizes was presented. The
model is based on a secant linearization procedure of the behavior of the porous matrix
coupled with analytical results obtained on a simplified volume element. The aim of the
present section is to assess the accuracy of this semi-analytical approach by comparing
the predictions obtained with the results of full-field finite element calculations.

4.1. Validation procedure

The effective behavior of porous viscoplastic materials is commonly represented in
terms of equipotential surfaces of the stress potential Ψ, dual of Φ. As discussed above in
section 2.2.4, when both populations of voids are pressurized, the macroscopic dissipation
potential Φ (and therefore its dual Ψ) can be deduced from that obtained taking the small
voids to be stress-free and the large voids to be subjected to the difference of pressure
p = pl − ps. It therefore suffices to validate the model in the case where ps = 0 and
pl 6= 0. The following equipotential surface is considered1:

Ψ̃(Σ, pl) =
σ0ε̇0
n+ 1

, Ψ̃(Σ, pl) = Inf
τ ∈ S(Σ, pl)

1

|V |

∫

V−L

ψ̃(fs, τ ) dx, (4.40)

where S(Σ, pl) denotes the set of statically admissible stress fields with the macroscopic
stress Σ and the internal pressure pl in the large voids,

S(Σ, pl) = {τ/ div (τ ) = 0 in V − L,

τ .n = −pl n on ∂L, 1
|V |

∫
∂V

τ .n⊗s x ds = Σ},
(4.41)

1To simplify the notation, the dependence of Ψ̃ on fs and fl is omitted.
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ψ̃ is the stress potential of the porous matrix, and n = 1/m. All the simulations were
performed using for ψ̃ the dual potential of (2.11), i.e.,

ψ̃(fs,σ) =
σ0ε̇0
n+ 1

[
9

4
A(fs,

1

n
)

(
σm
σ0

)2

+B(fs,
1

n
)

(
σeq
σ0

)2
]n+1

2

, (4.42)

where A and B are the coefficients given by (2.12). From the positive homogeneity of ψ̃
in σ, and given the definition (4.40)2 with (4.41) of the macroscopic stress potential Ψ̃,
it is worth noting that Ψ̃ is positively homogeneous of degree n+ 1 in Σ and pl, i.e., it
satisfies Ψ̃(λΣ, λpl) = |λ|

n+1
Ψ̃(Σ, pl) for all λ.

The principle of construction of the equipotential surface (4.40)1 is the following.
Being prescribed a macroscopic stress direction Σ0 and an internal pressure pl in the
large voids, we seek the stress level λ such that:

Ψ̃(λΣ0, pl) =
σ0ε̇0
n+ 1

. (4.43)

The procedure is repeated in various macroscopic stress directions Σ0. Two cases have
to be distinguished, depending on whether pl = 0 or pl 6= 0.

Case pl = 0.. In this case, it follows from the positive homogeneity property of degree
n+ 1 of the macroscopic stress potential Ψ̃ that:

λ =

[
σ0ε̇0

(n+ 1)Ψ̃(Σ0, 0)

] 1
n+1

. (4.44)

The stress level λ is thus determined once Ψ̃(Σ0, 0) is known. In addition, taking Ė
0

to denote the macroscopic strain-rate associated with Σ0, the macroscopic strain-rate Ė
corresponding to the macroscopic stress Σ = λΣ0, laying on the equipotential surface,
is given by:

Ė = λnĖ
0
, Ė

0
=
∂Ψ̃

∂Σ
(Σ0, 0). (4.45)

Case pl 6= 0.. In this case, since the porous matrix is compressible, the stress level λ
which satisfies (4.43) can no longer be obtained analytically and it is necessary to proceed
by performing successive iterations. When pl 6= 0, the stress level λ and the corresponding
macroscopic strain-rate Ė are obtained numerically using a bisection method on λ.

In both cases (pl = 0 or pl 6= 0), for a given macroscopic stress Σi (i = 0 when pl = 0
and Σi = λiΣ0, where i is the index of iterations, when pl 6= 0), the aim is to calculate
the value of the macroscopic stress potential at this point, i.e., Ψ̃(Σi, pl).

The problem to be solved in order to obtain the value of Ψ̃(Σi, pl) is slightly different
from that considered in (2.22) and (3.28): in the present case, it is a macroscopic stress
which is prescribed and not the macroscopic strain-rate Ė. The macroscopic strain-rate
becomes an unknown in the problem and the corresponding equation for determining its
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value is the condition that the average stress should be equal to the macroscopic stress.
The fourth equation in (2.22) and (3.28) is replaced by:

u̇ = Ė
i
.x on ∂V, Ė

i
unknown,

1

|V |

∫

∂V

σ.n⊗s x ds = Σi, Σi given.
(4.46)

The changes which have to be made in the model in order to account for the average
stress condition (4.46) are detailed in the Appendix Appendix A.3. Regarding the finite
element calculations, the method used to impose the average stress while satisfying the
condition of a uniform strain-rate on the boundary is described in Michel et al. (1999).

Briefly, in this method the velocity field solution is decomposed in the form u̇ = Ė
i
.x+

u̇
′, where both the fluctuating velocity field u̇

′ and the macroscopic strain-rate Ė
i
are

unknown. In order to impose the given macroscopic stress Σi, a variational system

on u̇
′ and Ė

i
is written in which the components of the macroscopic stress appear as

the generalized forces associated with Ė
i
. The condition of a uniform strain-rate on

the boundary is satisfied by imposing u̇
′ = 0 on ∂V . Both for the model and for the

finite element calculations, the value of the macroscopic stress potential is determined as
follows:

Ψ̃(Σi, pl) =
1

n+ 1

(
Σi : Ė

i
− pl

1

|V |

∫

∂L

u̇.n ds

)
. (4.47)

We now specify the loading paths considered in the macroscopic stress space. The
tensor Σ0 can be written in the following form, with respect to its principal axes:




Σ0
1

Σ0
2

Σ0
3


 = Σ0

mi+
2

3
Σ0

eq




− cos(θ + π
3 )

− cos(θ − π
3 )

cos(θ)


 , (4.48)

where Σ0
m = tr

(
Σ0

)
/3 and Σ0

eq = ( 32Σ
0d ·Σ0d)

1
2 are the first two isotropic invariants of

Σ0, while θ is the Lode angle related to the third isotropic invariant of Σ0, det(Σ0d) =
2
27Σ

0
eq

3
cos(3θ) (see for instance Danas et al. (2008)). To reduce the computational cost of

the finite element simulations, attention is restricted to axisymmetric loading paths, i.e.,
loading paths for which cos(θ+π/3) = cos(θ−π/3). This does not affect the predictions
of the model because with the secant approch used, the macroscopic stress potential
predicted by the model depends on Σ0 only through its first two isotropic invariants Σ0

m

and Σ0
eq. However, the results of the finite element calculation can depend a priori on

all three invariants of Σ0 (i.e., on Σ0
m, Σ0

eq and θ). The finite element calculations are
therefore conducted on the two axisymmetric loading paths corresponding to the two
Lode angles θ = 0 and θ = π.

Figure 3 shows the meshes used in the finite element calculations. Eight node
quadratic axisymmetric elements with 2x2 Gauss points are used here and three dif-
ferent volume fractions of large voids are studied, namely, fl = 0.7%, 7%, and 14%. The
three corresponding meshes contain 11587, 6309 and 4671 nodes, respectively. These dis-
cretizations have been found adequate for the accuracy of the finite element calculations,
since further mesh refinement does not make any appreciable difference to the results.
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(a) (b) (c)

Figure 3: Meshes used in the finite element calculations (eight node quadratic elements). (a) fl = 0.7%,
(b) fl = 7%, (c) fl = 14%.

4.2. Influence of the number of layers

Before comparing the results obtained with the finite element calculations, it is con-
venient to assess the effect of the number N of discretization layers on the predictions
of the model. Apart from the linear case (n = 1 in (4.42)), where the exact solution can
be obtained by taking a single layer in the porous matrix, the predictions of the model
depend on the number of layers considered for the discretization of the porous matrix.
The present study focuses on the case of high nonlinearity, where n = 8, and moderate
porosities, fl = 7% and fs = 5%. No internal pressures are assumed to exist in the voids,
pl = ps = 0. Figure 4 shows the macroscopic equipotential surfaces obtained with these
parameters with N=1, 2, 3, 5, 10 and 250 layers of the same thickness. In Figure 5, the
corresponding macroscopic dimensionless mean and equivalent strain-rates, Ėm/ε̇0 and
Ėeq/ε̇0, are plotted as a function of the macroscopic stress triaxiality X = Σm/Σeq. As
can be seen in these two figures, the number of layers has low effect in the case of devi-
atoric loadings (X → 0) but the effects are more pronounced at high stress triaxialities.
Nevertheless, it can be observed that convergence is quickly reached, and that with the
three different macroscopic quantities plotted in these two figures, N = 10 gives a good
compromise between accuracy and computational cost at all stress triaxialities.

4.3. Comparison with finite element calculations

Once an appropriate number of layers have been adopted for the discretization of
the porous matrix, the predictions of the model depend on several parameters: the
nonlinearity exponent n, the volume fraction of the small and large voids, fs and fl,
respectively, and the internal pressure in the large voids, pl (as discussed above, the
small voids can be taken to be stress-free here). Figures 6 and 7 show the influence of
each of these parameters on the macroscopic equipotential surfaces.

Some general comments on these two figures can first be made. The macroscopic
equipotential surfaces predicted by the model are always exterior to those obtained by
the finite element calculations, which is consistent with the variational property (4.40)2
of the macroscopic stress potential, since the local stress fields given by the model are
statically admissible stress fields for the nonlinear problem. The predictions of the model
were found to be always in excellent agreement with the finite element calculations at
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Figure 4: Macroscopic equipotential surfaces. Influence of the number N of layers on the predictions of
the model. n = 8, fl = 7%, fs = 5%, pl = ps = 0.
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Figure 5: Macroscopic dimensionless mean (a) and equivalent (b) strain-rates, Ėm/ε̇0 and Ėeq/ε̇0, as a
function of the macroscopic stress triaxiality X = Σm/Σeq . Influence of the number N of layers on the
predictions of the model. n = 8, fl = 7%, fs = 5%, pl = ps = 0.
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high stress triaxialities (Σeq → 0), owing to the fact that the velocity field solution of
the nonlinear problem is radial under purely hydrostatic loading conditions. In this case,
regardless of the values of the parameters involved, the model is able to reproduce the
exact result (as long as the number of layers is sufficiently large).

In Figure 6a, the volume fraction of the small and large voids is taken to be equal
to fs = 5% and fl = 7%, respectively, the voids are not pressurized (pl = ps = 0),
and the macroscopic equipotential surfaces are plotted with three different nonlinearity
exponent values: n = 1, 3 and 8. As mentioned in the previous section, in the case
where n = 1 (the linear case), the predictions of the model are exact and the exact
solution can even be obtained by considering only one layer in the matrix. For moderate
and high nonlinearities, n = 3 and n = 8, respectively, the model predictions slightly
overestimate the finite element results at moderate and low triaxialities. This difference
was more pronounced at moderate triaxialities and increased with the nonlinearity. Note
also the existence of a small difference between the finite element calculation results,
depending on the value of the Lode angle θ (equal to 0 or π), which also increases with
the nonlinearity.
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Figure 6: Influence of the nonlinearity exponent n (a) and the void volume fractions fs and fl (b) on the
macroscopic equipotential surfaces. Comparison between the model predictions and the finite element
calculation results. Non pressurized voids (pl = ps = 0). (a) n = 1, 3 and 8, fl = 7%, fs = 5%. (b)
n = 8, fl = 0.7%, 7% and 14% with fs = 0.5%, 5% and 10%, respectively. Results based on the finite
element calculations are marked with black filled circles (Lode angle θ = 0) and white circles (Lode angle
θ = π), whereas the results based on the N -layer model are given by lines. N = 20 when fl = 0.7%,
N = 10 when fl = 7%, 14%.

In Figure 6b, the macroscopic equipotential surfaces corresponding to different volume
fractions fs and fl of the small and large voids are plotted in the case of high nonlin-
earity, n = 8, and non pressurized voids. Three ranges of porosities are considered: one
corresponding to moderate porosity values, fl = 7% and fs = 5%, as well as two others
extreme cases corresponding to small and large porosities, fl = 0.7%, fs = 0.5% and
fl = 14%, fs = 10%, respectively. Again, the predictions of the model overestimate but

17



they were only slightly higher than the results obtained with the finite element method.
Note that the difference between the finite element results corresponding to the two Lode
angles θ = 0 and θ = π increased with the void volume fractions, especially at moderate
stress triaxialities.

The case presented in Figure 7 is that of a high nonlinearity, n = 8, with fl = 7%
and fs = 5%. The small voids are not pressurized. The macroscopic equipotential
surfaces are plotted in this figure with three different values of the internal pressure in
the large voids: pl = 0, 0.75σ0 and 1.5σ0. Positive and negative stress triaxialities are
both considered.
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Figure 7: Influence of the internal pressure in the large voids, pl, on the macroscopic equipotential
surfaces. Comparison between the model predictions and the finite element calculation results. n = 8,
fl = 7%, fs = 5%, ps = 0, pl = 0, 0.75σ0 and 1.5σ0. Results based on the finite element calculations
are marked with black filled circles (Lode angle θ = 0) and white circles (Lode angle θ = π), whereas
the results based on the N -layer model are given by lines. N = 10.

In the case where the large voids are not pressurized (pl = 0), the macroscopic
equipotential surface predicted by the model is symmetric with respect to the Σeq-axis.
The corresponding macroscopic equipotential surfaces obtained by the finite element
calculations with the two Lode angles θ = 0 and θ = π differed and neither of them is
symmetric because of the effects of the third invariant of the macroscopic stress on the
macroscopic stress potential. However, in the case of non pressurized voids, since the
macroscopic stress potential is an even function of the macroscopic stress, the part of
the equipotential surface corresponding to θ = 0 and X > 0 is the symmetric of the part
of the equipotential surface corresponding to θ = π and X < 0, and conversely. When
the large voids are pressurized (pl 6= 0), neither the macroscopic equipotential surfaces
predicted by the model nor those given by the finite element calculations are symmetric.
In addition, the symmetry between the parts of the equipotential surfaces corresponding
to the two Lode angles is lost.

As shown in Figure 7, increasing the internal pressure in the large voids has three main
effects on the macroscopic equipotential surfaces. First, as discussed above, it changes
the shape of the macroscopic equipotential surfaces. Secondly, it translates them along
the Σm-axis, but not uniformly: the value of the translation depends on the internal
pressure pl as well as on the mean growth rate of the large voids (see expression (4.47)
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for the macroscopic stress potential). Thirdly, the maximum value of the macroscopic
equivalent stress decreases. Fairly good agreement was found to exist here between the
predictions of the model and the finite element calculations. In addition, the differences
between the different equipotential surfaces becomes blurred when the pressure in the
large voids increases and the macroscopic mean stress decreases. For instance, in the
case where pl = 1.5σ0, the macroscopic equipotential surface predicted by the model and
those obtained with the two Lode angles differed for −0.5σ0 < Σm < 0.2σ0 and are
superimposed when Σm < −1.5σ0. This is due to the fact that imposing two sufficiently
high pressures, one inside the large void and the other on the outer boundary of the
representative volume element, leads to a local stress state which is almost hydrostatic.
Therefore, in this case, the model can give almost the exact solution of the problem.

The results presented in Figures 8 and 10 correspond to the same parameters as in
Figure 7. In Figure 8, the corresponding macroscopic mean and equivalent strain-rates
are plotted as a function of the macroscopic stress triaxiality. The macroscopic strain-
rate and the macroscopic equipotential surface are closely related: at a given point on
the macroscopic equipotential surface, the corresponding macroscopic strain-rate is the
outer normal at this point. When the voids are not pressurized, the macroscopic mean
and equivalent strain-rates predicted by the model are odd and even functions of the
macroscopic stress triaxiality, respectively. This is not the case in the finite element
calculations, like for the macroscopic equipotential surfaces. Nonetheless, in the case of
both non pressurized and pressurized large voids, the effect of the third invariant of the
macroscopic stress is quite moderate and the macroscopic mean and equivalent strain-
rates fairly accurately predicted by the model, especially at low and high triaxialities.
In particular, as can be seen in Figure 8b, at low triaxialities, the vertex observed in
the curves of the macroscopic equivalent strain-rate is very clearly accounted for by the
model. At moderate triaxialities, the agreement between the predictions of the model
and the finite element calculations is better for the macroscopic mean strain-rate than
for the macroscopic equivalent strain-rate.

The curves plotted in Figure 8b could suggest that the macroscopic equivalent strain-
rate do not asymptote to the same value at large positive and negative triaxialities.
Figure 9 shows the macroscopic equivalent strain-rate, as a function of the inverse of
the stress triaxiality, 1/X = Σeq/Σm, for X → ±∞. The results are plotted for small
(fl = 0.7%, fs = 0.5%) moderate (fl = 7%, fs = 5%) and large (fl = 14%, fs = 10%)
porosities and the same internal pressure in the large voids pl = 1.5σ0. In all cases the
macroscopic equivalent strain-rate vanishes at purely hydrostatic loads (X → ±∞) but
it reaches zero more or less quickly. Note that for large porosities (fl = 14%, fs = 10%)
the corresponding curves are both in the domain of negative triaxialities. This comes
from the fact that for this range of porosities the effect of the internal pressure in the
large voids on the macroscopic equipotential surface is to translate it entirely into the
domain Σm < 0.

In applications, it is of interest to be able to estimate the void growth in a porous
material. This process leads to the coalescence of the voids and potentially to the failure
of the material by ductile fracture. Due to the incompressibility of the matrix phase at
the microscopic scale, the mass balance gives:

ḟ = (1− f) tr
(
Ė

)
, (4.49)
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Figure 8: Influence of the internal pressure in the large voids, pl, on the macroscopic dimensionless
mean (a) and equivalent (b) strain-rates, Ėm/ε̇0 and Ėeq/ε̇0, as a function of the macroscopic stress
triaxiality X = Σm/Σeq . Comparison between the model predictions and the finite element calculation
results. n = 8, fl = 7%, fs = 5%, ps = 0, pl = 0, 0.75σ0 and 1.5σ0. Results based on the finite element
calculations are marked with black filled circles (Lode angle θ = 0) and white circles (Lode angle θ = π),
whereas results based on the N -layer model are given by lines. N = 10.
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Figure 9: Macroscopic dimensionless equivalent strain-rate, Ėeq/ε̇0, as a function of the inverse of the
macroscopic stress triaxiality, 1/X = Σeq/Σm. Comparison between the model predictions and the finite
element calculations for n = 8, ps = 0, pl = 1.5σ0 and three ranges of porosities, fl = 0.7%, fs = 0.5%,
fl = 7%, fs = 5% and fl = 14%, fs = 10%. Results based on the finite element calculations are marked
with black filled circles (Lode angle θ = 0) and white circles (Lode angle θ = π), whereas results based
on the N -layer model are given by lines. N = 20 when fl = 0.7%, N = 10 when fl = 7%, 14%.

where f is the total porosity. Using (2.1), it follows by derivation with respect to time
that:

˙̄fs
1− f̄s

+
ḟl

1− fl
= tr

(
Ė

)
. (4.50)

Owing to the compressibility of the porous matrix at the mesoscopic scale, the growth
rate of the large voids is given by:

ḟl =
1

|V |

∫

∂L

u̇ · n ds− fl tr
(
Ė

)
, (4.51)

where n denotes the unit normal to ∂L pointing towards the porous matrix.

Figure 10 shows the dimensionless growth rate of the large and small voids, ḟl/ε̇0

and ˙̄fs/ε̇0, as a function of the macroscopic stress triaxiality. As can be seen in this
figure, the void growth rates are very accurately predicted by the model at all stress
triaxialities and with all three internal pressure values considered in the large voids. In
the case where the large voids are not taken to be pressurized, the model and the finite
element results have similar symmetry properties to those discussed above in connection
with the previous figures. Increasing the internal pressure in the large voids (from 0 to
1.5σ0) has almost no effect on the growth rate of the small voids at small and negative
macroscopic stress triaxialities, but it significantly affects this parameter at positive and
high macroscopic stress triaxialities. As was to be expected, the internal pressure in
the large voids is found to have significant effects on the growth rate of the large voids
themselves at all the macroscopic stress triaxialities.
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Figure 10: Influence of the internal pressure in the large voids, pl, on the dimensionless growth rate of

the large (a) and small (b) voids, ḟl/ε̇0 and ˙̄fs/ε̇0, as a function of the macroscopic stress triaxiality
X = Σm/Σeq . Comparison between the model predictions and the finite element calculation results.
n = 8, fl = 7%, fs = 5%, ps = 0, pl = 0, 0.75σ0 and 1.5σ0. Results based on the finite element
calculations are marked with black filled circles (Lode angle θ = 0) and white circles (Lode angle θ = π),
whereas those based on the N -layer model are given by lines. N = 10.
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5. Conclusions

A micromechanical model for porous viscoplastic materials containing two popula-
tions of pressurized voids of different sizes is presented in this paper. The porous mate-
rial is taken to be a three-scale composite comprising a microscopic scale corresponding
to the size of the small voids, a mesoscopic scale corresponding to the size of the large
voids, and a macroscopic scale.

The porous matrix at the mesoscopic scale is taken to be homogeneous and compress-
ible. Its behavior derives from the potential(2.11-2.16), which was initially obtained by
Michel and Suquet (1992) and modified in order to account for the pressure in the small
voids.

The present study focuses on the second step in the homogenization procedure, which
yields the proposed micromechanical model. The characteristics of the model are as
follows:

• The macroscopic response is obtained using a simplified representative volume ele-
ment: a hollow sphere containing a pressurized (large) void surrounded by a non-
linear viscoplastic compressible matrix.

• The nonlinearity of the matrix is approached using a modified secant linearization
procedure involving the discretization of the hollow sphere into concentric layers
having uniform secant moduli. A small number of layers (10 to 20 depending on
the size of the central void) suffice to obtain accurate results.

• The approach used here is almost analytical. The part of the model which is treated
numerically consists in solving a small linear system with about 60 unknowns.

The predictions of the model are assessed by comparing them with more accurate
numerical results obtained using the finite element method. The model depends on
several parameters, namely the volume fraction and the internal pressure of the small
and large voids, and the nonlinearity exponent of the matrix phase. The influence of
each of these parameters on the predictions of the effective behavior of the material is
investigated. Good agreement is found to exist at all the macroscopic stress triaxialities
and for all the porosity and nonlinearity values studied.

The model proposed here (coupled to others physical models) was used (Julien, 2008)
in a qualification program, carried out by the French Commissariat à l’Énergie Atomique.
The goal of this program is to investigate the incidental behavior of nuclear fuel used in
pressurized water reactors. In order to simulate an incidental, in an experimental reactor
the fuel rod is submitted to a sharp increase in the power (about twice the usual working
power), and the power level reached is maintained for a few hours (so called a power
ramp). Due to the high temperature reached (about 1800◦C), during the power ramp
(which lasts a few hours) the behaviour of the nuclear fuel can reasonably be considered
as visco-plastic. This situation is very different from that of accidental one (studied by
Vincent et al. (2009)), which lasts a few seconds or minutes. During such a short period
of time the viscosity of the fuel plays no role.

The nuclear fuel is a porous polycrystalline material containing pressurized voids of
different sizes, coming from the manufacture process (the pores) or generated during
irradiation (the bubbles). The voids contain fission gases with different pressure levels.
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It was observed experimentally (see Julien (2008) and references therein) that the pores
and the bubbles differ in size, by a factor of 10 (or even more). Therefore, we can
reasonably suppose that the material microstructure exhibits three scales corresponding
to the bubbles size, pores size and the specimen size, respectively.

A recent study by Lebensohn et al. (2011) addresses the problem of macroscopic
behaviour of viscoplastic polycrystalline materials containing intergranular voids. Using
full-field numerical solutions obtained by FFT method, it is shown that crystallinity
of the matrix material has a minor effect on the effective response. Thus, the matrix
isotropy assumption, which is often made in theoretical studies, seems to be reasonable
in the case where the polycrystal is macroscopically isotropic.

All these elements lead us to formulate the assumptions on which the present model
is based.
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Hervé, E., Zaoui, A.. n-layered inclusion-based micromechanical modelling. Int J Engng Sci
1993;31(1):1–10.

Idiart, M.. Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank
laminates. J Mech Phys Solids 2008;56:2599–2617.
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Lebensohn, R., Idiart, M., Ponte Castañeda, P., Vincent, P.G.. Dilatational viscoplasticity of
polycrystalline solids with intergranular cavities. to appear in Philosophical Magazine 2011;.

Leblond, J., Perrin, G., Suquet, P.. Exact results and approximate models for porous viscoplastic
solids. International Journal of Plasticity 1994;10(3):213–235.

Michel, J., Moulinec, H., Suquet, P.. Effective properties of composite materials with periodic
microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering
1999;172(1-4):109–143.

Michel, J., Suquet, P.. The constitutive law of nonlinear viscous and porous materials. J Mech Phys
Solids 1992;40:783 – 812.
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Pastor, J., Ponte Castañeda, P.. Yield criteria for porous media in plane strain: second-order estimates
versus numerical results. Comptes Rendus Mécanique 2002;330(11):741 – 747.
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Appendix A. The systems of equations for the hollow sphere model

The system of equations for the coefficients Ai, Bi, Ci, Di, Fi and Gi can be split into
two systems corresponding to two types of boundary conditions: hydrostatic boundary
conditions (when the macroscopic strain-rate tensor is spherical) and shear boundary
conditions (when the macroscopic strain-rate tensor is deviatoric).

Appendix A.1. The case of hydrostatic boundary conditions

In the case of hydrostatic boundary conditions, the system of equations concerns the
coefficients Fi and Gi. It is obtained using the continuity of the velocity field u̇1 and the
stress vector σ · n at the interfaces between layers:

u̇(i)(ri) = u̇(i+1)(ri), σ
(i)(ri) · er = σ

(i+1)(ri) · er, i = 1, .., N − 1, (A.1)

and the boundary conditions (3.30)1:

σ
(1)(r0) · er = −p er, u̇(N)(rN ) = ĖmrN . (A.2)

Using the constitutive equations (3.28)1 and the general form (3.32) of the velocity
fields, it follows that the local stress fields in each layer i are diagonal in the basis of
spherical coordinates (r, θ, ϕ). This gives:

σ
(i)(r) · er = σ(i)

rr (r) er, σ(i)
rr (r) = 3kiFi −

4µi

r3
Gi, i = 1, .., N.
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Then the system of equations is:




3k1F1 −
4µ1

r3
0

G1 = −p,

Firi +
Gi

r2
i

− Fi+1ri −
Gi+1

r2
i

= 0, i = 1, .., N − 1,

3kiFi −
4µi

r3
i

Gi − 3ki+1Fi+1 +
4µi+1

r3
i

Gi+1 = 0, i = 1, .., N − 1,

FN + GN

r3
N

= Ėm.

(A.3)

Remark. The approach used here can be extended to the more general case where

the small voids are pressurized with different internal pressures in each layer i. Let p
(i)
s

denote the internal pressure in the small voids of the layer i. The behavior of the porous
matrix derives from a dissipation potential of the form (2.16). The first equation in (3.28)
therefore becomes:

σ = 3ki ε̇m i+ 2µi ε̇
d − p(i)s i in V (i).

This affects the first and the third equation in (A.3), which become:

3k1F1 −
4µ1

r3
0

G1 = p
(1)
s − p,

3kiFi −
4µi

r3
i

Gi − 3ki+1Fi+1 +
4µi+1

r3
i

Gi+1 = p
(i)
s − p

(i+1)
s , i = 1, .., N − 1.

Appendix A.2. The case of shear boundary conditions

In the case of shear boundary conditions, the macroscopic strain-rate tensor is devi-

atoric, Ė = Ė
d
= β̇∆12 + γ̇∆13. The velocity field solution of (3.28) is given by the

sum u̇2 + u̇3, where u̇2(x) = β̇∆12 · x and u̇3(x) = γ̇∆13 · x on ∂V . According to
the definition of the deviatoric tensors ∆12 and ∆13, if the components of u̇2 in the
Cartesian basis are u̇x, u̇y and u̇z, then the components of u̇3 in that same basis will be
u̇x, u̇z and u̇y. Therefore, both fields u̇2 and u̇3 depend on the same functions U(r) and
V (r) and on the same set of coefficients Ai, Bi, Ci and Di. The system of equations is
obtained using the continuity of the velocity field u̇2 and the stress vector σ · n at the
interfaces between layers:

U (i)(ri) = U (i+1)(ri), V (i)(ri) = V (i+1)(ri),

σ
(i)(ri, θ, ϕ) · er = σ

(i+1)(ri, θ, ϕ) · er, i = 1, .., N − 1,
(A.4)

and the boundary conditions (3.30)2:

σ
(1)(r0, θ, ϕ) · er = 0, U (N)(rN ) = rN , V (N)(rN ) = rN . (A.5)

The resulting equations for the functions U (i)(r) and V (i)(r) can be readily written
using the expressions (3.35). The other equations require calculating the stress vector,
which, in the basis of spherical coordinates, is of the form:

σ.er = σrrer + σrθeθ + σrϕeϕ.

Using the constitutive equations (3.28)1 and the general form (3.33) of the velocity fields,
it follows that there exist only two independent equations which express the continuity
of the stress vector. At each interface r = ri, i = 1, .., N − 1:

σ(i)
rr (ri, θ, ϕ) = σ(i+1)

rr (ri, θ, ϕ), σ
(i)
rθ (ri, θ, ϕ) = σ

(i+1)
rθ (ri, θ, ϕ), ∀ θ, ϕ,
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where

σ
(i)
rr (r, θ, ϕ) =

[
2Aiµi +Bi(3ki − 2µi)r

2 − 24Ciµi

r5 − 2Di
9ki+4µi

r3

]
sin2 θ cos 2ϕ,

σ
(i)
rθ (r, θ, ϕ) =

[
Aiµi −Bi

(
8ki +

5
3µi

)
r2 + 8Ciµi

r5 + 3Diki

r3

]
sin 2θ cos 2ϕ.

There also exist only two independent equations which express the condition on the inner
boundary r = r0:

σ(1)
rr (r0, θ, ϕ) = σ

(i)
rθ (r0, θ, ϕ) = 0, ∀ θ, ϕ.

Appendix A.3. The case of prescribed macroscopic stress

In the case where the macroscopic stress is prescribed, the average stress condition
(4.46) yields the following local problem:





σ = 3ki ε̇m i+ 2µi ε̇
d in V (i), i = 1, .., N,

divσ = 0 in V − L,

σ.n = −pn on ∂L,

u̇ = Ė.x on ∂V, Ė unknown,
1

|V |

∫
∂V

σ.n⊗s x ds = Σ, Σ given.

(A.6)

The question addressed in this section is how the systems of equations for the coefficients
Ai, Bi, Ci, Di, Fi and Gi should be changed?

The macroscopic stress and strain-rate tensors are related by Ė = ∂Ψ̃
∂Σ (Σ, p). There-

fore, when the macroscopic stress potential Ψ̃ is an isotropic function of Σ (which is the
case here), the macroscopic tensors Σ and Ė have the same principal directions and in
the basis of principal directions, they are both diagonal. Moreover, a null principal value
for one tensor is also a principal value for the other tensor. The macroscopic stress tensor
can be decomposed as follows:

Σ = Σ1 +Σ2 +Σ3,

Σ1 = Σmi, Σ2 = Θ∆12, Σ3 = ω∆13,
(A.7)

where Θ∆12,+ω∆13 = Σd. It follows from the above mentioned result that the corre-
sponding macroscopic strain-rate tensors can be written:

Ė1 = Ėmi, Ė2 = β̇∆12, Ė3 = γ̇∆13. (A.8)

The velocity field solution of (A.6) is therefore the sum of the same three velocity fields
(3.29). Their coefficients must satisfy the same systems of equations but the values of
Ėm, β̇ and γ̇ are not known.

The system for the coefficients Ai, Bi, Ci and Di (eqns (A.4-A.5)) does not depend
on β̇ and γ̇ and can be solved independently. The average conditions

1

|V |

∫

∂V

σ.n⊗s x ds = Σ2 and
1

|V |

∫

∂V

σ.n⊗s x ds = Σ3, (A.9)
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are then used to obtain β̇ and γ̇. Straightforward calculations yield the following expres-
sions for the average conditions (A.9):

−
2
[
7BN (3kN + µN )r5N − 5ANµNr

3
N +DN (9kN + 8µN )

]

5r3N
=

Θ

β̇
=
ω

γ̇
. (A.10)

For the coefficients Fi and Gi, the system (A.3) depends on Ėm (which is not known)
and the average condition 1

|V |

∫
∂V

σ.n⊗sx ds = Σ1 should be added to the system. This

average condition can be written as:

3FNkN −
4GNµN

r3N
= Σm, (A.11)

and (A.3) is replaced by the following system in which the unknowns are both the macro-
scopic mean strain-rate Ėm and the coefficients Fi and Gi:





3k1F1 −
4µ1

r3
0

G1 = −p,

Firi +
Gi

r2
i

− Fi+1ri −
Gi+1

r2
i

= 0, i=1,..,N-1,

3kiFi −
4µi

r3
i

Gi − 3ki+1Fi+1 +
4µi+1

r3
i

Gi+1 = 0, i=1,..,N-1,

FN + GN

r3
N

− Ėm = 0,

3FNkN − 4GNµN

r3
N

= Σm.

(A.12)

Appendix B. Proof of Lemma 1

Using the divergence theorem, one obtains:

∫

Ω−S

div v dx =

∫

∂S

v · n ds+

∫

∂Ω

v · n ds. (B.1)

Since v(x) = ε̇ · x on ∂Ω, the last integral gives:

∫

∂Ω

v · n ds =

∫

∂Ω

(ε̇ · x) · n ds =

∫

∂Ω

ε̇ · (x⊗ n) ds = ε̇ ·

∫

∂Ω

x⊗ n ds.

Again using the divergence theorem, we obtain
∫
∂Ω

x⊗ n ds = |Ω|i, and therefore:

∫

∂Ω

v · n ds = |Ω|tr (ε̇) . (B.2)

Substituting (B.2) into (B.1) gives (2.14).
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