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Limit Laws in Transaction-Level Asset Price Models

Alexander Aue∗ Lajos Horváth† Clifford Hurvich‡

Philippe Soulier§

April 5, 2011

Abstract

We consider pure-jump transaction-level models for asset prices in continuous
time, driven by point processes. In a bivariate model that admits cointegration, we
allow for time deformations to account for such effects as intraday seasonal patterns
in volatility, and non-trading periods that may be different for the two assets. We
also allow for asymmetries (leverage effects). We obtain the asymptotic distribution
of the log-price process. We also obtain the asymptotic distribution of the ordinary
least-squares estimator of the cointegrating parameter based on data sampled from
an equally-spaced discretization of calendar time, in the case of weak fractional coin-
tegration. For this same case, we obtain the asymptotic distribution for a tapered
estimator under more general assumptions. In the strong fractional cointegration
case, we obtain the limiting distribution of a continuously-averaged tapered estima-
tor as well as other estimators of the cointegrating parameter, and find that the rate
of convergence can be affected by properties of intertrade durations. In particular,
the persistence of durations (hence of volatility) can affect the degree of cointegration.
We also obtain the rate of convergence of several estimators of the cointegrating pa-
rameter in the standard cointegration case. Finally, we consider the properties of the
ordinary least squares estimator of the regression parameter in a spurious regression,
i.e., in the absence of cointegration.
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1 Introduction

The increasingly widespread availability of transaction-level financial price data motivates
the development of models to describe such data, as well as theory for widely-used statistics
of interest under the assumption of a given transaction-level generating mechanism. We
focus here on a bivariate pure-jump model in continuous time for log prices proposed
by Hurvich and Wang (2009, 2010) which yields fractional or standard cointegration. The
motivation for using a pure-jump model is that observed price series are step functions, since
no change is possible in observed prices during time periods when there are no transactions.
Examples of data sets that would fit into the framework of this model include: buy prices
and sell prices of a single stock; prices of two different stocks within the same industry;
stock and option prices of a given company; option prices on a given stock with different
degrees of maturity or moneyness; corporate bond prices at different maturities for a given
company; Treasury bond prices at different maturities.

Though our paper is not entirely focused on the case of fractional cointegration, we
present here some evidence that this case may arise in practice in financial econometrics.
We considered option and underlying best-available bid prices for 69 different options on
IBM at 390 one-minute intervals from 9:30 AM to 4 PM on May 31, 2007. Using a log-
periodogram estimator based on 3900.5 frequencies, we found that the logs of the original
series had estimated memory parameters close to 1, while the residuals from the OLS re-
gression of the log stock price on the log option price had estimated memory parameters
that were typically less than 1. Specifically, of the 69 estimated memory parameters based
on these residuals, the values ranged from 0.05 to 1.14 with a mean of 0.55 and a stan-
dard deviation of 0.28, with 30 of these estimates lying between 0.5 and 1, while 32 were
between 0 and 0.5. Thus, there is evidence for cointegration in most of the series studied,
and often the evidence points towards fractional rather than standard cointegration. Fur-
thermore, the OLS estimate of the cointegrating parameter (assuming that cointegration
exists) ranged from −0.21 to 0.39, with a mean of 0.04 and a standard deviation of 0.13.
This provides evidence that the cointegrating parameter is in general not equal to one in
the present context, so it is of interest to study properties of estimates of this parameter.

Two basic questions that we address in this paper are the asymptotic distribution of
the log prices as time t→ ∞, and of the usual OLS estimator of the cointegrating param-
eter based on n observations of the log prices at equally-spaced time intervals as n → ∞.
Most of the existing methods for deriving such limit laws (see Robinson and Marinucci
(2001)) cannot be applied here because the continuous-time log-price series are not diffu-
sions and because the discretized log-price series are not linear in either an iid sequence, a
martingale difference sequence or a strong mixing sequence. Nevertheless, it is of interest
to know whether and under what conditions the existing limit laws, based, say, on lin-
earity assumptions in discrete time, continue to hold under a transaction-level generating
mechanism.

In the model of Hurvich and Wang (2010, 2009) the price process in continuous time is
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specified by a counting process giving the cumulative number of transactions up to time t,
together with the process of changes in log price at the transaction times. This structure
corresponds to the fact that most transaction-level data consists of a time stamp giving
the transaction time as well as a price at that time. In such a setting, another observable
quantity of interest is the durations, i.e., the waiting times between successive transactions
of a given asset. There is a growing literature on univariate models for durations, including
the seminal paper of Engle and Russell (1998) on the autoregressive conditional duration
models (ACD), as well as Bauwens and Veredas (2004) on the stochastic duration model
(SCD), and Deo et al. (2010) on the long-memory stochastic duration model (LMSD).

Deo et al. (2009) showed that, subject to regularity conditions, if partial sums of cen-
tered durations, scaled by n−(d+1/2) with d ∈ [0, 1/2), satisfy a functional central limit
theorem then the counting process N(t) has long or short memory (for d > 0, d = 0,
respectively) in the sense that VarN(t) ∼ Ct2d+1 as t → ∞ (with C > 0), and they gave
conditions under which this scaling would lead to long memory in volatility. In particular,
LMSD durations with d > 0 lead to long memory in volatility. The latter property has
been widely observed in the econometrics literature, while evidence for long memory in
durations was found in Deo et al. (2010).

Hurvich and Wang (2010, 2009) did not derive limit laws for the log price series or
the OLS estimator of the cointegrating parameter, but focused instead on properties of
variances and covariances for log price series and returns, and on lower bounds on the rate
of convergence for the OLS estimator.

In this paper, for a slightly modified version of the model of Hurvich and Wang (2010,
2009), but under assumptions that are more general than theirs, we obtain the limit law
for the log prices, and for the OLS and tapered estimators of the cointegrating parameter.
In our result on the limit law for log prices, Theorem 3.1, we allow for a stochastic time-
varying intensity function in the counting processes. This allows for such effects as dynamic
intraday seasonality in volatility (as observed, for example, in Deo et al. (2006), as well
as fixed nontrading intervals such as holidays and overnight periods. We also allow in
most of our results for asymmetries (leverage effects), and show that this opens up the
possibility that long memory in durations may affect the rate of convergence of estimators
of the cointegrating parameter. This raises some heretofore unrecognized ambiguities in
the choice of a definition of standard cointegration. Finally, we consider the properties
of the ordinary least squares estimator in a spurious regression, i.e., in the absence of
cointegration.

The remainder of this paper is organized as follows. In Section 2 we write the model for
the log price series and state our assumptions on the counting process, the time-deformation
functions, and the return shocks. In Section 3, we provide our main results on: the long-run
behavior of the log-price process (Subsection 3.1), the OLS estimator for the cointegrat-
ing parameter under weak fractional, strong fractional and standard cointegration (Sub-
section 3.2), a tapered estimator under weak fractional, strong fractional and standard
cointegration (Subsection 3.3), a continuously-averaged tapered estimator under strong
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fractional and standard cointegration (Subsection 3.4) and the ordinary least squares esti-
mator in the spurious regression case (Subsection 3.5). Section 4 provides proofs.

2 Transaction level model

As in Hurvich and Wang (2010, 2009), we consider a bivariate pure-jump transaction-level
price model that enables cointegration. We define the log-price process y = (y1, y2) =
(y(t) : t ≥ 0) by

y1(t) =

N1(t)
∑

k=1

(e1,k + η1,k) + θ

N2(t1,N1(t)
)

∑

k=1

e2,k, (2.1)

y2(t) =

N2(t)
∑

k=1

(e2,k + η2,k) + θ−1
N1(t2,N2(t)

)
∑

k=1

e1,k, (2.2)

where for i = 1, 2, Ni(·) are counting processes on the real line (see Daley and Vere-Jones
(2003, page 43)) such that, for t ≥ 0, Ni(t) := Ni(0, t] gives the total number of transactions
of Asset i in (0, t], and ti,k is the clock time (calendar time) for the kth transaction of Asset
i, with · · · ti,−1 ≤ ti,0 ≤ 0 < ti,1 ≤ ti,2 · · · . The quantity N2(t1,N1(t)) denotes the number of
transactions of Asset 2 between time 0 and the time t1,N1(t) of the most recent transaction
of Asset 1, with an analogous interpretation for N1(t2,N2(t)). The efficient shock sequences
{ei,k}∞k=1 model the permanent component and the microstructure noise sequences {ηi,k}∞k=1

model the transitory component of the log-price process. Efficient shock spillover effects
are weighted by θ and θ−1, thus yielding cointegration with cointegrating parameter θ,
assumed nonzero. A detailed economic justification for this model, derivation of a common-
components representation, as well as a comparison with certain discrete-time models, is
given in Hurvich and Wang (2010, 2009).

Following Daley and Vere-Jones (2003, page 47), a point process is said to be simple if
the probability is zero that there exists a time t at which more than one event occurs. We
do not assume that the counting processes are simple. Thus we allow for the possibility
that several transactions may occur at the same time. The transaction times ti,k are related
to the point process by the following duality.

Ni(t) = k ⇔ ti,k ≤ t < ti,k+1 .

The durations are then defined for k ≥ 1 by

τi,1 = ti,1 , τi,k = ti,k − ti,k−1 .

If the process is simple, then Ni(ti,k) = k. Otherwise, it only holds that Ni(ti,k) ≥ k. We
need the following ergodicity-type assumptions.
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Assumption 2.1. The sequences {ti,k} are nondecreasing and there exists λi ∈ (0,∞)
such that

ti,k/k
P→ 1/λi . (2.3)

When the counting processes are simple, this is equivalent to Ni(t)/t
P→ λi. Since we

do not assume simplicity, we must introduce an additional assumption.

Assumption 2.2. Ni(t)/t
P→ λi.

If the counting processes are defined from stationary ergodic durations, then Assump-
tion 2.1 holds. If the couting processes are moreover simple, then Assumption 2.2 also
holds. Thwo such examples where both Assumptions 2.1 and 2.2 hold are LMSD processes
and ACD processes, under conditions specified presently. Here and elsewhere, we omit the
i subscript when this does not cause confusion.

• For the LMSD process, suppose that τk = ǫke
σYk where σ is a positive constant,

{ǫk} is an iid sequence of almost surely positive random variables with finite mean
and {Yk} is a stationary standard Gaussian process, independent of {ǫk}, such that
limk→∞ cov(Y0, Yk) = 0. It follows from the latter assumption and Guassianity that
the process {Yk} is ergodic Ibragimov and Rozanov (1978), hence so is {τk}. Thus
Assumption 2.1 holds with λ−1 = E[ǫ1]e

σ2/2 and since the durations are almost surely
positive, so does Assumption 2.2. Henceforth, we will further assume that either
∑∞

k=1 |cov(Y0, Yk)| <∞ or cov(Y0, Yk) ∼ ck2Hτ−2 for some c > 0 and Hτ ∈ (1/2, 1).

• The ACD model proposed in Engle and Russell (1998) is

τk = ψkǫk, ψk = ω + ατk−1 + βψk−1, k ∈ Z, (2.4)

where ω > 0 and α, β ≥ 0, {ǫk}∞k=−∞ is an iid sequence with ǫ0 > 0 almost surely, and
E[ǫ0] = 1. The sequence {τk}∞k=−∞ is then strictly stationary provided such a solution
to (2.4) exists. From Grimmett and Stirzaker (2001, Section 9.5), it follows that
stationary ACD durations are ergodic if E[τ0] <∞. The strictly stationary solution
is then determined by ψk = ω

∑∞
j=1

∏j−1
i=1 (αǫk−i+β) and exists if E[ln(αǫ0+β)] < 0,

following arguments given in Bougerol and Picard (1992). As in Aue et al. (2006),
one can derive that now E[τ0] is finite if α + β < 1 which, on account of Jensen’s
inequality, is also sufficient for E[ln(αǫ0 + β)] < 0 to hold. Thus, {τk} is ergodic as
long as α + β < 1. In that case, Assumptions 2.1 and 2.2 hold with λ = (E[τ1])

−1 =
(1− α− β)/ω.

We now give an example (which is allowed as a special case of our theorems) of how time
deformations can be used to obtain a nonstationary, possibly non simple point process from
a stationary simple one. Let Ñi(·) be a simple, stationary and ergodic counting process on
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R with intensity λ̃i ∈ (0,∞) and let fi be deterministic or random functions such that fi
is nondecreasing and has càdlàg paths with probability one. For i = 1, 2, define then

Ni(t) = Ñi(fi(t)) .

If the functions fi are random, we assume moreover that they are independent of the
counting processes Ñi.

The functions fi are used to speed up or slow down the trading clock. To incorporate
dynamic intraday seasonality in volatility, the same time deformation can be used in each
trading period (of length, say, T ), assuming that fi(t) has a periodic derivative (with period
T and with probability one), for example, fi(t) = t + .5 sin(2πt/T ). Fixed nontrading
intervals, say, t ∈ [T1, T2), could be accommodated by taking fi(t) = fi(T1) for t ∈ [T1, T2)
so that fi(t) remains constant for t in this interval, and then taking fi(T2) > fi(T1) so that
fi(t) jumps upward when trading resumes at time T2. The jump allows for the possibility of
one or more transactions at time T2, potentially reflecting information from other markets
or assets that did trade in the period [T1, T2).

If the values of series i are only recorded at specific time points (e.g., quarterly in the
case of certain macroeconomic series) this could be handled by taking fi(t) to be a pure-
jump function. This provides scope for considering two (or more) series, some of which are
observed continuously, others at specific times, though not necessarily contemporaneously.
In future work, we hope to explore this scenario in detail, and its possible connections with
the MIDAS methodology, see Ghysels et al. (2006).

The use of the time-varying intensity function fi renders the counting process Ni non-
stationary. Since it is possible that fi has (upward) jumps, the Ni may also not be simple
even though the Ñi are simple. We now show, however, that Assumptions 2.1 and 2.2 hold
under the present assumptions.

Lemma 2.1. Assume that f is a nondecreasing (random) function such that t−1f(t)
P→

γ ∈ (0,∞) and
sup
t≥0

|f(t)− f(t−)| ≤ C

with probability one, where C ∈ (0,∞) is a deterministic constant. Let Ñ be a stationary
ergodic simple point process, so that Assumptions 2.1 and 2.2 hold for some λ > 0. Let N
be the counting process defined by N(·) = Ñ(f(·)). Then Assumptions 2.1 and 2.2 hold for
N with λ = λ̃γ.

In order to show that our results on estimation of the cointegrating parameter (under
weak fractional and standard cointegration) hold in this time deformation framework, we
will in Lemma 4.7 make further assumptions on the fi. These assumptions mathematically
embody natural economic constraints, viz. minimum duration of trading and nontrading
periods, maximum duration of nontrading periods and non stoppage of trading time during
trading periods.

We now state our assumptions on the return shocks.
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Assumption 2.3. The efficient shocks {ei,k} are mutually independent i.i.d. sequences
with zero mean and variance σ2

i,e.

Although many of our results would continue to hold if the iid part of Assumption 2.3
were replaced by a weak-dependence assumption, we maintain the iid assumption here in
keeping with the economic motivation for the model as provided by Hurvich and Wang
(2010) that in the absence of the microstructure shocks and in the absence of any depen-
dence of the efficient shocks on the counting processes, each of the log price series would
be a martingale with respect to its own past. Since the trades of Asset 1 are not synchro-
nized in calendar time or in transaction time with those of Asset 2, it seems reasonable to
assume that the two efficient shock series are mutually independent, as we have done in
Assumption 2.3.

The following assumption implies that the microstructure noise does not affect the
limiting distribution of the log prices. We use ⇒ to denote weak convergence in the space
D([0,∞)) of left-limited, right-continuous (càdlàg) functions, endowed with Skorohod’s J1
topology. See Billingsley (1968) or Whitt (2002) for details about weak convergence in
D([0,∞)). Whenever the limiting process is continuous, this topology can be replaced by
the topology of uniform convergence on compact sets.

Assumption 2.4 (Microstructure Noise). The microstructure noise sequences {ηi,k} sat-

isfy n−1/2
∑[n·]

k=1 ηi,k ⇒ 0.

Dependence between the counting processes and return shocks allows for leverage effects
(for example, a correlation between a return in one time period and a squared return in a
subsequent time period). A transaction-level model yielding a leverage effect was proposed
(but justified only with simulations) in Hurvich and Wang (2009). Models where the point
process need not be independent of the return shocks were discussed in Prigent (2001) in
the context of option pricing with marked point processes.

We do not make any assumption of independence between the counting processes and
the microsctucture shocks, unless explicitly noted otherwise. We will, however, assume
that the counting processes are independent of the efficient shocks except in Theorem 3.1
and in Section 3.5.

Assumption 2.4 is all we need to assume about the microstructure noise in order to
obtain a limit law for the log price series (such as Theorem 3.1 below). However, in order
to discuss properties of estimators of the cointegrating parameter it is necessary to make
more specific assumptions on the degree of cointegration. In Hurvich and Wang (2009,
2010), three different cases were considered, according to the strength of the memory of the
microstructure noise sequences. These cases were labeled as weak fractional cointegration,
strong fractional cointegration and standard cointegration. In the current context, where
there may be a dependence between return shocks and counting processes, special care is
needed in defining the strong fractional and standard cointegration cases, as long memory
in durations may affect the rate of convergence of estimators of the cointegrating parameter

7



in these cases. On the other hand, we will define weak fractional cointegration essentially
as in Hurvich and Wang (2010).

Assumption 2.5. The shocks {e1,k}∞k=−∞, {e2,k}∞k=−∞, {η1,k}∞k=−∞ and {η2,k}∞k=−∞ are
mutually independent.

Mutual independence of the efficient and microstructure shock series of a given asset
can be justified on economic grounds, and is often made in the econometric literature for
calendar-time models. See, e.g., Barndorff-Nielsen et al. (2008). Mutual independence of
the two microstructure series is justified by the lack of synchronization of the trading times
of the two assets.

We now discuss the weak fractional cointegration case. For H ∈ (0, 1), let BH denote
the standard fractional Brownian motion (FBM) with Hurst index H , i.e. the zero mean
Gaussian process with almost surely continuous sample paths and covariance function

cov(BH(s), BH(t)) =
1

2

{

s2H − |t− s|2H + t2H
}

.

For H = 1/2, B1/2 is the standard Brownian motion.

Assumption 2.6 (Weak Fractional Cointegration). There exists H ∈ (0, 1/2) such that

n−H
[n·]
∑

k=1

ηi,k ⇒ ciB
(i)
H

where c1, c2 are nonnegative constants, not both zero and B
(1)
H and B

(2)
H are independent

standard fractional Brownian motions with common Hurst index H.

Under Assumption 2.5, the independence of all the noise series implies that all the
previous convergences hold jointly. The situation where one of the constants c1 or c2 is
zero could arise naturally if the memory in one of the microstructure noise series is weaker
than for the other.

In the case of weak fractional cointegration, we can define the memory parameter of
the microstructure noise series as dη = H − 1/2 ∈ (−1/2, 0), and the degree of fractional
cointegration (i.e. the rate of convergence of partial sums of the cointegrating error) is
completely determined by dη. More precisely, in this case the difference between the
memory parameters of the series of log prices and the cointegrating error (observed, say,
at equally-spaced intervals of calendar time) y1(j)− θy2(j), is −dη. This holds regardless
of any dependence between the counting processes and the microstructure shocks.

Next we discuss strong fractional and standard cointegration. We start with the as-
sumption that, for i = 1, 2, ηi,k = ξi,k − ξi,k−1 where {ξi,k} satisfy supk E[ξ

2
i,k] <∞. It then

follows that the cointegrating error at time j is
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y1(j)− θy2(j)

=

N1(j)
∑

k=N1(t2,N2(j)
)+1

e1,k − θ

N2(j)
∑

k=N2(t1,N1(j)
)+1

e2,k + ξ1,N1(j) − ξ1,0 − θ(ξ2,N2(j) − ξ2,0). (2.5)

Under the assumptions we will make in this paper, and also under the assumptions made
in Hurvich and Wang (2010, 2009), the first two terms on the righthand side of (2.5) are
weakly dependent, so the degree of cointegration is determined by the rate of convergence
of partial sums of ξi,Ni(j).

Thus we will need to study the sequence ξi,Ni(j). We do not assume that the microstruc-
ture shocks are independent of the counting processes. Thus, even if the microstructure
shocks have zero mean, it may hold that E[ξi,Ni(j)] 6= 0.

Assumption 2.7 (Strong fractional and standard cointegration). The microstucture noise
sequences {ηi,k} can be expressed as ηi,k = ξi,k − ξi,k−1. There exist H ∈ [1/2, 1), constants
µ∗1, µ

∗
2 and nonnegative constants c1, c2, not both zero, such that

n−H
[n·]
∑

k=1

{ξi,Ni(j) − µ∗i } ⇒ ciB
(i)
H

where B
(1)
H and B

(2)
H are independent fractional Brownian motions with Hurst index H.

The case H > 1/2 corresponds to strong fractional cointegration whereas the case
H = 1/2 corresponds to standard cointegration.

It might be hard to verify Assumption 2.7 unless the durations are integer valued. Since
commonly-used duration models do not have integer-valued durations, we will introduce a
modification of the estimators which involves integrals instead of sums, thus allowing us to
avoid this restriction. This change requires a corresponding modification of Assumption 2.7.

Assumption 2.8 (Strong fractional and standard cointegration). The microstucture noise
sequences {ηi,k} can be expressed as ηi,k = ξi,k − ξi,k−1. There exist H ∈ [1/2, 1), constants
µ∗1, µ

∗
2 and nonnegative constants c1, c2, not both zero, such that

n−H
∫ n·

0

{ξi,Ni(s) − µ∗i } ds⇒ ciB
(i)
H .

In their strong fractional cointegration case, Hurvich and Wang (2010) assumed, for
dη ∈ (−1,−1/2), that cov(ξi,k, ξi,k+j) ∼ Kj2dξ−1 as j → ∞ where K > 0 and dξ =
dη + 1 ∈ (0, 1/2). They then showed (in their Lemma 3), under the assumptions made
there, that cov(ξi,Ni(k), ξi,Ni(k+j)) ∼ K ′j2dξ−1 as j → ∞ where K ′ > 0, so that the degree of
fractional cointegration was completely determined by the rate of decay of cov(ξi,k, ξi,k+j).
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However, the proof of this result relied on the assumption that the microstructure shocks
are independent of the counting processes, an assumption which we do not make here.

We next provide an example showing that under dependence between the microstruc-
ture shocks and the counting processes, it is possible for {ξi,k} to be weakly dependent, and
yet the rate of convergence of suitably normalzed integrals of the process (ξi,Ni(t) : t ≥ 0)
is determined by the degree of long memory in durations. Suppressing the i subscript, we
have the following lemma.

Lemma 2.2. Suppose that {τk} is given by the LMSD model τk = ǫke
Yk , {ǫk} are i.i.d.

standard exponential, independent of the stationary standard Gaussian series {Yk}, which
satisfies cov(Y0, Yn) ∼ cn2Hτ−2 where c > 0, and Hτ ∈ (1/2, 3/4). Define ξk = Y 2

k+1 − 1.
Then the autocovariance function of {ξk} is summable and there exists c′ > 0 such that

n−1/2
[n·]
∑

k=1

ξk ⇒ c′B . (2.6)

Nevertheless, the randomly-indexed continuous-time process ξN(t) has long memory in the
sense that there exists a constant µ∗, as well as a constant c′′, such that

n−Hτ

∫ n·

0

{ξN(s) − µ∗} ds⇒ c′′BHτ
. (2.7)

Lemma 2.2 shows that long memory in durations can induce the same degree of long
memory in the cointegrating error (2.5) in calendar-time, even though the microstructure
shocks, which are the source of the cointegration, have short memory as a sequence in
transaction time. In Lemma 2.2, this phenomenon was achieved by imposing a particular
functional relationship between the (zero mean) microstructure noise and the persistent
component of the durations, ξk = Y 2

k+1 − 1. This relationship implies a leverage effect,

since corr(ξk, τk+1) = 1/
√

2(e− 1) ≈ .539 > 0. In other words, a strongly negative mi-
crostructure shock to the return leads to a tendency of the next observed duration, as well
as subsequent durations, to be shorter than average. Such a string of short durations in-
creases the volatility, e.g., the expectation of squared calendar-time returns, as shown, for
example, under a particular return model in Deo et al. (2009). Furthermore, evidence that
stock market intertrade durations have long memory was provided in Deo et al. (2010).

In the absence of dependence between the counting processes and microstructure noise
series, in both cases of strong fractional and standard cointegration, the memory of du-
rations cannot affect the memory of the cointegrating error. See Lemma 4.9 for strong
fractional cointegration and Lemma 4.10 for standard cointegration.

10



3 Main results

3.1 The long-run behavior of the bivariate log-price process

With the assumptions made in Section 2, the long-run behavior of the bivariate process
y = (y1, y2) can be determined. The following theorem shows that the log-prices are
approximately integrated. Even though independence is assumed between the various
shock series, the log-price process y = (y(t) : t ≥ 0) exhibits a nontrivial variance-covariance
structure which is determined by a complex interplay of the model parameters.

Theorem 3.1. Under Assumptions 2.1, 2.2, 2.3, 2.4, n−1/2(y1(n·), y2(n·)) ⇒ B, where

B =
(

σ1,e
√

λ1B1 + θσ2,e
√

λ2B2 , θ
−1σ1,e

√

λ1B1 + σ2,e
√

λ2B2

)

. (3.1)

and B1 and B2 are independent standard Brownian motions.

In Theorem 3.1, we have not assumed that the counting processes are independent of
either the efficient shocks or the microstructure shocks.

Hurvich and Wang (2010, 2009) have in their Theorem 1 computed the long-run vari-
ances of y1(t) and y2(t) which are given as (σ2

1,eλ1 + θ2σ2
2,eλ2)t and (σ2

1,eλ1/θ
2 + σ2

2,eλ2)t,
respectively. Our theorem yields the variances as well as the covariances in the limiting
distribution of (t−1/2y(t) : t ≥ 0). More importantly, our theorem provides the limiting
distribution itself for the (normalized) log-price process y which, in turn, can be used for
asymptotic statistical inference. Indeed, most of the subsequent results in this paper use
Theorem 3.1 and its proof as a building block. In particular, a slightly generalized ver-
sion of this theorem directly yields asymptotics for estimators in spurious regressions and
therefore can be used to motivate tests for the null hypothesis of no cointegration, as we
describe in Section 3.5.

3.2 OLS estimator of the cointegrating parameter

In this section, we derive the asymptotic behavior of the ordinary least-squares estimator
(OLS) of the cointegrating parameter θ. To do so, we assume that the log-price series are
observed at integer multiples of ∆t. We will work here, without loss of generality, with
∆t = 1 in order to keep the notation simple. Then (2.1) and (2.2) become

y1(j) =

N1(j)
∑

k=1

(e1,k + η1,k) + θ

N2(t1,N1(j)
)

∑

k=1

e2,k,

y2(j) =

N2(j)
∑

k=1

(e2,k + η2,k) + θ−1
N1(t2,N2(j)

)
∑

k=1

e1,k.

11



Regressing y1(1), . . . , y1(n) on y2(1), . . . , y2(n) without intercept, we obtain the OLS esti-
mator of θ as

θ̂OLS

n =

∑n
j=1 y2(j)y1(j)
∑n

j=1 y
2
2(j)

. (3.2)

Hurvich and Wang (2010, 2009) have shown in their Theorem 6 (under conditions that are
for the most part stronger than the ones we assume here) that θ̂OLS

n is weakly consistent
for θ and obtained a lower bound on the rate of convergence in the case of weak fractional,
strong fractional and standard cointegration. The exact limit distributions, however, were
not given. We fill in this gap next for weak fractional cointegration.

3.2.1 OLS under weak fractional cointegration

Theorem 3.2. Let Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 hold. Assume in addition that
the counting processes N1 and N2 are mutually independent and independent of the efficient
shocks and there exists a constant C such that

sup
s≥0

E[ti,Ni(s)+1 − s] ≤ C . (3.3)

Then

n1/2−H(θ̂OLS

n − θ)
d→ Σ1

∫ 1

0
B(t)BH(t) dt
∫ 1

0
B2(t) dt

where B is a standard Brownian motion, BH is a fractional Brownian motion, independent
of B, and

Σ2
1 =

c21λ
2H
1 + c22λ

2H
2

θ−2λ1σ
2
1,e + λ2σ

2
2,e

.

The result in Theorem 3.2 is similar to that obtained in Robinson and Marinucci (2001,
Proposition 6.5, formula (6.8)), under their Assumption 6.1, for which a sufficient condition
(their formula (6.5)) was verified in Marinucci and Robinson (2000) to hold for weak (but
not strong) fractional cointegration in the case where the process is linear with respect to
iid innovations.

Remark 3.1. For the LMSD model described in the previous section, it is proved in
Lemma 4.8 that (3.3) holds under the assumptions of Lemma 2.2 that pertain to the
durations. For the ACD model described in the previous section, Lemma 4.6 shows
that (3.3) holds as long as E[τ 3k ] < ∞. Carrasco and Chen (2002, Corollary 6) prove
that if E[(β + αǫt)

3] < 1 then E[τ 3k ] < ∞. For the LMSD or ACD models, or for any
duration model such that the corresponding counting process Ñ satisfies (3.3), the time
deformed process N also satisfies (3.3), provided the time deformation function f satisfes
the assumptions of Lemma 4.7. Therefore Theorem 3.2 holds for LMSD or ACD durations
with deformation functions satisfying the assumptions of Lemmas 2.1 and 4.7.

12



3.2.2 OLS under strong fractional and standard cointegration

We now consider the case where the microstructure noise series {ηi,k} are differences of
strongly or weakly dependent processes {ξi,k}.

Theorem 3.3. Let Assumptions 2.1, 2.2, 2.3, 2.5, and 2.7 hold. Assume moreover that

• the efficient shocks are i.i.d. Gaussian,

• the counting processes N1 and N2 are independent of each other and independent
of the microstructure noise sequences and of the efficient shocks and there exists a
constant C such that

sup
t≥0

E[(ti,Ni(t)+1 − t)2] ≤ C . (3.4)

• E[ξi,k] = 0, supk E[ξ
2
i,k] <∞, and ξi,0 = 0.

Then,

• if 1/2 < H < 1,

n3/2−H(θ̂OLS

n − θ)
d→
√

c21 + θ2c22
θ−2λ1σ2

1,e + λ2σ2
2,e

∫ 1

0
B(s) dBH(s)
∫ 1

0
B2(s) ds

, (3.5)

where B is standard Brownian motion independent of the standard fractional Brow-
nian motion BH ;

• if H = 1/2, n(θ̂OLS

n − θ) = OP (1).

The rate of convergence obtained in the standard cointegration case improves on the
one obtained by Hurvich and Wang (2010).

The assumptions in Theorem 3.3 are quite strong, ruling out leverage effects and pro-
viding one motivation for our subsequent consideration of tapered estimators.

Remark 3.2. For the LMSD model described in the previous section, it is proved in
Lemma 4.8 that (3.4) holds under the assumptions of Lemma 2.2 pertaining to the du-
rations. Similarly, for the ACD durations, Lemma 4.6 and Carrasco and Chen (2002,
Corollary 6) imply that if E[(β + αǫ1)

5] <∞ then (3.4) holds. However, we are unable to
show that Assumption 2.7 holds except in certain cases of integer-valued durations. We
do not pursue this further here.

13



3.3 A Tapered Estimator of the Cointegrating parameter

Even in existing discrete-time models for cointegration the OLS estimator lacks any par-
ticular optimality properties. Here we consider an estimator based on discrete Fourier
transforms of the tapered differences of y1(j), y2(j), 1 ≤ j ≤ n. It was shown in
Chen and Hurvich (2003a) that this estimator can have a faster rate of convergence than
OLS in certain cases of fractional cointegration. In the weak fractional cointegration case,
our limit results for the tapered estimator (Theorem 3.4) are obtained under identical
conditions as those assumed in Theorem 3.2 for OLS. However, under strong fractional
and standard cointegration, the conditions for our results on the tapered estimator (The-
orem 3.5) allow for leverage, unlike the corresponding theorem for OLS.

We introduce all relevant notation using a generic time series {xj}∞j=−∞. Let h : I → R

be a general continuous taper function on an open interval I containing [0, 1] such that
h(0) = h(1) = 0. For ℓ = 1, 2, . . . , denote by ωℓ = 2πℓ/n the Fourier frequencies. The
tapered DFT of {xj}∞j=−∞ with taper function h is defined by

dx,ℓ =
n
∑

j=1

h
( j

n

)

xj e
ijωℓ =

n
∑

j=1

hℓ

( j

n

)

xj .

where hℓ(t) = h(t)e2πiℓt. Denote by {∆xj}∞j=−∞ the first difference of the series {xj}, where
∆xj = xj −xj−1. We define the tapered DFT of the first difference {∆xj}∞j=−∞ with taper
function h by

d∆x,ℓ =

n
∑

j=1

h
( j

n

)

∆xj e
ijωℓ =

n
∑

j=1

hℓ

( j

n

)

∆xj . (3.6)

In our setting, we observe the cointegrated component processes y1 and y2 at equidis-
tant sample points. Defining the cointegrating error zj = y1,j − θy2,j and following
Chen and Hurvich (2003b), we can now introduce the estimator

θ̂Tap
n = Re(θ̃n) ,

where Re(z) signifies the real part of a complex number z = a + ib and, letting z̄ = a− ib
be the complex conjugate of z,

θ̃n =

∑m
ℓ=1 d∆y1,ℓ d̄∆y2,ℓ
∑m

ℓ=1 |d∆y2,ℓ|2
.

Therein, any tapered DFT of differenced sequences is defined according to (3.6). Note that
θ̂Tap
n is the real part of the ratio of the averaged tapered cross-periodogram between the
series y1 and y2 and the averaged tapered periodogram of the series y2.
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3.3.1 Discrete tapered estimator under weak fractional cointegration

Theorem 3.4. Let Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 hold. Assume moreover that
the counting processes are mutually independent and independent of the efficient shocks
and (3.3) holds. Then

n1/2−H(θ̂Tap
n − θ)

d→
√

c21λ
2H
1 + θ2c22λ

2H
2

θ−2λ1σ2
1,eλ1 + λ2σ2

2,e

∑m
ℓ=1Re

(

∫ 1

0
hℓ(s) dB(s)

∫ 1

0
hℓ(t) dBH(t)

)

∑m
ℓ=1

∣

∣

∣

∫ 1

0
hℓ(s) dB(s)

∣

∣

∣

2

where B is a standard Brownian motion, BH is a standard fractional Brownian motion
and B and BH are independent.

Since the assumptions of Theorem 3.4 are the same as in Theorem 3.2, Remark 3.1 also
applies here.

3.3.2 Discrete tapered estimator under strong fractional and standard coin-

tegration

Theorem 3.5. Let Assumptions 2.1, 2.2, 2.3 2.5 and 2.7 hold. Assume morover that
the counting processes are mutually independent and independent of the efficient shocks
and (3.4) holds.

• If 1/2 < H < 1, then

n3/2−H(θ̂Tap
n − θ)

d→
√

c21 + θ2c22
θ−2λ1σ2

1,e + λ2σ2
2,e

∑m
ℓ=1Re

(

∫ 1

0
hℓ(s) dB(s)

∫ 1

0
h′ℓ(s) dBH(s)

)

∑m
ℓ=1 |

∫ 1

0
hℓ(s) dB(s)|2

where BH is a standard fractional Brownian motion independent of the standard
Brownian motion B.

• If H = 1/2, n(θ̂Tap
n − θ) = OP (1).

The assumptions of this theorem are weaker than those of Theorem 3.3 on the OLS
estimator. The microstructure shocks are not assumed to be independent of the count-
ing processes and the efficient shocks are not assumed to be Gaussian. Theorem 3.3 can
presumably be proved without the Gaussian assumption. It might be much more diffi-
cult in the proof of Theorem 3.3 to avoid the assumption of independence between the
microstructure shocks and the counting processes.

Remark 3.2 remains relevant here. In particular, we are currently unable to show that
Assumption 2.7 holds except in certain cases of integer-valued durations. This motivates
our consideration of a continuous-time tapered estimator in the following section.
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3.4 A Continuous-Time Tapered Estimator

The estimators of θ we have considered so far are based on equally-spaced observations
of the log price series. However, under the model (2.1), (2.2), a continuous-time record
is available, and it is of interest to consider using all of the available data to estimate θ.
Here, for the sake of theoretical tractability, we consider a tapered estimator θ̃ based on
continuously-averaged log prices on adjacent non-overlapping time intervals. Since the
problems with discretization appear only in the strong fractional and standard cointegra-
tion cases, we only consider them in this section. There is no difference in the case of weak
fractional cointegration.

We first establish some notation. Let {X(t)} be any time series defined for all t ≥ 0,
and suppose that we have data on {Xt} for t ∈ [0, T ]. Let δ > 0 be fixed. In practice, we
might take δ to be 5 minutes, but the choice of δ does not affect the asymptotic distribution
we derive below. Define n = ⌊T/δ⌋, X̃(0) = 0, and

X̃(k) =

∫ kδ

u=(k−1)δ

X(u) du , k = 1, · · · , n .

Then we can define an estimator θ̃δ based on these averaged observations by

θ̂Tap
n,δ = Re(θ̃n,δ)

with

θ̃n,δ =

∑m
ℓ=1 d∆ỹ1,ℓd̄∆ỹ2,ℓ
∑m

ℓ=1 |d∆ỹ2,ℓ|2
.

3.4.1 Continuous-time tapered estimator under strong fractional and stan-

dard cointegration

Theorem 3.6. Let Assumptions 2.1, 2.2, 2.3, 2.5 and 2.8 hold. Assume morover that
the counting processes are mutually independent and independent of the efficient shocks
and (3.4) holds.

• If 1/2 < H < 1, then

n3/2−H(θ̂Tap
n,δ − θ)

d→
√

δ2H(c21 + θ2c22)

θ−2λ1σ2
1,e + λ2σ2

2,e

∑m
ℓ=1Re

(

∫ 1

0
hℓ(s) dB(s)

∫ 1

0
h′ℓ(s)dBH(s)

)

∑m
ℓ=1 |

∫ 1

0
hℓ(s) dB(s)|2

where BH is a standard FBM independent of the standard Brownian motion B.

• If H = 1/2, n(θ̂Tap
n,δ − θ) = OP (1).
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Because Assumption 2.8 involves an integral rather than a sum, we are able to verify
that it holds for certain models with noninteger durations such as ACD and LMSD under
certain relationships with the microstructure shocks.

In Theorem 3.6, we allow for leverage effects, and therefore care is required in defining
standard cointegration. As demonstrated in Lemma 2.2 (which assumes LMSD durations)
if there is a leverage effect, even when the microstructure shocks are the differences of a
weakly-dependent sequence, the cointegrating error need not be I(0). In such a case we
have strong fractional cointegration rather than the standard cointegration which might
have been anticipated.

It is also possible that even though a leverage effect exists, the memory of durations
has no effect on the degree of cointegration. Specifically, if in Lemma 2.2 we replace
ξk = Y 2

k+1 − 1 by ξk = H2(Yk+1)− .75H3(Yk+1), where H2(y) = y2− 1 and H3(y) = y3− 3y
(the second and third Hermite polynomials, respectively), then there is a leverage effect
with corr(τk+1, ξk) = .082. Nevertheless it follows from an argument similar to the proof
of Lemma 2.2 that Assumption 2.8 holds in this example with H = 1/2, so that we have
standard cointegration and Theorem 3.6 holds with H = 1/2.

Lemma 4.10 provides an example of standard cointegration allowing for both time
deformation and dependence between the counting processes and microstructure shocks.
Theorem 3.6 would hold for this example with H = 1/2.

3.5 Spurious Regressions

In this subsection only, we consider a non-cointegrated version of the model defined by
(2.1) and (2.2),

y1(t) =

N1(t)
∑

k=1

(e1,k + η1,k) + θ21

N2(t1,N1(t)
)

∑

k=1

e2,k, (3.7)

y2(t) =

N2(t)
∑

k=1

(e2,k + η2,k) + θ12

N1(t2,N2(t)
)

∑

k=1

e1,k, (3.8)

where θ12 6= θ−121 . We examine here the properties of the OLS estimator in the (spurious)
regression of y1 on y2 in discrete time and then briefly discuss corresponding tests for the
null hypothesis of cointegration. Corollary 3.1 below follows directly from the proof of
Theorem 3.1.

Corollary 3.1. If Assumptions 2.1, 2.2, 2.3 and 2.4 are satisfied and y = (y1, y2) is given
by (3.7) and (3.8) with θ12 6= θ−121 , then as n→ ∞,

(

1√
n
y(nu) : u ∈ [0, 1]

)

⇒ By = (By(u) : u ∈ [0, 1]),
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where By is a bivariate Brownian motion with 2×2 covariance matrix Σ = (Σi,j : i, j = 1, 2)
given by the entries

Σ1,1 = λ1σ
2
1,e + θ221λ2σ

2
2,e , Σ2,2 = θ212λ1σ

2
1,e + λ2σ

2
2,e ,

Σ1,2 = θ12λ1 σ
2
1,e + θ21λ2 σ

2
2,e = Σ2,1.

Next, we consider the discretization of y1(t) and y2(t) given by (3.7) and (3.8) at integer
time values,

y1,j =

N1(j)
∑

k=1

(e1,k + η1,k) + θ21

N2(t1,N1(j)
)

∑

k=1

e2,k, (3.9)

y2,j =

N2(j)
∑

k=1

(e2,k + η2,k) + θ12

N1(t2,N2(j)
)

∑

k=1

e1,k. (3.10)

Regressing y1,1, . . . , y1,n on y2,1, . . . , y2,n without intercept, we obtain the OLS estimator

δ̂n =

∑n
j=1 y2,jy1,j
∑n

j=1 y
2
2,j

. (3.11)

Corollary 3.2 below follows directly from Corollary 3.1 and the Continuous Mapping The-
orem.

Corollary 3.2. If Assumptions 2.1, 2.2, 2.3 and 2.4 are satisfied and y = (y1, y2) is given
by (3.7) and (3.8) with θ12 6= θ−121 , then as n→ ∞,

δ̂n
d→
∫ 1

0
B2,y(u)B1,y(u) du
∫ 1

0
B2

1,y(u) du
,

where By = (B1,y, B2,y) is the bivariate Brownian motion given in Corollary 3.1.

Corollary 3.2 together with Corollary 3.1 can be used to motivate tests for the null
hypothesis of no cointegration. We do not pursue the details here, but it seems clear
that the null distribution for unit root tests based on the residuals {y1,j − δ̂ny2,j}nj=1 can
be derived from Corollaries 3.1 and 3.2, and that these null distributions will have form
similar to the distributions listed, for example, in Hamilton (1994, Proposition 19.4).

4 Proofs

Proof of Lemma 2.1. Since Ñ is stationary and ergodic, there exists λ̃ ∈ (,∞) such that

Ñ(t)/t
P→ λ̃ a st→ ∞, a. s. See Daley and Vere-Jones (2003, diplays (12.2.3) and (12.2.4)).
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Now,
N(t)

t
=
Ñ(f(t))

t
=
Ñ(f(t))

f(t)

f(t)

t
.

Since by assumption f(t) → ∞ (in probability if f is random), the assumption implies
that the first term on the righthand side converges to λ̃. By assumption, the second term

satisfies t−1f(t)
P→ γ. Thus, N(t)

t

P→ λ, so that Assumption 2.2 holds with λ = λ̃γ. We
note that N(t−k ) ≤ k, thus

1 ≤ N(tk)

k
= 1 +

N(tk)− k

k
≤ 1 +

N(tk)−N(t−k )

k

= 1 +
Ñ(f(tk))− Ñ(f(t−k ))

k
≤ 1 +

Ñ(f(tk))− Ñ(f(tk)− C)

k

using the definition of N and the boundedness requirement on the jumps of f . Since the
process Ñ is stationary, taking expectations, we have

E[Ñ(f(tk))− Ñ(f(tk)− C)] = E[Ñ((0, C])] <∞ .

(In the case where f is random and independent of Ñ this holds by taking conditional
expectation first). Thus it follows that

N(tk)

k
= 1 +OP (1/k) .

Now, this implies that N(tk)/tk converges in probability to 1. Thus

tk
k

=
tk

N(tk)

N(tk)

k

P→ 1

λ
.

Proof of Lemma 2.2. Denote Hτ by H to simplify the notation. Define ξk = Y 2
k+1 −

1. Then ξk is centered, has finite variance summable autocovariance function, since
cov(ξ0, ξk) = 2cov2(Y0, Yk+1). Thus {ξk} has a summable autocovariance function because
H ∈ (1/2, 3/4). By Arcones (1994, Theorem 4), this implies that {ξk} is in the domain of
attraction of the standard Brownian motion, i.e.

n−1/2
[n·]
∑

k=1

ξk ⇒ c′B ,

with c′2 = var(ξ0) + 2
∑∞

k=1 cov(ξ0, ξk). This proves (2.6).

Assume now that τk = ǫke
σYk (with σ = 1 in the statement of the Lemma). The

properties of Hermite polynomials yield that E[eσY0Hj(Y0)] = σjeσ
2/2 for all j ≥ 1. Denote
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now λ−1 = E[τk] = E[eσYk ] = eσ
2/2, m = E[ξk−1τk] = E[(Y 2

k − 1)eYk ] = σ2eσ
2/2 and

G(y) = (y2 − 1)eσy −m. We now prove that (2.7) holds with µ∗ = λm. Write

∫ T

0

(ξN(s) − λm) ds

=

N(T )
∑

k=0

τk+1ξk − λmT + (tN(T )+1 − T )ξN(T )+1

=

N(T )
∑

k=0

(ǫk+1 − 1)ξke
σYk+1 +

N(T )
∑

k=0

G(Yk+1) +m(N(T )− λT )− (tN(T )+1 − T )ξN(T )+1 .

(4.1)

By Lemma 4.8 and applying Hölder’s inequality, it can be shown that (tN(T )+1−T )(ξN(T )+1−
ρ) = OP (1). Since the sequence {ǫk} is independent of the Gaussian process {Yk}, the first
term in the righthand side of (4.1) is in the domain of attraction of the standard Brownian
motion, and the normalizing sequence is

√
n. Thus we must obtain the joint asymptotic

behaviour of
∑N(Tt)

k=1 G(Yk) and N(T t)− λT t.

The durations are in the domain of attraction of the fractional Brownian motion with
Hurst index H , since

n
∑

k=1

(τk − λ−1) =

n
∑

k=1

(ǫk − 1)eσYk +

n
∑

k=1

(eσYk − λ−1) .

The first term in the righthand side is OP (
√
n) and the second sum, suitably normalized

converges to the fractional Brownian motion with Hurst index H because the function
x → eσx − λ−1 has Hermite rank 1. See e.g. Arcones (1994). More precisely, let c1 =
E[Y1e

σY1 ] = σeσ
2/2 and define g(y) = eσy − λ−1 − c1y. The function g has Hermite rank 2,

and since H ∈ (1/2, 3/4), this implies that

var

(

n
∑

k=1

g(Yk)

)

= O(n) .

Thus
∑n

k=1(τk − λ−1) is asymptotically equivalent to c1
∑n

k=1 Yk. Let BH denote the stan-
dard fractional Brownian motion with hurst index H . The assumption on the covariance
of the Gaussian process {yk} implies that

n−H
[n·]
∑

k=1

Yk ⇒ ϕBH

with ϕ2 = c/{H(2H − 1)}. Denote now c2 = E[Y1G(Y1)] = σ(σ2 + 2)eσ
2/2 and define

h(y) = G(y)− c2y. Then h has Hermite rank 2 and thus by similar arguments as above,
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∑n
k=1G(Yk) is asymptotically equivalent to c2

∑n
k=1 Yk. Thus we obtain

n−H





[nt]
∑

k=1

(τk − λ−1),

[nt]
∑

k=1

G(Yk)



⇒ (c1ϕBH(t), c2ϕBH(t)) .

By Vervaat’s Lemma (see Vervaat (1972) or Resnick (2007, Proposition 3.3)), the previous
convergence implies that

n−H



N(nt)− λnt,

[nt]
∑

k=1

G(Yk)



⇒ (−λc1ϕBH(λt), c2ϕBH(t)) .

By the continuity of the composition map, this yields

n−H



N(nt)− λnt,

N(nt)
∑

k=1

G(Yk)



⇒ (−λc1ϕBH(λt), c2ϕBH(λt)) .

Next we obtain that

n−H







N(nt)
∑

k=1

G(Yk) +m(N(nt)− λnt)







⇒ ϕ(c2 − λmc1)BH(λt)

with c2 − λmc1 = 2σeσ
2/2 > 0. We conclude that n−H

∫ n·

0
{ξN(s) − λm} ds ⇒ ϕ(c2 −

λmc1)BH .

4.1 Proof of Theorem 3.1 and Corollary 3.1

We first need the following Lemma.

Lemma 4.1. Under Assumption 2.1 and 2.2, Ni(tj,Nj(nt))/n converges in probability uni-
formly on compact sets to λit, where {i, j} = {1, 2}.

Proof of Lemma 4.1. The sequence of (random) functions Ni(n·)/n is nondecreasing and
converges pointwise in probability to λit by ergodicity. A sequence of nondecreasing func-
tion converging to a continuous function converges uniformly on compact sets. This results
is known as Dini’s Theorem. Cf. Resnick (1987, page 3). Thus the convergence of Ni(n·)/n
is uniform on compact sets. Assumptions 2.1 and 2.2 imply that Ni(t)

P→ ∞ and ti,n
P→ ∞.

Thus

Ni(tj,Nj(nu))

n
=
Ni(tj,Nj(nu))

tj,Nj(nu)

× tj,Nj(nu)

Nj(nu)
× Nj(nu)

n

P→ λi ×
1

λj
× λju = λiu .

Applying again Dini’s lemma, we also have that Ni(tj,Nj(nu))/n converges uniformly on
compact sets to λiu.
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Proof of Theorem 3.1. Denote Se
i,n(t) =

∑[nt]
k=1 ei,k and Sη

i,n(t) =
∑[nt]

k=1 ηi,k, i = 1, 2. Under

Assumptions 2.3 and 2.4, n−1/2(Se
1,n, S

e
2,n, S

η
1,n, S

η
1,n) converges weakly to (σ1,eB1, σ2,eB2, 0, 0),

where B1 and B2 are independent standard Brownian motions. This follows from the in-
dependence of e1 and e2 and the local uniform convergence to 0 in probability of n−1/2Sη

i,n.
With the previous notation, (3.7) and (3.8) become

y1(nt) = Se
1,n(N1(nt)) + θ21S

e
2,n(N2(t1,N1(nt))) + Sη

1,n(N1(nt)) ,

y2(nt) = Se
2,n(N2(nt)) + θ12S

e
1,n(N1(t2,N2(nt))) + Sη

2,n(N2(nt)) .

By Lemma 4.1 and the continuity of the composition map on C × C endowed with the
metric of uniform convergence on compact sets (see e.g. Billingsley (1968, Chapter 3,
Section 17)), we obtain the joint convergence of

n−1/2
(

Se
1,n(N1(n·)), Se

1,n(N1(t2,N2(n·))),

Se
2,n(N2(n·)), Se

2,n(N2(t1,N1(n·))), S
η
1,n(N1(n·)), Sη

2,n(N2(n·))
)

to (σ1,e
√
λ1B1, σ1,e

√
λ2B1, σ2,e

√
λ2B2, σ2,e

√
λ2B2, 0, 0). This yields Corollary 3.1 and The-

orem 3.1 by setting θ21 = θ and θ12 = θ−1.

4.2 Proof of Theorems 3.2 and 3.3

Proof of Theorem 3.2. Write

θ̃n = θ +

∑n
j=1{y1(j)− θy2(j)}y2(j)

∑n
j=1 y

2
2(j)

.

Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 imply those of Theorem 3.1. Thus we can apply the
Continuous Mapping Theorem and obtain

n−2
n
∑

j=1

y22(j)
d→ {θ−2λ1σ2

1,e + λ2σ
2
2,e}

∫ 1

0

B2(s) ds , (4.2)

where B is a standard Brownian motion. Thus, in order to study the convergence of θ̃n−θ
suitably renormalized, it suffices to study the sum

n
∑

j=1

{y1(j)− θy2(j)}y2(j) .
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We further decompose the cointegrating error. Denote

ye1(j) =

N1(j)
∑

k=1

e1,k + θ

N2(t1,N1(j)
)

∑

k=1

e2,k , yη1(j) =

N1(j)
∑

k=1

η1,k ,

ye2(j) =

N2(j)
∑

k=1

e2,k + θ−1
N1(t2,N2(j)

)
∑

k=1

e1,k , yη2(j) =

N2(j)
∑

k=1

η2,k ,

r1,j =

N1(j)
∑

k=N1(t2,N2(j)
)+1

e1,k , r2,j =

N2(j)
∑

k=N2(t1,N1(j)
)+1

e2,k .

With this notation, we can write

n
∑

j=1

{y1(j)− θy2(j)}y2(j) =
n
∑

j=1

{r1,j − θr2,j}y2(j) +
n
∑

j=1

{yη1(j)− θyη2(j)}y2(j) . (4.3)

Applying Theorem 3.1, Assumption 2.6 and the Continuous Mapping Theorem, we obtain

n−3/2−H
n
∑

j=1

{yη1(j)− θyη2(j)}y2(j)

d→
∫ 1

0

{θ−1
√

λ1σ1,eB1(t) +
√

λ2σ2,eB2(t)}{c1B1,H(λ1t)− θc2B2,H(λ2t)} dt

d
= Σ

∫ 1

0

B(t)BH(t) dt

where B is a standard Brownian motion, BH is a fractional Brownian motion, independent
of B and

Σ2 = (θ−2λ1σ
2
1,e + λ2σ

2
2,e)(c

2
1λ

2H
1 + θ2c22λ

2H
2 ) . (4.4)

There only remains to prove that, for i = 1, 2,

n−3/2
n
∑

j=1

ri,jy2(j) = OP (1) . (4.5)

The convergence of n−1/2y2 is uniform on [0, 1], so n−1/2max1≤j≤n |y2(j)| = OP (1). There-
fore, it suffices to prove that

n−1
n
∑

j=1

|ri,j| = OP (1) . (4.6)

Recall that Ni(s) < k ⇔ ti,k > s. Thus, for k ≤ N1(n),

N1(t2,N2(j)) < k ≤ N1(j) ⇔ t2,N2(j) < t1,k ≤ j .
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The first inequality on the righthand side means that there is no point of N2 between t1,k
and j, i.e. j ≤ t2,N2(t1,k)+1. Let A2(t) = t2,N2(t)+1 − t denote the forward recurrence time of
N2, i.e. the time between t and the next event of N2 after t. Thus,

n
∑

j=1

|r1,j| ≤
n
∑

j=1

N1(j)
∑

k=N1(t2,N2(j)
)+1

|e1,k| =
N1(n)
∑

k=1

|e1,k|{A2(t1,k) + 1} .

We thus get the bound for the conditional expectation given the sigma-field N generated
by the counting processes N1 and N2:

E

[

n
∑

j=1

|r1,j| | N
]

≤ C

N1(n)
∑

k=1

A2(t1,k) .

Conditioning on N1 and applying (3.3) yields

E

[

n
∑

j=1

|r1,j| | N1

]

≤ CN1(n) = OP (n) .

This proves (4.6) and concludes the proof of Theorem 3.2.

Proof of Theorem 3.3. The proof is a consequence of the convergence (4.2), the decompo-
sition (4.3), and Lemmas 4.2 and 4.3, whose assumptions are those of the Theorem.

Lemma 4.2. Under the assumptions of Theorem 3.3,

n−H−1/2
n
∑

j=1

{yη1(j)− θyη2(j)}y2(j)
d→ Σ0

∫ 1

0

B(s) dBH(s) . (4.7)

where BH is a standard fractional Brownian motion independent of B and

Σ0 = (θ−2λ1σ
2
1,e + λ2σ

2
2,e)(c

2
1 + θ2c22) .

Proof of Lemma 4.2. Denote Sn =
∑n

j=1{yη1(j)− θyη2(j)}y2(j) and write y2 = ye2 + yη2 with
obvious notation. Denote ζj = yη1(j)− θyη2(j) = ξ1,N1(j) − θξ2,N2(j). Then

Sn =

n
∑

j=1

ζjy
e
2(j) +

n
∑

j=1

ζjξ2,N2(j) . (4.8)

By the last part of Assumption 2.7, the last term in the righthand side of (4.8) is OP (n).
Consider the first term in the righthand side of (4.8), say S1,n. Write

S1,n =
n
∑

j=1

ζj

N2(j)
∑

k=1

e2,k + θ−1
n
∑

j=1

ζj

N1(t2,N2(j)
)

∑

k=1

e1,k

=

N2(n)
∑

k=1

e2,k
∑

{j≤n:N2(j)≥k}

ζj + θ−1
N1(t2,N2(n))
∑

k=1

e1,k
∑

{j≤n:N1(t2,N2(j)
)≥k}

ζj

= T1,n + θ−1T2,n .
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Denote Wn(t) =
∑[nt]

j=1 ζj . Since N2(j) < k iff j < t2,k, we obtain

T1,n = ye22 (n)Wn(1)−
N2(n)
∑

k=1

e2,kWn(t2,k/n) .

By Assumption 2.7 and Theorem 3.1, n−1/2−Hye22 (n)Wn(1)
d→

√
λ2σ2B2(1)Z(1) with Z =

c1B
(1)
H − θc2B

(2)
H

d
=
√

c21 + θ2c22BH . Let the last term be denoted by Un. Since the shocks
ei,k are i.i.d. Gaussian, we can compute the characteristic function of Un.

E[exp{itn−1/2−HUn}] = E



exp







−σ
2
2,et

2

2

1

n

N2(n)
∑

k=1

(

n−HWn(t2,k/n)
)2











→ E

[

exp

{

−λ2σ
2
2,et

2

2

∫ 1

0

Z2(s) ds

}]

.

The convergence is actually joint with that of n−1/2−Hye22 (n)Wn, thus we have

n−1/2−HT1,n
d→
√

λ2σ2,eB2(1)Z(1)−
√

λ2σ2,e

∫ 1

0

Z(s) dB2(s) .

The limit can also be written as
√
λ2σ2,e

∫ 1

0
B2(s) dZ(s). Consider now the term T2,n. Note

that N1(t2,N2(j)) < k iff j ≤ t2,N2(t1,k)+1. Thus

T2,n =

N1(t2,N2(n))
∑

k=1

e1,kWn(1)−
N1(t2,N2(n))
∑

k=1

e1,kWn(t2,N2(t1,k)+1/n) .

By similar arguments as previously, we obtain

n−H−1/2T2,n
d→
√

λ1σ1B1(1)Z(1)−
√

λ1σ1

∫ 1

0

Z(s) dB1(s) .

All convergences hold jointly, thus (4.7) holds.

Lemma 4.3. Under the assumptions of Theorem 3.3,

n
∑

j=1

{r1,j − θr2,j}y2(j) = OP (n) , (4.9)

Proof of Lemma 4.3. We first study the term with r1,j and split it into three parts.

n
∑

j=1

r1,jy2(j) =

n
∑

j=1

r1,jy
e1
2 (j) +

n
∑

j=1

r1,jy
e2
2 (j) +

n
∑

j=1

r1,jy
η
2(j)
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We start with the last one. Recall that N1(t2,N2(j)) < k ≤ N1(j) iff t1,k ≤ j ≤ t1,k+A2(t1,k).
Thus

n
∑

j=1

r1,jy
η
2(j) =

n
∑

j=1

ξ2,N2(j)

∑

N1(t2,N2(j)
)<k≤N1(j)

e1,k . (4.10)

If the microstructure shocks are independent of the counting processes, then

E









n
∑

j=1

e1,k
∑

t1,k≤j<t1,k+A2(t1,k)

ξ2,N2(j)





2

| N





= σ2
1,e

N1(n)
∑

k=1

E









∑

t1,k≤j<t1,k+A2(t1,k)

ξ2,N2(j)





2

| N



 ≤ C

N1(n)
∑

k=1

(A2(t1,k) + 1)2 sup
ℓ

E[ξ22,ℓ] .

Conditioning on N1 and then taking expectation yields

E

[(

n
∑

j=1

e1,k
∑

t1,k≤j<t1,k+A2(t1,k)

ξ2,N2(j)

)2]

≤ CE[N1(n)] sup
t

E[{1 + A2(t)}2] sup
ℓ

E[ξ2ℓ ] = O(n) .

Consider now R2,n =
∑n

j=1 r1,jy
e2
2 (j).

R2,n =

n
∑

j=1

ye22 (j)

N1(j)
∑

N1(t2,N2(j)
)+1

e1,k =

N1(n)
∑

k=1

e1,k
∑

t1,k≤j<t1,k+A2(t1,k)

ye22 (j) .

By independence of the efficient shocks and the counting processes, we have

E[R2
2,n | N ] ≤ CN1(n)

N1(n)
∑

k=1

(A2(t1,k) + 1)2 = OP (n
2) .

This proves that R2,n = OP (n). Consider finally R1,n =
∑n

j=1 r1,jy
e1
2 (j). By definition,

e1,k is independent of ye12 (j) for j such that N1(t2,N2(j)) < k. Thus, we can compute the
conditional variance given N .

E[R2
1,n | N ] = σ2

1,e

N1(n)
∑

k=1

E









∑

t1,k≤j<t1,k+A2(t1,k)

ye12 (j)





2

| N





≤ CN2(n)

N1(n)
∑

k=1

(A2(t1,k) + 1)2 = OP (n)

by (3.4). This concludes the proof of Lemma 4.3.
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4.3 Proof of Theorems 3.4 and 3.5

Write

θ̃n = θ +

∑m
ℓ=1 d∆r,ℓ d̄∆y2,ℓ
∑m

ℓ=1 |d∆y2,ℓ|2
+

∑m
ℓ=1 d∆yη ,ℓ d̄∆y2,ℓ
∑m

ℓ=1 |d∆y2,ℓ|2

with yη(j) = yη1(j)− θyη2(j), r(j) = r1(j)− θr2(j) and

r1(j) =

N1(j)
∑

k=N1(t2,N2(j)
)+1

e1,k , r2(j) =

N2(j)
∑

k=N2(t1,N1(j)
)+1

e2,k .

By summation by parts, since h(0) = h(1) = 0, for any time series {xj}, we can write

d∆x,ℓ =
n−1
∑

j=0

{hℓ(j/n)− hℓ((j + 1)/n)}xj = −1

n

n−1
∑

j=0

wℓ(j, n)xj (4.11)

with wℓ(j, n) = n{hℓ((j + 1)/n)− hℓ(j/n)}. Applying (4.11) to y2 yields

d∆y2,ℓ = −1

n

n−1
∑

j=0

wℓ(j, n)y2(j) .

Since the assumptions of Theorems 3.4 and 3.5 imply those of Theorem 3.1, the Continuous
Mapping Theorem yields

{n−1/2d∆y2,ℓ, 1 ≤ ℓ ≤ m} d→
{

−Σe

∫ 1

0

h′ℓ(s)B(s) ds , 1 ≤ ℓ ≤ m

}

(4.12)

where B is a standard Brownian motion and Σ2
e = θ−2λ1σ

2
1,e + λ2σ

2
2,e. By integration by

parts, the integral can also be expressed as

−
∫ 1

0

h′ℓ(s)B(s) ds =

∫ 1

0

hℓ(s) dB(s) .

This in turn implies

n−1
m
∑

ℓ=1

|d∆y2,ℓ|2
d→ Σ2

e

m
∑

ℓ=1

∣

∣

∣

∣

∫ 1

0

hℓ(s) dB(s)

∣

∣

∣

∣

2

. (4.13)

Applying now (4.11) to yη we obtain

d∆yη ,ℓ = −1

n

n−1
∑

j=0

wℓ(j, n){yη1(j)− θyη2(j)} .
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In the case of weak fractional cointegration, we apply Assumption 2.6, the Continuous
Mapping Theorem and integration by parts to obtain

n−Hℓ(n)d∆yη ,ℓ = −n−1−Hℓ(n)
n−1
∑

j=0

wℓ(j, n){yη1(j)− θyη2(j)} →
∫ 1

0

hℓ(t) dZH(t) (4.14)

where, by independence of B
(1)
H and B

(2)
H ,

ZH(t) = c1B
(1)
H (λ1t)− θc2B

(2)
H (λ2t)

(law)
=
√

λ2H1 c21 + λ2H2 θ2c22BH

and BH is a standard fractional Brownian motion. The first part of Lemma 4.4 shows that
d∆r,ℓ is negligible under the assumptions of Theorem 3.4. This, and the convergences (4.12),
(4.13) and (4.14) conclude the proof of Theorem 3.4.

We now prove Theorem 3.5. Since hℓ(0) = hℓ(1) = 0, we have
∑n−1

j=0 wℓ(j, n) = 0, hence

n−1
∑

j=0

wℓ(j, n)y
η
i (j) =

n−1
∑

j=0

wℓ(j, n)(ξi,Ni(j) − ξi,0) =
n−1
∑

j=0

wℓ(j, n)(ξi,Ni(j) − µ∗i ) .

Denote Si,0 = 0 and for k ≥ 1, Si,k =
∑k

j=1(ξi,Ni(j)−µ∗i ). Define ωℓ(j, n) = n{wℓ(j+1, n)−
wℓ(j, n)}. Applying again summation by parts, we have

n−1
∑

j=0

wℓ(j, n)y
η
i (j) = −1

n

n−1
∑

j=1

ωℓ(j, n)Si,j + wℓ(n, n)Si,n−1 + wℓ(0, n)(ξi,0 − µ∗i ) ,

Under Assumption 2.7, by the Continuous Mapping Theorem, we obtain

n1−γℓ(n)d∆yη ,ℓ = −n−γℓ(n)
n
∑

j=1

wℓ(j, n)y
η
i (j)

d→
∫ 1

0

h′′ℓ (t)B
(i)
H (t) dt− h′(1)B

(i)
H (1)

d
= −

∫ 1

0

h′ℓ(s) dB
(i)
H (s) . (4.15)

The second part of Lemma 4.4 implies that the term d∆r,ℓ does not contribute to the
limit under the Assumptions of Theorem 3.5. This, and the convergences (4.12), (4.13)
and (4.15) conclude the proof of Theorem 3.5.

Lemma 4.4. Under the assumptions of Theorem 3.4, then d∆r,ℓ = OP (1). Under the
assumptions of Theorem 3.5, then d∆r,ℓ = OP (n

−1/2).

Proof. Applying (4.11) to r, we see that we only need to prove that the independence be-
tween the counting processes and the efficient shocks and (3.3) implies that

∑n
j=1wℓ(j, n)ri,j =

Op(n) and (3.4) implies that
∑n

j=1wℓ(j, n)ri,j = Op(n
1/2). We start with r1.

n
∑

j=1

wℓ(j, n)r1,j =

N1(n)
∑

k=1

e1,k
∑

t1,k≤j<t1,k+A2(t1,k)

wℓ(j, n) .
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Taking conditional expectation yields, for q = 1, 2,

E

[∣

∣

∣

∣

∣

n
∑

j=1

wℓ(j, n)r1,j

∣

∣

∣

∣

∣

q

| N
]

≤ C

N1(n)
∑

k=1

(A2(t1,k) + 1)q .

Applying (3.3) if q = 1 and (3.4) if q = 2 shows that the last term is OP (n). This proves
that

∑n
j=1wℓ(j, n)r1,j = OP (n) under the assumptions of Theorem 3.4 and OP (

√
n) under

the assumptions of Theorem 3.5. The term
∑n

j=1wℓ(j, n)r2,j is dealt with similarly.

4.4 Proof of Theorem 3.6

Write

θ̃n,δ = θ +

∑m
ℓ=1 d∆r̃,ℓd̄∆ỹ2,ℓ
∑m

ℓ=1 |d∆ỹ2,ℓ|2
+

∑m
ℓ=1 d∆ỹη ,ℓd̄∆ỹ2,ℓ
∑m

ℓ=1 |d∆ỹ2,ℓ|2

with ỹ(j) = ỹη1(j)− θỹη2(j), r̃(j) = r̃1(j)− θr̃2(j) and

r1(s) =

N1(s)
∑

k=N1(t2,N2(s)
)+1

e1,k , r2(s) =

N2(s)
∑

k=N2(t1,N1(s)
)+1

e2,k .

and the DFT is defined as in (3.6). Applying summation by parts as in (4.11), we obtain

d∆ỹ2,ℓ = −1

n

n−1
∑

j=0

wℓ(j, n)ỹ2(j) = −1

n

∫ nδ

0

wℓ(⌈s/δ⌉, n)y2(s) ds = −
∫ δ

0

wℓ(⌈nt/δ⌉, n)y2(ns) dt ,

with wℓ(j, n) = n{hℓ((j +1)/n)− hℓ(j/n)} as before, and ⌈t⌉ is the smallest integer larger
than or equal to t. This yields

n−1/2dỹ2,ℓ
d→ −Σe

∫ 1

0

h′ℓ(s)B(δs) ds
d
= Σe

∫ 1

0

hℓ(s) dB(s) .

Since ηj = ξj − ξj−1, we have

ỹηi (j) =

∫ jδ

(j−1)δ

ξi,Ni(s) ds− δξi,0 .

Differencing cancels the term δξ0. Applying (4.11) and summation by parts and the prop-
erty that

∑n−1
j=0 wℓ(j, n) = 0, we obtain

d∆ỹηi ,ℓ
= −1

n

n−1
∑

j=0

wℓ(j, n)

∫ jδ

(j−1)δ

ξi,Ni(s) ds = −1

n

n−1
∑

j=0

wℓ(j, n)

∫ jδ

(j−1)δ

{ξi,Ni(s) − µ∗i } ds

=
1

n2

n−1
∑

j=1

ωℓ(j, n)

∫ jδ

0

{ξi,Ni(s) − µ∗i } ds−
1

n
wℓ(n, n)

∫ (n−1)δ

0

{ξi,Ni(s) − µ∗i } ds .
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Under Assumption 2.8, we thus have, with Z = B
(1)
H − θB

(2)
H ,

n1−H{d∆ỹη1 ,ℓ
− θd∆ỹη2 ,ℓ

} d→
∫ 1

0

h′′ℓ (s)Z(δs) ds− h′(1)Z(δ) .

We must now deal with the remaining terms of the cointegrating error. If H > 1/2,
Lemma 4.5 implies that the term d∆r̃,ℓ does not contribute to the limit. If H = 1/2, both
terms are of the same order. This concludes the proof of Theorem 2.8.

Lemma 4.5. Under the assumptions of Theorem 3.6

d∆r̃i,ℓ = OP (n
−1/2) .

Proof. Applying as usual summation by parts, we obtain

d∆r̃1,ℓ = −1

n

N1(nδ)
∑

k=1

e1,k

n
∑

j=1

wℓ(j, n)

∫ jδ

(j−1)δ

1{t1,k≤s<t1,k+A2(t1,k)} ds

= −1

n

N1(nδ)
∑

k=1

e1,k

∫ nδ

0

wℓ(⌈s/δ⌉, n)1{t1,k≤s<t1,k+A2(t1,k)} ds

= −1

n

N1(nδ)
∑

k=1

e1,k

∫ {t1,k+A2(t1,k)}∧(nδ)

t1,k∧(nδ)

wℓ(⌈s/δ⌉, n) ds

= −
N1(nδ)
∑

k=1

e1,k

∫ {(t1,k+A2(t1,k))/n}∧δ

(t1,k/n)∧δ

wℓ(⌈nt/δ⌉, n) dt . (4.16)

Taking conditional expectation and applying (3.4), we obtain

E
[

|d∆r̃1,ℓ|2 | N
]

≤ C

n2

N(n)
∑

k=1

A2
2(t1,k) = OP (n

−1) .

4.5 Additional Lemmas

Lemma 4.6. If the durations ti,k − ti,k−1 form a stationary ergodic sequence with finite
moment of order 2p + 1, if P(ti,1 > 0) = 1 and if the associated point process has finite
intensity, then

sup
s≥0

E[(ti,Ni(s)+1 − s)p] <∞ .
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Proof of Lemma 4.6. We omit the index i. Let θt denote the shift operator and let A(t)
be the forward recurrence time. Then A(s) = tN(s)+1 − s = t1 ◦ θs. Since the sequence
{τi} is stationary under P, there exists a probability law P ∗ such that N is a stationary
ergodic point process under P ∗, see Baccelli and Brémaud (2003, Section 1.3.5). Applying
Baccelli and Brémaud (2003, Formula 1.3.3), we obtain

E[Ap(s)] = λ−1E∗





N(1)
∑

k=1

tp1 ◦ θs ◦ θtk



 = λ−1E∗





N(1)
∑

k=1

Ap(s+ tk)





= λ−1E∗





N(1)
∑

k=1

{tN(s+tk)+1 − s− tk}p


 ≤ λ−1E∗





N(1)
∑

k=1

{tN(s+1)+1 − s}p




= λ−1E∗[N(1){tN(s+1)+1 − s}p] ≤ λ−1{E∗[N(1)2]}1/2{E∗[(tN(s+1)+1 − s)2p]}1/2 .
(4.17)

Since N is stationary under P ∗, the last term does not depend on s, and by the Ryll-
Nardzewski inversion formula (Baccelli and Brémaud (2003, Formula 1.2.25)), we have

E
∗[(tN(s+1)+1 − s)2p] = E

∗[(t1 + 1)2p] = λE[

∫ t1

0

(t1 + 1− s)2p ds ≤ λE[(1 + t1)
2p+1]

By Baccelli and Brémaud (2003, Property 1.6.3), the point process N is stationary and
ergodic under P ∗ since the sequence of durations τk is stationary and ergodic. Thus, By
Daley and Vere-Jones (2003, Theorem 3.5.III), E∗[N(0, 1)2] < ∞. Plugging the last two
bounds into (4.17), we obtain that E[Ap(s)] is uniformly bounded.

Lemma 4.7. Assume that there exists an increasing sequence {sn, n ≥ 0} such that s0 = 0
and

(a) f is either constant or strictly increasing and differentiable on (sn, sn+1) and the jumps
of f occur at some (but not necessarily all) of the sn;

(b) if f is eiter constant or increasing on both intervals (sn, sn+1) and (sn+1, sn+2), then f
has a jump at sn+1.

Assume moreover that

• (minimum duration of trading and nontrading periods) there exists δ0 > 0 such that
sn+1 − sn ≥ δ0 for all n ≥ 0;

• (maximum duration of nontrading periods) there exists C0 such that for all n ≥ 0, if
f is constant on (sn, sn+1), then sn+1 − sn ≤ C0;

• (non stoppage of time during trading periods) there exists δ1 > 0 such that for all
n ≥ 0, f is either constant on (sn, sn+1), or f

′(t) ≥ δ1 for all t ∈ (sn, sn+1).
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Let Ñ be a point process with event times {t̃k} and let N be the point process de-
fined by N(·) = Ñ(f(·)) with event times {tk}. If sups≥0 E[(t̃Ñ(s)+1 − s)p] < ∞, then
sups≥0E[(tN(s)+1 − s)p] <∞.

Proof of Lemma 4.7. Define the nondecreasing left-continuous inverse f← of a nondecreas-
ing càdlàg function f by

f←(u) = inf{t | f(t) ≥ u} .

Note first that f←(u) ≤ t if only if u ≤ f(t) and f←(f(t)) ≤ t. Thus we see that

f←(t̃n) ≤ t⇔ t̃n ≤ f(t)

⇔ Ñ(f(t)) ≥ n

⇔ N(t) ≥ n .

This characterizes the sequence {tn}, thus we obtain that tn = f←(t̃n). The assumptions
on f imply the following properties of f←.

• The jumps of f← correspond to the intervals (sn, sn+1) where f is constant. More
precisely, if f is constant on (sn, sn+1), then f

← has a jump at f(sn) of size sn+1−sn.
Since f← is left continuous, it holds that

f←(f(sn)) = sn , lim
u→f(sn),u>f(sn)

= sn+1 .

Thus the jumps of f← are of size C0 at most.

• If f is increasing on an interval (sn, sn+1), then f
← is differentiable on (f(sn), f(s

−
n ))

and (f←)′(t) ≤ δ−11 for all t ∈ (f(sn), f(s
−
n )).

• The jumps of f create no singularity in f←. If f(sn) > f(s−n ), then f
← is constant

on the interval (f(s−n ), f(sn)).

Let ⌈x⌉ denote the smallest integer greater than or equal to the real number x. Then, for
0 ≤ s ≤ t,

0 ≤ f←(t)− f←(s) ≤ C0

⌈t− s

δ0

⌉

+ δ−11 (t− s) .

Thus, there exits constants c1, c2 such that for all s ≤ t,

0 ≤ f(t)− f(s) ≤ c1 + c2(t− s) .

Consider now the forward recurrence time of the point process N . Then

0 ≤ tN(s)+1 − s = f←(t̃Ñ(s)+1)− f←(f(s)) + f←(f(s))− s

≤ f←(t̃Ñ(f(s))+1)− f←(f(s)) ≤ c1 + c2{t̃Ñ(f(s))+1 − f(s)} .
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Thus, there exists constants c3 and c4 such that

sup
s≥0

E[(tN(s)+1 − s)p] ≤ c3 + c4 sup
s≥0

E[(t̃Ñ(s)+1 − s)p]

Lemma 4.8. Let {ǫk} be a sequence of i.i.d. positive random variables with finite mean
µǫ. Let {Yk} be a stationary standard Gaussian process such that

cov(Y0, Yk) = ℓ(n)n2H−2 (4.18)

for H ∈ (1/2, 1) and ℓ a slowly varying function. For k ≥ 1, define

τk = ǫke
σYk .

Then the sequence {τk} is ergodic and Assumption 2.1 holds with λ−1 = µǫe
σ2/2. If P(ǫ1 >

0) = 1 the Assumption 2.2 holds with µ = λ = µ−1ǫ e−σ
2/2. If moreover E[ǫq1] < ∞ for all

q ≥ 1, then (3.3) and (3.4) hold.

Remark 4.1. If instead of (4.18) we assume that

∞
∑

k=1

|cov(Y0, Yk)| <∞ ,

then the moment requirement can be relaxed to E[ǫ31] < ∞ to obtain (3.3) and E[ǫ51] <∞
to obtain (3.4).

Proof of Lemma 4.8. Note first that E[τ pk ] < ∞ as long as E[ǫp1] < ∞. By Lemma 4.6, in
order to check condition (3.3), we must only prove that the induced point process has finite
intensiy, i.e. there exists t > 0 such that E[N(t)] < ∞. See Baccelli and Brémaud (2003,
Section 1.3.5). Note that

E[N(x)] =

∞
∑

k=1

P(N(x) ≥ k) =

∞
∑

k=1

P(tk ≤ x) .

Thus, it suffices to prove that the series on the righthand side is summable. Denote
µ = E[τk] and ρn = cov(Y0, Yn). Applying Deo et al. (2009, Proposition 1), we have

E

[∣

∣

∣

∣

∣

n
∑

k=1

τk − nµ

∣

∣

∣

∣

∣

p]

= O(vpn)

with vn = nHℓ(n). If E[ǫp1] < ∞ for p such that p(1 −H) > 1, for n such that nµ > x, it
holds that

P(tk ≤ x) = O(x−1vpk)

and this series is summable.
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Lemma 4.9. Assume that {τk} and {ξk} are mutually independent stationary sequences
such that E[ξk] = 0, E[τ 2k ] < ∞ and E[ξ2k] < ∞. Assume that the sequence of durations is
weakly stationary and that cov(τ0, τn) = 0(n−δ) for some δ > 0 and sups≥0E[tN(s)+1 − s] <
∞. Assume that cov(ξ1, ξn) ∼ cn2H−2, with H ∈ (1/2, 1) and c > 0, and that

n−H
[n·]
∑

k=1

ξk ⇒ c′BH

for some c′ > 0. Then

n−H
∫ Tt

0

ξN(s) ds⇒ c′′BH(t)

for some c′′ > 0.

Proof of Lemma 4.9. Denote E[τk] = µ > 0.

∫ T

0

ξN(s) ds =

N(T )
∑

k=0

τk+1ξk − (tN(T )+1 − T )ξN(T )+1

=

N(T )
∑

k=0

(τk+1 − µ)ξk + µ

N(T )
∑

k=0

ξk − (tN(T )+1 − T )ξN(T )+1 .

By independence of {τk} and {ξk}, we have (assuming without loss of generality that
2H − δ > 1),

var

(

n
∑

k=0

(τk+1 − µ)ξk

)

= O(n2H−δ) .

Thus, n−H
∑[n·]

k=0(τk+1 − µ)ξk ⇒ 0. Hence by the continuous mapping theorem, it also

holds that n−H
∑N(T ·)

k=0 (τk+1 − µ)ξk ⇒ 0. By independence and by assumption, (tN(t)+1 −
T )ξN(T ) = OP (1). By the continuous mapping theorem, n−H

∑N(Tt)
k=0 ξk ⇒ c′BH(µ

−1t).

Lemma 4.10. Let {τk}, {Vk} and {ζk} be sequences of random variables such that

• {ζk} is an i.i.d. sequence of zero-mean and unit variance random variables; {τk} and
{Vk} are sequences of positive random variables;

• the sequences {(τk, Vk)} and {ζk} are mutually independent;

• there exists s > 0 such that n−1
∑n

k=1 τ
2
k+1V

2
k

P→ s2;

• supk≥0E[τ
2+ε
k+1V

2+ε
k ] <∞ for some ε > 0;

• sups≥0E[tN(s)+1 − s] <∞.
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Define ξk = ζkVk. Then T−1/2
∫ T ·

0
ξN(s) ds⇒ cB for some c > 0.

Proof. Let Fk be the sigma-field generated by random variables {τj+1, ζj, Vj, j ≤ k}. Then
E[ξkτk+1 | Fk−1] = τk+1VkE[ζk] = 0. Thus, {τk+1ξk} is a martingale difference sequence.
Under the stated assumptions, the martingale invariance principle Hall and Heyde (1980,

Theorem 4.1) yields that n−1/2
∑[n·]

k=1 τk+1ξk ⇒ cB for some c > 0. As in the proof of
Lemma 4.9, denote E[τk] = µ > 0 and write

∫ T

0

ξN(s) ds =

N(T )
∑

k=0

τk+1ξk + (tN(T )+1 − T )ξN(T ) .

By the continuous mapping theorem, we have that T−1/2
∑N(T ·)

k=1 τkξ−1 ⇒ λcB. As previ-
ously, the last term is a negligible edge effect. This concludes the proof.
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