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Uniqueness domains and non singular assembly mode changing trajectories

Parallel robots admit generally several solutions to the direct kinematics problem. The aspects are associated with the maximal singularity free domains without any singular configurations. Inside these regions, some trajectories are possible between two solutions of the direct kinematic problem without meeting any type of singularity: non-singular assembly mode trajectories. An established condition for such trajectories is to have cusp points inside the joint space that must be encircled. This paper presents an approach based on the notion of uniqueness domains to explain this behaviour. 1 

I. INTRODUCTION

The direct and inverse kinematics problem of parallel robots have been study in many papers to define first the maximal numbers of solution for each problem and secondly to characterize the joint space and workspace. The mobile platform can admit several positions and orientations (or configurations) in the workspace for one given set of input joint values. Conversely, the robot can admit several input joint values for a given mobile platform configurations.

The notion of assembly modes has been defined to represent the different solutions to the direct kinematic problem while the notion of working mode has been introduced to separate the solutions to the inverse kinematic problem [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF].

To cope with the existence of multiple inverse kinematic solutions in serial mechanisms, the notion of aspects was introduced [START_REF] Paul | A study of manipulator inverse kinematic solutions with application to trajectory planning and workspace determination[END_REF]. The aspects were defined as the maximal singularity-free domains in the joint space. The same notion was extended for parallel mechanism with several inverse and direct kinematic solutions [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF][START_REF] Wenger Ph | Definition Sets for the Direct Kinematics of Parallel Manipulators[END_REF].

For path planning, we need to define a one-to-one mapping between the joint space and the workspace, which makes it possible to associate one single solution to the inverse and direct kinematic problem. One way to solve this problem is to introduce the definition of the uniqueness domains. Like for serial mechanisms, the aspects do not define the uniqueness domains of the inverse and direct kinematic problem because some parallel robots are able to change assembly-mode without passing through a singularity, thus meaning that there is more than one direct kinematic solution in one aspect [START_REF] Innocenti | Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators[END_REF]. This feature was first analyzed for the 3-RPR parallel robot and more recently for other ones such as the RPR-2PRR [START_REF] Hernandez | Defining conditions for non singular transitions between assembly modes[END_REF].

The change of assembly-mode was first analyzed in the joint space. However, it did not make it possible to explain the non-singular assembly-mode phenomenon. To solve this problem, a configuration-space was defined by the input joint value plus one coordinate of the platform configuration [START_REF] Zein | Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators[END_REF]. This approach makes it possible to show that a cusp point is encircled during a non-singular assembly-mode motion. A second problem is to find trajectories that induce an assembly mode changing. This problem can be solved by defining the uniqueness domains as defined for serial robots in [START_REF] Wenger | Uniqueness domains and regions of feasible paths for cuspidal manipulators[END_REF] and for parallel robots in [START_REF] Chablat | Séparation des solutions aux modèles géométriques direct et inverse pour les manipulateurs pleinement parallèles[END_REF].

To compute the aspects and the uniqueness domains, new algebraic tools based on Groebner basis are introduced in this paper. These tools make it possible to obtain the analytic expression of the border of these domains and, by using a cylindrical algebraic decomposition, they define completely these regions. As a matter of fact, only numerical methods have been used to generate these regions, such as Octree models by the subdivision of the joint space and workspace).

The paper is organised as follows. In the next section, we recall the notion of working mode, aspects and uniqueness domains. Then, we will introduce the algebraic tools used for the first time to describe these domains. Finally, assemblymode changing motions are analyzed with an example trajectory.

II. DEFINITION OF THE UNIQUENESS DOMAINS

In this section, we recall briefly the definition of uniqueness domains.

A. Definition of the kinematics

The vector of input variables q and the vector of output variables X for a n-DOF parallel manipulator are linked by a system of non linear algebraic equations:

  , F  q X 0 ( 1 
)
where 0 is the n-dimensional zero vector. Differentiating
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(1) with respect to time leads to the velocity model:

0  A X B q   (2) 
where A et B are n  n Jacobian matrices. These matrices are functions of q and X:

FF    AB Xq (3) 
These matrices are useful for the determination of the singular configurations [START_REF] Sefrioui | Singularity analysis and representation of planar parallel manipulators[END_REF].

B. Working modes

The notion of working modes was introduced in [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF] for parallel manipulators with several solutions to the inverse kinematic problem and whose matrix B is diagonal.

A working mode, denoted by i Mf , is the set of robot configurations for which the sign of jj B ( 1, , jn   for a parallel manipulator with n degrees of freedom) does not change and jj B does not vanish. A robot configuration is represented by the vector (X, q). ( , ) such that sign( )=cst for 1, , and det ( )

0 jj i W Q B Mf jn          Xq B
Therefore, the set of working modes ( i Mf , iI  ) is obtained using all combinations of sign of each term jj B . Changing working mode is equivalent to changing the posture of one or several legs. A working mode is defined in WQ  because the terms of jj B depend on both X and q. For a working mode i Mf , we have only one inverse kinematic solution. So, we can define an application that maps X onto q:   i g  Xq [START_REF] Innocenti | Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators[END_REF] Then the images in W of a posture q in Q is denoted by:

    1 \ ( , ) ii g M f   q X X q (5) 

C. Generalized aspect

The generalized aspects ij A were defined in [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF] as the maximal sets in WQ  such that

      is connected , \det 0 ij ij ij i A W Q A A M f     X q A (6)
The projection W  of the generalized aspects ij A onto the workspace are the regions ij W A W  and are also connected. These regions, called W-aspects, define the maximal singularity-free regions of the workspace for a given working mode Mf i .

The projection Q  of the generalized aspects onto the jointspace are the regions

ij Q A Q 
and are also connected. These regions, called Q-aspects, define the maximal singularity-free regions of the joint space for a given working mode Mf i .

D. Characteristic surfaces

The characteristic surfaces were introduced in [10] to define the uniqueness domains for serial cuspidal robots. This definition was extended to parallel robots with one inverse kinematic solution in [3] and to parallel robots with several inverse kinematic solutions in [START_REF] Chablat | Séparation des solutions aux modèles géométriques direct et inverse pour les manipulateurs pleinement parallèles[END_REF].

Let ij WA be one W-aspect. The characteristic surfaces, denoted by ()

C ij S W A , are defined as the preimage in ij WA of the boundary ij WA  that delimits ij WA       1 C ij i i ij ij S W A g g W A W A     (7) 
where :  i g is defined in eq. ( 4)

 1 i g  is a notation defined in eq. (5). Let C  Q :     1 ( ) / ii g W g C     C X X
When the robot admits only two W-aspects for each working mode, the characteristic surfaces coincide with the pseudo-singularities defined by:

      1 ij i i ij Sc W A g g W A   (8) 

E. Basic components and basic regions

Let ij WA be an W-aspect. The basic regions of ijk WA , denoted   , ijk W A b k K 
, are defined as the connected components of the set

  ij C ij W A S W A   (   means the difference between sets). The basic regions induce a partition on ij WA :     ij k K ijk C ij W A W Ab S W A     Let   ijk ijk Q A b g W A b  , ijk Q A b is a domain in the reachable joint space Q called basic components. Let ij WA
an W-aspect and ij QA its image under g. The following relation holds:

      ij k K ijk C ij Q A Q Ab g S W A    

F. Uniqueness domain

The uniqueness domains 

    ' il k K ijk C ijk W u W Ab S W Ab     (9) with ' KK  such that 12 ,' k k JK  ,     12 ij ij g W A b g W A b    .

III. ALGEBRAIC TOOLS

A. Projection or Groebner basis elimination

We use the Groebner basis theory to compute the projections  Q and  W . Let P be a set of polynomials in the variables X=(x 1 , .., x n ) and q=(q 1 , .., q n ). Moreover, let V be the set of common roots of the polynomial in P, let W be the projection of V on the workspace and Q the projection on the joint space. It might not be possible to represent W (resp. Q) by polynomial equations. Let W (resp. Q ) be the smallest set defined by polynomial equations that contain W (resp. Q). Our goal is to compute the polynomial equations defining W (resp. Q ). A Groebner basis P is a polynomial system equivalent to P, satisfying some additional specific properties. The Groebner basis of a system depends on the chosen ordering on the monomials (cf [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF], Chapter 3).

For the projection  W , when we choose an ordering eliminating q, the Groebner basis of P contains exactly the polynomials defining W . For the projection  Q , when we choose an ordering eliminating X, the Groebner basis of P contains exactly the polynomials defining Q .

B. Discussing the number of solutions of the parametric system

The joint space (resp. workspace) analysis requires the discussion of the number of solutions of the parametric system associated with the direct (resp. inverse) kinematics. More precisely we want to decompose the joint space (resp. workspace) in cells 1k ,...,C C , such that:

 i
C is an open connected subset of the joint space (resp. workspace).  for all joint (resp. pose) values in i C , the direct (resp. inverse) kinematics problem has a constant number of solutions.  i C is maximal in the sense that if i C is contained in a set E, then E does not satisfy the first or the second condition. This analysis is done in 3 steps:  computation of a subset of the jointspace (resp. workspace) where the number of solutions changes: the Discriminant Variety.  description of the complementary of the discriminant variety in connected cells: the Generic Cylindrical Algebraic Decomposition  connecting the cells that belong to the same connected component of the complementary of the discriminant variety: interval comparisons.

From a general point of view, the discriminant variety can be defined for any system of polynomial equations and inequalities. Let 11 , ... , , ..., ml p p q q be polynomials with rational coefficients depending on the unknowns 1 , ..., n XX and on the parameters 1 , ..., d UU . Let us consider the constructible set:

  n+d 11
= , ( ) 0,..., ( ) 0, ( ) 0, ..., ( ) 0 , C defines an analytic covering. In particular, the number of points of C over any point of U is constant.

ml p p q q      v v v v v C C If
Let us now consider the following semi-algebraic set:

  n+d 11
, ( ) 0,..., ( ) 0, ( ) 0, ..., ( ) 0

ml p p q q       v v v v v S C
If we assume that S has a finite number of solutions over at least one real point that does not belong to D V , then d D V  R can be viewed as a real discriminant variety of S , with the same property: over each connected open set

d  U R such that D V    U
, C defines an analytic covering. In particular, the number of points of R over any point of U is constant.

Discriminant varieties can be computed using basic and well known tools from computer algebra such as Groebner bases (see [START_REF] Lazard | Solving parametric polynomial systems[END_REF]) and a full package computing such objects in a general framework is available in Maple software through the RootFinding[Parametric] package.

C. The complementary of a discriminant variety

At this stage, we know, by construction, that over any simply connected open set that does not intersect the discriminant variety (so-called regions), the system has a constant number of (real) roots. The goal of this part is now to provide a description of the regions for which the number of solutions of the system at hand is constant. Accordingly, we compute an open CAD [START_REF] Collins | Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition[END_REF][START_REF] Dolzmann | Eficient projection orders for CAD[END_REF] 

 d P :       1 D iscrim inant , , LeadingC oefficient , , R esultant , , , \ , ii ii p U p U p q U p q        P
We can associate to each i P an algebraic variety of dimension at most

1 i  :   1 ii p V V p    P p
The i V are used to define recursively a finite union of simply connected open subsets of i R of dimension i: 

1, i n k i k   U such that , i i k V    U ,
i i i ik i i i v v v v v v p l p l             VV v U =|   , 1 1 
, ..., ,

i k i i u      , with   1 1 1, 1, 1, , ..., R oot( , ) ; R oot( , 1 
)

ii i i j u j u j i i i u p l p l             
where , ij are fixed integer.

D. Connecting the cells

Finally, we need to connect the cells that belong to the same connected component in the complementary of the discriminant variety. This property is represented by an undirected unweighted graph G where each node represents a cell: if an edge connects two nodes, then the corresponding cells are adjacent (i.e. their closures have a non empty intersection) and are in the same connected component in the complementary of the discriminant variety.

We use the cylindrical shape of the cells output in the Cylindrical Algebraic Decomposition to compute the edges of G. Our method only works when the joint space (resp. workspace) has dimension 2.

In this case, let 1

2 ,i C  U and 2 2 , j C  U
be 2 cells of the cylindrical algebraic decomposition computed in the previous subsection. First, a necessary condition for these cells to be adjacent is that their projection is adjacent. In the of dimension 2 cells, the projection of 1 C (resp. ). Then the two cells 1 C and 2 C are adjacent and belong to the same connected component of the complementary of the discriminant variety if the line segment [START_REF] Collins | Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition[END_REF] [] PP does not cross the discriminant variety. This property can be checked by using Descartes' rule of sign [START_REF] Collins | Polynomial real root isolation using descarte's rule of signs[END_REF] or Sturm's theorem [START_REF] Sturm | Mémoire sur la résolution des équations numériques[END_REF].

IV. MECHANISM UNDER STUDY

A. Kinematic equations

The aim of this section is to recall briefly the kinematic equations of the RPR-2PRR mechanism [START_REF] Hernandez | Defining conditions for non singular transitions between assembly modes[END_REF]. The kinematic equations are defined in [START_REF] Hernandez | Defining conditions for non singular transitions between assembly modes[END_REF] 2 

B 1 B x y 2 ( , ) B 3 A 3 A 1 A 2 y x            C 2 C 3 l  l  a b
                        (10) 
In the following, we have fixed 23 3 ll  and 1 ab  in certain units of length that we need not specify. The position of the end-effector in B 2 is such that for a given value of y, we have either . This allows us to study the mechanism in a 2D slice of the workspace or in the joint space.

B. Singularity analysis

Matrices A and B can be derived from eq. [START_REF] Wenger | A new general formalism for the kinematic analysis of all nonredundant manipulators[END_REF]. The roots of the determinant of these matrices define the parallel and serial singularities. The serial singularities, denoted by S S , are defined by . The parallel singularities, denoted by P S , are defined by : cos( ) sin( ) sin( ) sin( ) cos( ) 0

P ya xa b x ab          S
This singularity occurs whenever the axes (A 1 B 1 ), (A 2 B 2 ) and (A 3 C 3 ) intersect (possibly at infinity). The parallel singularities do not depend on the choice of the inverse kinematic solution.

C. Projection of the singularities into the workspace and joint space

To determine the polynomial equations that characterize the serial and parallel singularities in the joint space and workspace, we use the operators  W and  Q , , i.e. another working mode. It can be noticed as is written in [START_REF] Hernandez | Defining conditions for non singular transitions between assembly modes[END_REF] that there exist four cusp points in this cross-section.

D. The generalized aspects

Form the definition of the parallel and serial singularities in the workspace, and thanks to the property that the location of the parallel singularities does not depend on the working mode, we can define 2x4 generalized aspects. 

          2 
                                       
The main benefit of the formulation is that we have the complete definition of the space and we can find easily in which cell a given point belongs.

E. Characteristic surface

The characteristic surface is defined by: 

(cos( ) 2 ) 0 C S y y x x y x x y x x x                      
with   . Figure 7 represents the singularities and the characteristic surfaces. The projections of the cusps points lie on the intersections of the parallel singularities and the characteristic surfaces. The two expressions defining the parallel singularities and the characteristic surfaces can be used to study the kinematic equations of the robot defined in Eq. [START_REF] Wenger | A new general formalism for the kinematic analysis of all nonredundant manipulators[END_REF]. As the sign of the two expressions can be positive or negative, we obtain four regions in the workspace The cell decomposition and the connectivity analysis yield 10 regions, as shown in Fig. 8. The analysis of the inverse kinematic solution allows us to compute the basic regions. Figure 9 represents the 4 uniqueness domains for each working mode. 

F. Application to trajectory planning

For any trajectory inside a uniqueness domain do no change of assembly mode occurs. Figure 10 (a) shows a trajectory defined between two regions in green. As the end points of the trajectory are in two separate uniqueness domains, a non-singular assembly mode changing trajectory occurs. We can also notice that in Fig. 10 (b), the two images of the trajectory in the joint space encircle a cusp point.

V. CONCLUSIONS

In this paper, the notion of uniqueness domains and non-singular assembly-mode changing motion was revisited and exemplified using a RPR-2PRR parallel robot. The implicit definition of the parallel and serial singularities as well as the characteristic surface were obtained with a new approach based on algebraic tools such as Discriminant Varieties and Cylindrical Algebraic Decompositions. Moreover, this allowed us to get algebraic formula describing the basic regions, the basic components and the uniqueness domains. 
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  Wu are the union of two sets, (i) the set of adjacent basic regions ' ijWA whose respective preimages are disjoint basic components, and (ii) the set of the characteristic surfaces
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 1 Figure 1 : RPR-2PRR mechanism with 23 3 ll  and 1 ab 

Figure 2 Figure 2 :Figure 3 :

 223 Figure 2 and 3 depict a slice of the workspace for y=1/2 and the joint space, respectively, with in red the serial singularities and in blue the parallel singularities.

Figure 4 :

 4 Figure 4: A slice of the workspace for y=1/2 with 2 Waspects Figure 5: A slice of the joint space for 2 arcsin (1 / 6 )   with 2 Q-aspects Each W-aspect of Fig. 4 is described by 41 cells. Same for

Figure 6 :

 6 Figure 6: The two W-aspects associated with a same working modeFigure6represents the W-aspects obtained with the CAD decomposition. The borders are the projection onto the workspace of the serial and parallel singularities. Each Waspect is described by 411 cells. For instance, the cell 116 is defined by the set of points x 0 , y 0 ,  0 :

Figure 7 :

 7 Figure 7: The joint space analysis for 2 arcsin (1 / 6 )  with in red the serial singularities, in blue the parallel singularities and in green the characteristic surface

Figure 8 :

 8 Figure 8 : The workspace analysis for 2 arcsin (1 / 6 )   with in red the number of inverse kinematic solutions and in blue the number of direct kinematic solution associated with each image

Figure 9 :

 9 The four uniqueness domains with in red and in blue the common regions.

Figure 10 :

 10 Figure 10 : Trajectory for y=1/2 and [x,]= [[-1,1], [0,1/2], [1,-1],[1/2,-2]] (a) in the workspace and (b) in the joint space

  we assume that C is a finite number of points for almost all the parameter values, a discriminant variety D V of C is a variety in the parameter space d C such that, over each connected open set U satisfying
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  and one point ,

		Moreover, if p is a n-variate polynomial, and v is a	1 n  -
	uplet, then p V denotes the univariate polynomial where the
	first	1 n  variables have been replaced by v .
		Roughly speaking, the recursive process defining the , ik U
	is the following:			
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	Root( , pk	1)[		for k from 0 to n where n is the number of
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	above definition. Moreover, one can chose arbitrarily one
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ik U , we introduce the following notations. If p is a univariate polynomial with n real roots:
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