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ADAPTIVE KERNEL ESTIMATION OF THE LEVY DENSITY

MELINA BEC*, CLAIRE LACOUR**

April 5, 2011

ABSTRACT. This paper is concerned with adaptive kernel estimation of the Lévy density
n(x) for pure jump Lévy processes. The sample path is observed at n discrete instants
in the ”high frequency” context (A = A, tends to zero while nA,, tends to c0). We
construct a collection of kernel estimators of the function g(z) = xn(x) and propose
two methods of local adaptive selection of the bandwidth. The quadratic pointwise risk
of the adaptive estimators is studied in both cases. The rate of convergence is proved
to be optimal up to a logarithmic factor. We give examples and simulation results for
processes fitting in our framework.

KEYWORDS. Adaptive Estimation; High frequency; Pure jump Lévy process; Nonpara-
metric Kernel Estimator.

1. INTRODUCTION

Consider (L, t > 0) a real-valued Lévy process with characteristic function given by:

(1) Y (u) = E(expiuly) = exp (t/R(ei“‘B —1)N(dz)).

We assume that the Lévy measure N(dz) admits a density n(z) and that the function
g(x) = xn(x) satisfies:
o (Gl): [;|z|n(z)dx = [; |g(x)|dzx < oco.

Under these assumptions, (L¢,t > 0) is a pure-jump Lévy process without drift and with
finite variation on compact sets. Moreover E(|L;|) < oo (see Bertoin (1996)). Suppose
that we have discrete observations (Lga,k = 1,...,n) with sampling interval A. Our aim
in this paper is the nonparametric adaptive kernel estimation of the function g(z) = xn(z)
based on these observations under the asymptotic framework n tends to co. This subject
has been recently investigated by several authors. Figueroa-Lépez and Houdré (2006) use
a penalized projection method to estimate the Lévy density on a compact set separated
from 0. Other authors develop an estimation procedure based on empirical estimations of
the characteristic function 1 (u) of the increments (Z2 = L — Lip—vya,k=1,...,n)
and its derivatives followed by a Fourier inversion to recover the Lévy density. For low-
frequency data (A is fixed), we can quote Watteel and Kulperger (2003), Jongbloed and
van der Meulen (2006), Neumann and Reif8 (2009) and Comte and Genon-Catalot (2010).
In the high frequency context, which is our concern in this paper, the problem is simpler
since ¥a(u) — 1 when A — 0. This implies that 1a(u) need not to be estimated and can
simply be replaced by 1 in the estimation procedures. This is what is done in Comte and
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Genon-Catalot (2009) and Comte and Genon-Catalot (2010). These authors start from
the equality:

/
(2) E|zpen %] = sl
A
where g*(u) = [ e"*g(x)dz is the Fourier transform of g well defined under (G1).

Then, as 1/1A( ) ~ 1, equation (2) writes E [ZkAe“‘Z ] ~ ¢g*(u) and gives an estimator
of g*(u) as follows:

1 A juzd
na 2 ZEe
k=1
Now, to recover g the authors apply Fourier inversion with cutoff parameter m. Here, we
rather introduce a kernel to make inversion possible:

1 < :
_A Z Z]CAK* (Uh)@ZUZkA

which is in fact the Fourier transform of 1/(nhA) > 1_, ZRK((Z5 — x)/h). At the end,
in the high frequency context, a direct method without Fourier inversion can be applied.
Indeed, a consequence of (2) is that the empirical distribution:

1 n
A > zp 672 (dz)
k=1
weakly converges to g(z)dz. This suggests to consider kernel estimators of g of the form
. . 1 ¢
(3) gn(wo) = Kp * fin(z) = N z_: ZRKn(Z — x)

where Kj(z) = (1/h)K(z/h) and K(—z) = ) is a symetric kernel such that

/|K \du<ooand/K

Below, we study the pointwise L2-risk of the estimators (g, (z)) and evaluate the rate of
convergence of this risk as n — oo, A = A,, tends to 0 and A = h,, tends to 0. This
is done under Holder regularity assumptions for the function g. Note that a pointwise
study involving a kernel estimator can be found in van Es et al. (2007) for more specific
compound Poisson processes.

In this paper, we study local adaptive bandwidth selection (which the previous authors
do not consider). For a given value zy € R, we define two ways of selecting a bandwidth
ﬁ(azo) such that the resulting adaptive estimator gﬁ(xo)(xo) automatically reaches the op-
timal rate of convergence corresponding to the unknown regularity of the function g. In
the first method (Bandwidth Selection I) we define an estimator 3(zg) of the unknown
regularity § of g and plug in the estimated value in the optimal bandwidth hp(3) that
is deduced from the L? risk study. The second method (Bandwidth Selection II) fol-
lows the scheme developped by Goldenshluger and Lepski (2011) for density estimation.
Introducing iterated kernel estimators:

Gnw(20) = Kpr x gn(x0) = Kp * g (o),
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(xo).

In Section 2, we give notations and assumptions. In Section 3, we study the Ilointwise
mean square error (MSE) of g,(zo) given in (3) for g belonging to a Holder class of
regularity. We present the two bandwidth selection methods in Section 4 and 5 together
with a risk bound for each adaptive estimator. The rate of convergence of the risk is
optimal up to a logarithmic loss which is expected in adaptive pointwise context. Examples
and simulations in our framework are discussed in Section 6 and some concluding remarks
are given in Section 7. Proofs are gathered in Section 8.

a data-driven choice ﬁ($0) is defined and the adaptive estimator is given by gﬁ(
o

2. NOTATIONS AND ASSUMPTIONS

We present the assumptions on the kernel K and on the function g required to study
the estimation given by (3) First, we set some notations. We denote by u* the Fourier
transform of u, u*(y) = [ €% u(x)dx. and by ||ul|, < u,v >, u* v the quantities

Jul? = / () P,

<u,v >= /u(a:)@(a:)da: with 2Z = |z|? and u % v(z) = /u(y)v(az —y)dy.

Moreover, for any integrable and square-integrable functions u, u, us such that u* € L!,
we have:

(4) (u*)*(z) = 2mu(—=) and (uy,up) = (2m) " Hu}, us).
2.1. Kernel Assumptions. Let K : R — R be integrable and such that
(5) Vu,/K(u)du =1and K(u) = K(—u).

We recall that for [ > 1 an integer, K : R — R is a kernel of order [ if functions u —
w K(u),7 =0,1,...,] are integrable and satisfy

(6) /qu(u)du =0, €{1,...,1}.

The kernels will have to satisfy some of the following assumptions.

e (Ker[l]) K is of order | = | 3] and [ |z|°|K (z)|dz < +oc0.
We define the parameter 3 later.

o (Ker[2]) || K]l5 < 4o00.

e (Ker[3]) K* € L.
Assumptions (Kerl[i]), i = 1,2, 3 are standard when working on problems of estimation by
kernel methods.
We note that there is a way to build a kernel of order [. Indeed, let v be a symmetric
and integrable function such that v € L?,u* € L' and [ u(y)dy = 1, and set for any given
integer [,

) K(t) = g (})c0reige(7)
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The kernel K defined by (7) is a kernel of order [ which satisfies assumptions (Kerli])
i =1,2,3 (see Kerkyacharian et al. (2001) and Goldenshluger and Lepski (2011)).

2.2. Assumptions on g. The target function g has to satisfy the following assumptions.

e (G1) [|gll; < oo,
¢ (G2) [lglly < +o0.

We introduce Holder classes.

Definition 2.1. (Hélder class) Let 3 > 0, L > 0 and let | = |3] be the largest integer
strictly smaller than 3. The Holder class H((3,L) on R is the set of all functions f : R —
R such that derivative fO ezists and verifies:

(8) 1fO(@o) = fO(ah)| < Llwo — wp|”~", Vo, f € R.
This allows us to introduce the following assumption
e (G3)ge H(B,L).

(G3) is a classical regularity assumption in nonparametric estimation; it allows to quan-
tify the bias (see Tsybakov (2009)).

o (G4) M := |00 < +o0.
e (G5) zg € L' and P := 5= [ |g*'(u)|du < 4oc.
3. RISK BOUND

In this section, the bandwidth A is fixed, thus we omit the subscript h for the sake of
simplicity: we denote § = gy. Let g € R. The usual bias variance decomposition of the
MSE yields:

MSE(o, h) := E[(§(z0) — 9(20))*] = E[(g(z0) — E[g(20)])*] + (E[g(x0)] — g(x0))"
But the bias needs further decomposition:
b(z0)* := (E[g(wo)] — g(x0))* < 2b1(0)* + 2ba(x0)*
with the usual bias,
bi(wo) = Kp * g(zo) — g(@0),

and the bias resulting from the approximation of ¥ (u) by 1,

ba(zo) = E[g(z0)] — K * g(z0)-
We can provide the following bias bound:
Lemma 3.1. Under (Ker[1]), (G1), (G3) and (G4) we have:

b(zog)? < ah®P 4+ 1A%

with ¢; = 2(L/Z!f|K(v)Hv\ﬁdv)2 and 1 = 2M?(||g|,|1K|l,)?, where M is defined in
(G4).

Moreover, the variance is controlled as follows:
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Lemma 3.2. Under (Ker[2]), (Ker[3]), (G1), (G2) and (G5), we have
. 1 9 2 1 , 1

< ——||K||5(P A) < —

Varlg(zo)] < <K (P +[lgll2A) < c2mat + ca

with cg = P||K||5 where P is defined in (G5), and s = ||g|l5]| K ||5-

Lemmas 3.1 et 3.2 lead us to the following risk bound:
Proposition 3.1. Under (Ker[1])-(Ker[3]) , (G1)-(G5) we have

1 / 1 / 2
— A“.
nhA+62nh+cl

Recall that A = A,, is such that lim, . A, = 0, thus 1/nh is negligible compared to
1/nhA. For A?, we set the following condition:

(9) MSE(JJ(), h) S cthﬂ + (6]

1
(10) A3 < %,nh — +00.

We can then proceed to find the convergence rate, based on the first two terms. It is easily

seen that the optimal choice of h is hept o ((nA)_Qﬁ‘lJrl) and the associated rate has order
0 ((nA) w+1)
Proposition 3.2. Under the assumptions of Proposition 3.1 and under condition (10),
1
the choice hop o< ((nA)”25+1) minimizes the risk bound (9) and gives MSE(xq, hopt) =
25
O((na)~ 7).

We stress the fact that this result is new as previous works in estimation (adaptive or
not) do not deal with the pointwise risk.

4. BANDWIDTH SELECTION I

As 3 is unknown, we need a data-driven selection of the bandwidth. Firstly, we use the
method introduced in Lepski (1991).
We set the following additional condition:

1
nl/3
In other words, the asymptotic context is nA — 400 and nA% — 0. It allows to ensure
condition (10) for all h. It follows from Proposition 3.2 that if h = hep(5) then,

(12) E[Gh,(8) (10) — g(x0)]* < C(nA)~ T = =: Cupy o (8)-
We define

1
(11) - << A<

We set gg = gh(ﬁ).
In the following, we use the letter 3 for the true parameter. Moreover we assume that 3
belongs to the set A = {a1,...,ap} where a; < ... < ap and D = [(nA)¢| with £ a fixed

positive real. We choose ((zq) as follows:

B(z0) = max {a €A, Vo' € AJd < a, [§a(z0) — Jor (w0)| < cun(a’)}
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with ¢ > ¢ + 2N + 2By, ¢ = 8||K|2v/P + ||g]l5v2§ + 4 and By = M]||g||,||K]|;, and

L Lol
(13) N = ﬁ/|K(v)Hv\ﬁdv and P i §/|g /() dv.

Heuristically, 3(z() estimates the regularity index 3.

Then, the estimator of interest is: gﬁ(xo)(xo). We can prove the following bound on the
quadratic risk of our adaptive estimator.

Theorem 4.1. Under the assumptions of Proposition 3.1 and if the |Z;|’s admit a moment
of order z with z > 10 4+ 4& + (5 + 2€)/an, we have, under condition (11),

(14) E{l35(00(@0) — 9(@0)]] < cun(5).

Theorem 4.1 states that our data driven estimator automatically reaches the optimal
rate stated in Proposition 3.2, up to a logarithmic factor. Note that for pointwise adaptive
density estimation, a logarithmic loss also occurs and has been proved to be nevertheless
optimal (see Butucea (2001)).

5. BANDWIDTH SELECTION II

Now, we follow ideas given in Goldenshluger and Lepski (2010) for density estimation.
We set:

1 A
(5) V)= CEE with € = (¢2) < IKIR(P+ Iol3). ¢ < R,
n
where P is defined in (13). Note that V(%) has the same order as the variance multiplied
by log(nA).

We define gp, p/(x0) = Kpr * gn(x0) = Kp * g/ (x0). So we have
. 1 o
(16) Gnw (o) = A Z ZP Ky * Kn(Zg — x0).
k=1

Lastly we set
(17)  A(h,zo) = sup {19n.1 (w0) = gn (x0)|> = V(A)}, with H = {{,1 < j < M},

and M to be specified later.
The adaptive bandwidth h is chosen as follows:

h(z) = arg hmEiE{A(h, xo) + V(h)}.

To simplify notations, we set h= iz(xo).

Theorem 5.1. Let the assumptions of Proposition 3.1 hold and assume that there exists
Bo (known) such that 3 > (y. Choose M = [(nA)l/(zﬁOH)] in (17) and take ¢ in (15)
such that ¢ > 96(1 V ||K||loo). Then if the |Z;|’s admit a moment of order z such that
z>2(3+2/0), we have

nA

Blg(wo) — g5, (x0)f*] < € { inf {llg — Elgnl|% +V(h)} + M}
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The comment following Theorem 4.1 also applies to the result of Theorem 5.1.

Let us discuss and compare the two methods. The advantages of Method I are the fol-

lowing. Method I provides an estimator B(mo) of B. It is based directly on the differences
between the functions gj,,) which are easily calculated as empirical means while Method
IT requires the evaluations of Kj, * Kj/, sometimes numerically costly.
Nevertheless, the constants required to implement the two methods are not similar. In
Method I, N is difficult to estimate (because of L and 3). It could be possible to compute a
rough estimator. In Method II, we are able to offer empirical natural quantities to replace
llg|l or ||¢'|lco- Hence, Method II does not require a constant depending on the regularity
of the function.

We choose to implement the second method to illustrate our results on various examples.

6. EXAMPLES AND SIMULATIONS

We give some illustrating examples.

Example 1. Compound Poisson processes. Let L; = 25\21 Y;, where (Ny) is a Poisson
process with constant intensity ¢ and (Y;) is a sequence of i.i.d random variables with
density f independent of the process (N;). Then, (L;) is a Lévy process with characteristic
function

(18) be(u) = exp (ct /R (e — 1) f(x)da;) .

Its Lévy density is n(z) = cf(x) and thus g(x) = cxf(x).

In the simulations below we have chosen for f the standard Gaussian density. Thus,
g(z) = caf(z) = cee*"/2/\/21 and g*(u) = ciue *"/2. Assumptions (G1), (G2), (G4)
and (G5) hold for g. Moreover g belongs to a Holder class of regularity 3 for all 5 > 0.
Thus the rate is close to (nA/log(nA))~L.

Example 2. The Lévy-Gamma process. Let a > 0, v > 0. The Lévy-Gamma process
(L¢) with parameters (7, «) is such that, for all ¢ > 0, L; has Gamma distribution with
parameters (vt, «), i.e the density:

vt
L(71)
1

x'yt—le—aw]lxzo'

The Lévy density is n(z) = yx~ e~ 1,50 so that g(z) = ye~** 1, satisfies assumptions
(G1), (G2) and (G5). We have g*(u) = v/(a — iu).

Although g does not satisfy (G3)-(G4), we have implemented the estimation method to
study its robustness with regard to this assumption. Note that the simulations results are
good in this case also.

Example 3. The bilateral Lévy-Gamma process (Kiichler and Tappe (2008)). Con-
sider X,Y two independent random variables, X with distribution I'(y,«) and Y with
distribution I'(y/, ¢/).Then, Z = X —Y has bilateral gamma distribution with parameters
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(7, a,v', '), denoted by T'(~, a;+', ). The characteristic function of Z is equal to:

/

(19) s = (25) (555) = ew( [ - natn)

o —iu o +iu

with

and, for x € R,
9(x) = 7€ Lo 4 ooy @) — V€ ¥ (o) (2).
The bilateral Gamma process (L;) has characteristic function ;(u) = (u)t. As the
previous example, (G1), (G2) and (G5) hold, and not (G3)-(G4). But simulations are
quite satisfactory.
We have implemented the estimation method for processes listed in Examples 1-3 with

different kernels (Figure 1) :

1. Epanechnikov Kernel: K (z) = (3/4)(1 — z*)1 ;<.

2. Laplace Kernel: K(x) = (0/2) exp(—|x|/6) with 6 = 1.

3. Kernel K in Section 2 (see (7)) with { = 2 and [ = 3. We choose u(x) =

1/v/2mexp (—22/2), the Gaussian density.

The first two kernels are of order 1. Kernel [3.] is of order [ = 2 or [ = 3. For the
implementation, a difficulty is the proper calibration of the constant ¢’ in (15). This is
usually done by a large number of previous simulations. We have chosen ¢ = 1 as the
adequate value for a variety of models, kernels and number of observations. As expected,
when nA increases, the estimation is better. For clarity, we have computed the Mean
Integrated Square Error (MISE) of the estimators whose value gets smaller as nA increases.
Figure 1 plots ten estimated curves corresponding to our three examples with in the first
column n = 10000, A = 0.1, and in the second n = 100000, A = 0.1. Globally, it can
be seen from Figure 1 that the results are stable even for smaller values of nA. For
illustration, each example presented in Figure 1 is computed with a specific kernel. We
did not observe significant improvement when using the higher order kernel ([3.]). This
is surprising because the theoretical part suggests that it should improve the bias term.
Lastly, we can see that the estimated curves are not very regular when nA is not large
enough, this is due to the pointwise bandwidth selection.

7. CONCLUDING REMARKS

In this paper, we have investigated in the high frequency framework the nonparametric
estimation of the Lévy density n(.) of pure jump Lévy process. This is done through the
estimation of the function g(z) = xn(x), and we use kernel estimators. We have studied
two methods of bandwidth selection. The rate we obtained are not the optimal ones, but
the logarithmic loss which occurs is negligible. Implementation of Method II on simulated
data illustrates the quality of the estimation even when some assumptions are not fulfilled.

8. PROOFS

For many proofs, we need the two following Propositions (see Proposition 2.1 in Comte
and Genon-Catalot (2010) and Proposition 2.1 in Comte and Genon-Catalot (2009)).
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Ex 1 (nA = 1000) MISE= 7,9.1073 Ex 1 (nA = 10000) MISE= 4,6.103

MISE=0.0079673

MISE=0.0046332

—0al

-0.4
4

Ex 2 (nA = 1000) MISE= 6,5.10~2 Ex 2 (nA = 10000) MISE= 6,1.102

MISE=0.065101 MISE=0.061793

1

09 4 09

08 4 08k

06 4 06!

05 4 osf

04 1 0all

03 4 03f

01f 4 01f

Ex 3 (nA = 1000) MISE=0, 24 Ex 3 (nA =10000) MISE=0, 17

MISE=0.2428

MISE=0.17151
1 T

08 4 08
06 4 06
02k 4 02

-0.2F 4 -02F

-06f N 061

-0.8F 4 -08

FIGURE 1. Adaptive estimators of g. First line: Example 1 (Compound
Poisson and Gaussian density) with ¢ = 1, using the Epanechnikov kernel.
Second line: Example 2 (Lévy Gamma) with o = = 1 using the Laplace
kernel. Third line: Example 3 (Bilateral Lévy Gamma) with a =y =d' =
~" =1 using kernel [3.].
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Proposition 8.1. Letp > 1 an integer such that [ |z[P~|g(z)|dz < 400 and E(|Z£|P) <
+00. Then for M = [px F=lg(z)dr < +oo, k = 1,...p, we have E(ZlA) = AM;y,
E[(Z£)?] = AMy+A%M;, and more generally E[(Z{)!] = A My+o(A) foralll = 1,...,p
Moreover, under (G1), E(|Z£]) < 2A||g]l:-

Proposition 8.2. Denote by Pa the distribution of Z{* and define ua(dr) = A~ xPa(dx)
and p(dx) = g(x)dx. Under (G1), the distribution pa has a density ha given by

ha(e) = [ g(o ~ »)Pa(y) =Bglo - 27).
And pa weakly converges to p as A tends to 0.
8.1. Proof of bias and variance control.

8.1.1. Proof of Lemma 3.1. First, we study ba(zo):

o Bl () (2 o
- %/K(“{“) Elg(u — Z2)]du — %/K <x°h_“> g(u)du
= 5 [ () Elata - 22) - g(wn

Now, applying the mean value theorem to g, we get
1 To— U
el = |3 [ 5 () Bl 22 (o

|2
Al
From the results of Proposition 8.1, E[|Z2|/A] < 2|g]l1.
Now we study b1 (zo) = Kp, * g(z9) — g(x0):

bi(zg) = %/K (J:Oh_ u) g(u)du — g(x), by setting v = (xg — u)/h

with uz, € [u—Z;,u ]

(20)

IA

Allg ool K ILE [

_ / K (v)g(zo + vh)dv — g(xo)

= /K g(xo + vh) — g(x0))dv, by (5).
Using the Taylor formula, there exists 7 € [0, 1] such that

wh)'

g(zo + vh) — g(xo) = vhyg'(x0) + ... + TR (xo + TUh).

So, under (Ker[1]) using (6),

b(zg) = /K ”h) (l)(x + rvh)dv

:/K

(9W (z0 + Tvh) — O (0))dv.
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It follows that

l
v
ol < [ 1KLL 0G0+ ron) - O wolas
l
< /\K \|U£| |7vh|?~ldv, using (8) in (G3)

(21)

IN

[ K@l = e 2w,
as 7 € [0,1] and [ |K(v)||v|’dv < 400 under (Ker[1]).
Gathering (20) and (21), we obtain

b(wg)? < 2by(wo)? + 2ba(wo)?

< ah® 4 2M(Allgl 1K)

This completes the proof of Lemma 3.1. O
8.1.2. Proof of Lemma 3.2. We have the following relation:
(22) VA" = iAYA'g" +idag” = —A%ag™ +ilYag”.
As the ZkA are i.i.d., we have:

1 - A ZkA—l‘o 1 A ZIA—.I‘O
N ZAR (2 TT0ON 2y |zAK (20
nhA; k < h >] n(hih)2 “’“[ 1 h

Var[g(zg)] = Var

Thus,

Varlgteo) < e [ (A2,

K2 Z{ — _
h

we obtain with v = u/h

Writing

1 (z —ZA)u
—/K*(u)e_zofldu

2T

~ 1 * —1 Z v
Var[g(zg)] < WE (Z5)? /K (vh)e~Hzo=Z)v gy ]
1 , . : ,
———E [//ZlAeZZIAvK*(vh)emoleAezzlA“K*(uh)e‘””oudvdu )
nA2(2w
Using Fubini (under (Ker[S])) E[(Z{)%e iZlA(”_“)] = —{ (v —u) and formula (22), we find
Var[g(zg)] < / | — A" (v — u)K*(vh) K* (uh)|dvdu
nA2(27r
1
< // |A2)pa (v — u)(g*)? (v — u) K* (vh) K*(uh)|dvdu
nA2(27r
1
+ / / Ada(® — u)(g") (v — u)K* (vh) K* (uh)|dvdu, with (22)
nA2(27r

AN
=
_|_
@
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with

nA2 // |A2 A (v — u)(g*)? (v — w) K* (vh) K*(uh)|dvdu

nA2 //‘A@”A v —u)(g") (v — u)K*(vh) K* (uh)|dvdu.

We first bound T5:

1
T, < M\/ / / a (o — w)]|(g*) (v — w)|[K* (oh) Pdvdu

\/ / / a(o — w)][(g*) (v — )| |E* (uh) Pdvdu
< /\K*vmdv/m (o) (2)]dz

W/\ u) du/\ z)|dz, setting u = vh and because |a(2)| <1
n 7T

10" [y )z, where [ Kz < 400 by (Ker[2])

9l A z, where 2 oo by (Ker

PlIK],

Following the same line for the study of 77, we get

HK||2 /‘ oK 11K 15119113
- nh

where || K||2 < 400 by (Ker[Q]) and where ||g||2 < 400 by (G2). This completes the proof
of Lemma 3.2. O

8.2. Proof of Theorem 4.1. We decompose Eu%(xo)(%) — g(z0)|] as follows:

(23) El135 0 (#0) = 9@ = E [135000) (@0) = 90) | (5005 ]
T E [[19500)(@0) — 9@0)/T (500051 -
We bound the first term by simply using the definition of B(mo). We obtain
195(20) = 00y (@0) L 3y 5) < ctin(B)-

Also,

IN

Elg(zo) — gs(xo)| + E [|§ﬁ(930) = 9p(a0) (@)L 30y}
cun ()

E {[9(20) = 33(20)#0) | {320)5)
(24)

IN
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which completes the bound of the first term of (23).
We now study the second term. We write

IN

(El5100 (x0) — 9(z)?)) " x B(Bla0) < )

(El5000) @0) ) + 101 x B(Ba0) < 3

Ell93(20) (0) = 9(x0) L 5() < 3]

IN

(25)

Proposition 8.3. Under the assumptions of Proposition 3.1 and if the |Z;|’s admit a
moment of order z with z > 10+4&+ (5+2¢) /oy, under condition (11), there ezists k > 0
such that

P(B(z0) < ) < (2+ ) (nA) ™.
Proposition 8.4. Under (G1) and (G5), we have

(nA)?
log(nA)?’

E[l%(xo)(l‘o)\Q] <Q
. 2
with @ := | K% (E((Z£)2/A) + [E]| 281/A])%)
Propositions 8.3, 8.4 and equation (25) imply that

(26E(1954) (@0) — 9(@0)[L50000cpy] < (Q(nA)ZJngllio)l/Q\/(2+'€)(HA)’4§§—A1

where @1 is a constant which depends on the terms E[ZlAQ/A] + [IE[ZlA/A]]2 and ||g||oc-
We conclude by gathering (24) and (26):

EHQB(IO)(J«“O) —g(x0)|]] = EHQB(IO)(J«“O) - g(m0)|ﬂ{g(gﬁo)zg}] + EH@B(%)(@'O) - g($0)‘1{5(x0)§ﬁ}]
< cun(B) + Qi(nA)~!

This completes the proof of Theorem 4.1. O

8.2.1. Proof of Proposition 8.3. We recall that g, (z0) = gh(a)(70). First we write that

P(B(x0) < 8) = Z P(B(x0) = o)
a;€A,a; <
= ) PE < iilfas (7o) = Gor (w0)] > cun(a))
a;€A,a; <
< D0 D Pldas (o) = dor(x0)| > cun (@)

aip1<B o’ <t

D? sup P(|ga(20) = g (20)] > cun(a)).
o/ <a<p

(27)

IN
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Now we study P(|ga(x0) — gor (z0)| > cupn(’)) for o/ < a < 3. We have, with Lemma 3.1

|9a(20) = Jar(20)] - < Gal®0) = ga(20)| + |9a(20) — g(20)| + |9(z0) — gar (20))]

(28) "Hga’(xO) - ga’(xO)‘
< da(z0) = ga(20)| + |gar (T0) — Gor (w0)| + %h(a)ﬁ + %h(o/)ﬂ + A
< |9alm0) — ga(20)| + |90 (T0) — Gar (20)]
cl n/ -8 c n/A % ,
E(log(nA))MJr1 El(log(nA))Qa tal
(29) < da(w0) = ga(zo)| + |gar (20) = Jor (w0)| + (1 + ) )un(a’),

where (29) follows by using condition (11). Indeed for o/ < a < 3, we have

!

nA i1 nA ST <9 nA Balt1 _ ,
log(nA) + log(nA) ~ 7 \Uog(nA) = 2un(@)-

Therefore, we get

P(|ga(z0) = Jar (z0)| > cun(a’)) < P(|ga(20) = ga(wo)| + |9ar (x0) = o (w0)| > 'un(c)),

with ¢ =¢c—c¢1 — .

Now,

P(|ga(z0) = galz0)| > (¢'/2)un(a’))

P(|ga(z0) = ga(z0) + |90 (z0) = Jar (x0)| > un(a)) <
+ P(|gar(x0) = gor (w0)| > ('/2)un()),

and since, u,(a’) > u,(a) we have

(30) P(|ga(x0) = ga(w0)| > (¢/2)un(a)) < P(|ga(w0) — galw0)| > (¢'/2)un(ar)).

Thus, we just have to bound 2P(|ga(x0) — ga(x0)| > (¢'/2)un(a)) for all a < S.
Note that

n

1

(31) fo(20) — go(z0) = + D" [¥i(0) ~ B(¥i(a)]
k=1
where
A A,
32) Vi) = Zpy (kaa) ) |

We truncate the Z;,” and we consider the decomposition:

{1Z12] < pn}, and {|Zp2] > pin}
where

nA

1K 2°(P + [lg3)
log(nA) ’

| K [loo

(33) fin = k( )71 with k =
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We decompose (31),

. 1 <
Go(z0) = galw0) = =D [Vi(@)L{z,81<u,) — EVi(@)L(z,a<,,))
k=1
1 n
+ 2 N @)lyz o,y — EQR(@)Lyz,805,,,)]
k=1
= (5 (@0) — g (20)) + (52 (20) — ga® (20))-

So we write
P(|ga(20) = ga(20)| > (¢'/2)un())
P(1g5) (20) = ga™M (20)] + 195 (20) — 90 (20)| > (¢//2)un())
(34) < P(|g5) (x0) = ga V) (w0)| > un(c) /4) +P(1§E) () — g (x0)| > Cun(@)/4).
We need the two following lemmas to conclude the proof.
Lemma 8.1. Under (Ker[2]) (Ker[3]) , (G1) (G2) et (G5) we have,
(1§ (0) = gat™ (@0)| > Cun(@)/4) < 2(nA)~ 4,
Lemma 8.2. If the |Z;| admits a moment of order z with z > 10 + 4 + (5 + 2¢) /« there
exists k > 0 such that
(1§ (0) = g (@0)| > Cun(@)/4) < k(nA)~CH,

Thus we bound (34) by using Lemmas 8.1 and 8.2 and by gathering this with (27) and
(30), we obtain:

~

P(B(z0) < B) < D*supP(|ga(z0) — galz0)| > (¢/2)un(a))

<
<

a<lp

< D2 sup P50 (20) — g (20)| > ctn(c)/4)
a<lp

+ D7 B3 (20) 0 w0)] > () /4)

< 2(nA) T+ k(nA) T
This completes the proof of Proposition 8.3. O
8.2.2. Proof of Proposition 8.4.

Ellgsp @)’ < E

| K112 L e
= a2 | 1)) {; % ‘} }

. 2
We have, as (zg) > 0 and thus W)l 2,

2

h(@(io)ﬁ N (10;:&) e (%)2'
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We can write

IN

K% (nA)? - ’
!nJ)Q lo(g(niﬂE {Z‘Zﬂ}

2
AIKIE o |1 )~ a
log(nA)QE A Z 12

Ell33(0, (@0

—
(%)
(@)

~
IN

2
+E

n 2 n n
E {Z\Zﬁ} = var|Sizei| vz |30 128
k=1 k=1 k=1
= aVar [| 28] + [E] 28]
nAE((Z2)2/A] + (nA)? [E[| 2] /A]]
()2 (BI(ZE)2/A] + [E[Z8/A])%) -

IN

(36)

IN

Therefore, inserting (35) in (36) completes the proof of Proposition 8.4. O

8.2.3. Proof of lemmas 8.1 and 8.2. :

Proof of lemma 8.1 :

We apply the Bernstein inequality recalled in Section 9 to T; = Y;(a)]l| Z5|<pn where
Yi(a) is defined by (32) and p,, is defined by (33) (see Birgé and Massart (1998), p.366).
We choose n = c'up, () /4. Tt is easy to see that

K[| oo i 2 2 HKH22
Ty < b:= """ and ;) <vi=(P :
IT;| < Ah(o) and Var(T;) <v®:= (P + Hg||2)Ah(a)
We find
o <_m72> e <_nn> (nA)™" with k < 2 +4
Xp =exp|—— )= with k1 = - :
412 4b 45 16||K [l2*(P + [|g13)

Therefore the Bernstein inequality (45) yields
(1§ (o) — g (@0)] > Kun(@)/2) < 2(nA)7H.

This completes the proof of lemma 8.1. O

Proof of lemma 8.2 :
~(2
E[35 (20) — 9o @ (w0)]]

P9 (w0) — a2 an)| > unea) < 420 )=t
%ZZ:lSM%HIZkbuJ
< K e

8| Klloc (| Z1 [ /A
h(a) i P up (o)
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By Proposition 8.1 the quantity 8| K ||E[|Z1|*!/A]/¢ is bounded by a constant.

If the |Z;|’s admit a moment of order z with Vao € A, z > 10 + 4£ + (5 + 2£) /v we have

(a2 (w0) = 00 (@0)] > ra(@)/2) < e

This completes the proof of lemma 8.2. O

8.3. Proof of Theorem 5.1. The goal is to bound E[|g(zo) — §;,(x0)|*]. To do this, we
fix h € H. We write

9(z0) = g5, (x0)| < 197,(w0) — Gy, ,(x0)| + 19, j (x0) — gn(wo)| + |gn(w0) — g(z0)l-
So we have
l9(x0) = G5, (x0)* < 3135, (20) = G, 1 (@0)[* + 31g), 1, (x0) — Gn(20)|* + 3|dn(20) — g(ao)[*.
Define B := |g;(z0) — g, ;(20)|* and C := |§ i (o) — gn(zo)*.
)

We have A(h) 2 |3;(z0) = G (o) P — V(b Yp_ (ﬁ) S0 B < A(h) + V(h).
Moreover, A( ) > |ghh(x0) gn(zo)|> = V(h) > C =V (h). So C < A(h) + V(h).
Therefore,

l9(x0) = 3, (0)[* < 3(A(R) + V(R)) + 3(A(R) + V (k) + 3|gn (o) — g(0)|*-
Now, by definition of h, A(k) + V (k) < A(h) + V (k). This allows us to write
l9(z0) = 35, (20)* < 6A(h) + 6V (h) + 3|gn(x0) — g(wo)[*.

Let us denote by (xo) = E[gn(x0)] — g(x0) and by 2(x0) = E[gn(z0)] — Kp * g(x0) (these are
the same notations as in Lemma 3.1, but with subscript h). Thus

Ellg(20) — §;(x0)[] < GE[A(R)] + 6V (h) + 3b3 (z0) + 3V ar(gn(wo))
< 6E[A(R)] + 3b3(z0) + 9V (h).
We have to bound E[A(h)]. Let us denote by gy, 5y = E[gn 1] and g, = E[gy]. We write,
(37) Gh, = 90 = Ghh' = Ghoy — Jn' + G + Gh — 9
and we study the last term of the above decomposition. We have
g0 (@0) = g (xo)| = [E[gn,nw (w0) — g (0)]]
= [E[Kw * gn(zo) — g (20)]]
= |Kp *xE[gn(20) — g(z0)] + Kn' * g(z0) — E[gn(20)]|-

This can be written:

| K % b (w0) + bp2(20)]
| Ky % by (0)| + [bn,2(0)|

‘/K (“"Oh_,"> bh(u)%

|9h,h'(330) — g (w0)|

IN

IN

+ [bn,2(0)|
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Now |bp.2(w0)| < [br(x0)] < [[balles S0 that

2
g (0) — (@) 2 < 2ballZ ( / |K<v>|dv) T 2o (ao)]?

(38) < 2(IK [T + Dlballz

Then by inserting (38) in decomposition (37), we find:
A(h) = S}Zl}){\ﬁh,h/(xo) — gw(@o)P = V (W)},
< 38}11/1) {1gn,n(x0) = gnw (x0)]* = V(1) /6}
(39) +3S}Ll,p{|§h’($0) — g (@o)|* = V(I')/6}, + 6| KI[F + 1)llbn 1%

We can prove the following results:

Proposition 8.5. Let the assumptions of Proposition 3.1 hold and take ¢ in (15) such
that ¢ > 96. Assume that there exists By (known) such that 8 > [By. Define H = {ﬁ, 1<
j < M}, with M = [(nA)l/(zﬁOH)]. Then if the Z;’s admit a moment of order z such
that z > 2(3 +2/0o), we have

(@) B sup e (z0) — aw o)~ ViW)/0}, | < 0 (g4 ERA )

Proposition 8.6. Let the assumptions of Proposition 3.1 hold and take ¢ in (15) such
that ¢ > 96||K||oo. Assume that there exists By (known) such that 8 > [y. Define
H = {%,1 <j< M}, with M = [(nA)l/(QﬁOH)]. Then if the Z;’s admit a moment of
order z such that z > 2(3 + 2/0), we have

SO [S}Ll/p{‘gh,h'(ﬂﬁo) — gnw (z0)[* = V(h')/6}+} <C <$ * %) :

Inequalities (40) et (41) together with (39) imply

N 1 log(nA
Blls(a0) ~ a3 an)] < Collall + Cov () + o (g + B2 )

This completes the proof of Theorem 5.1. O
8.3.1. Proof of Proposition 8.5. Note that

1 n
42 Gn' — gn =— Y (W) — E(Y, (K
(42) 9w (o) — gw (x0) = ;[ k(W) — E(Yz(h))]
where

A (7R — 1
n_
Yi(h') = Ah’K< W .

The ZkA’s are not bounded, thus we can not apply the Bernstein’s inequality directly. As
in the first method, we truncate Z k,A and consider the following decomposition:

{12c®] < fin},and {|Z,2] > fin}.
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where

KIBP + lgl})
(43) M K oo 12OV ()

We decompose then (42) as follows

n

) 1
(o) —gw(r0) = — VeV gza5,) — EORI)L7,815,))]

= (3 (20) — g D (@0)) + (55 (20) — g @ (w0)).
We have

& [sup (a1 0) g o)l = Vi),

- E sg,p{mg%)(xo)—g&’(aco)wg?’(xo)—gg?’<xo>\2—v<h’>/6}+}

< & foup (20! (au) — off )P = V)/6}, | + 28 sup (97 o) — 52 00) .
(445 23 E[{15 (@0) = gf) (@) P = V() 12}, | +2 D E [1957 (w0) — i (w0) ]
% W

We use the two following lemmas,

Lemma 8.3. Let the assumptions of Proposition 3.1 hold and and take ¢ in (15) such
that ¢ > 96. We have,

log(nA)
nA

B =E |:S1}3,p{|§$)($0) — g\ (z0)]? — V(h’)/12}+] <C

with C = 16| K|22(P + ||g[|3).

Lemma 8.4. Let there exists By (known) such that 3 > [y. Define H = {%,1 <j<

M}, with M = [(nA)l/(QﬁOH)]. Then if the Z;’s admit a moment of order z such that
z>2(3+2/0), we have

. 1
By = Y E |37 (w0) — g5 (20) ] < O'—.
h/

Lemmas 8.3 and 8.4 can be used in (44) and yield

E [S}Ll/p {19n (x0) — g (z0)* — V(h')/6}+] <c” (nLA + 10gn(ZA)>

This ends the proof of Proposition 8.5. O



20 MELINA BEC*, CLAIRE LACOUR**

8.3.2. Proof of Proposition 8.6. Proposition 8.6 is obtained by following the same lines as
for the proof of Proposition 8.5 with Yy (h) replaced by

/ ZkA A
Uk(h,h) = TK]Z/ *Kh (Z]€ —xo) .

8.3.3. Proof of lemmas 8.3 and 8.4. :

Proof of lemma 8.3:
We apply the Bernstein inequality recalled in Section 9 to W; = Yi(a)]l‘ 72|<j, Where

Y;(«) is defined by (32) and fi,, is defined by (43). We choose n = /(1/12 + y)V (I).
It is easy to see that

[ oo Fin
Al

—nn? (1/12)nV (R AN ynV (W) AR
exp { — = exp | — 5 oo | xexp | — 5 5
v K127 (P + lgli2) A K2°(P +lgl12)

= (nA) /% x (nA) Y8

_ K3 + llgll3)

and Var(W;) < v?: Al

Wil <b:=

and

We can write
B ]E’FEg’“929<wo>-929<woﬂ2-—‘f<hv/1z}+}
> V(h/)/ (nA) /% x max((nA) VS, (nA)~¢VI®)dy
| 0

< AnA)N V() max(Ina, Jna)
hl

with Ina =[5 exp (—%ylog(nA)) dy and Jpa = [ exp (—%ﬁlog(nA)) dy.
Thus if T,a < Joa,

8(nA)=¢'/% /
PS4y 2V
h/
/ 1
2 2 —c' /96
< 4 x4 x||K|2(P + g]3)(na)=/ zh: nh'A

— Cl — 1
< AxAx K| (P+|lglB)ma) O =
hl
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and if J,a < IpA,

32(nA)~—¢'/%
<
Br o< 4><(’/2210gnA22V

||KH2 (P—l—”g”Q)(n ) C,/96 1
< 4 4
< 4 x64x ' log(nA) - A
’ 2 —(c'/96)—1
< 4 x 64 x IEI2°(P + llgl)(nA) i
' log(nA) — W

Recall that H = {£,1 <k < M}. Then

Z W 7 < log(M)M
% k=1
So we have
1 1
— < M log(M
(nA) 9+ log(nA) ; WS )@ logna) L 1os(M),
and
71 < 71 M log(M
(nA)(c//gﬁ)—i-l %: ﬁ — (nA)(C’/%)'H og( )

As M = |(nA)V/ o+ | < nA and ¢/96 > 1

_( Jog(M) log (M)
By <4 x ||K|]2*(P 2 4 4 :
< LKA+ gl min (42530 o428
This completes the proof of lemma 8.3. O
Proof of lemma 8.4:

n A A
E [Igh/ (z0) — g5 (ﬂfo)lﬂ = Var |~ AI;L,K< . W L2815 )
k=1

1 K5
< o (AI)? SEI(Z8)° 128551

w—+2
1 KR ENZE /A
nA  h? av

We search conditions for »,, W < constant. The following equalities hold up to con-

stants:
Z 1 . Z V(h,)w/2 . log(nA)w/2 Z 1
22w 2 - w/2 24w /2

1% h HTZ 1% h (TLA) / h! h/ /

<

We set h' = k/M, so we have
M M

1 M FHP? 24w /2 1 24w /2
; h2rw/2 kZ:l <?> =M kZ:l E2tw/2 oM )-
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Finally, as M = | (nA)Y/(00+1) | we have

1 M2+/21og(nA)®/?
2 < ;
h’Q,Unw - (TLA)“’/2

_w
2

< Clog(nA)“/?(nA) 771 2+ %)

h/
We need that (24+w/2) x 1/(260 + 1) —w/2 < —2, so we need the Z; admit a moment of
order z =w+2>2(3+2/0).
This completes the proof of lemma 8.4. O

9. APPENDIX

Lemma 9.1. Let T, ..., T,, n independent random variables and Sy(T) = (1/n) Y ;| [T; —
E(T;)]. Then, forn >0,

-n 2
B(ISu(T)] > 7) < 2exp< ”/2)

2
—-nn —-nn
(45) < 2max <exp ( 2 > , €XP <4—b>> ,

where Var(Ty) < v? and |T1| < b.
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