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ADAPTIVE POINTWISE ESTIMATION FOR PURE JUMP LÉVY

PROCESSES

MÉLINA BEC*, CLAIRE LACOUR**

Abstract. This paper is concerned with adaptive kernel estimation of the Lévy density
N(x) for bounded-variation pure-jump Lévy processes. The sample path is observed at n
discrete instants in the ”high frequency” context (∆ = ∆(n) tends to zero while n∆ tends
to infinity). We construct a collection of kernel estimators of the function g(x) = xN(x)
and propose a method of local adaptive selection of the bandwidth. We provide an oracle
inequality and a rate of convergence for the quadratic pointwise risk. This rate is proved
to be the optimal minimax rate. We give examples and simulation results for processes
fitting in our framework. We also consider the case of irregular sampling.

Keywords. Adaptive Estimation; High frequency; Pure jump Lévy process; Nonpara-
metric Kernel Estimator.

March 9, 2015

1. Introduction

Consider (Lt, t ≥ 0) a real-valued Lévy process with characteristic function given by:

(1) ψt(u) = E(exp iuLt) = exp (t

∫
R

(eiux − 1)N(x)dx).

We assume that the Lévy measure admits a density N and that the function g(x) = xN(x)
is integrable. Under these assumptions, (Lt, t ≥ 0) is a pure jump Lévy process without
drift and with finite variation on compact sets. Moreover E(|Lt|) < ∞ (see Bertoin
(1996)). Suppose that we have discrete observations (Lk∆, k = 1, ..., n) with sampling
interval ∆. Our aim in this paper is the nonparametric adaptive kernel estimation of the
function g(x) = xN(x) based on these observations under the asymptotic framework n
tends to ∞. This subject has been recently investigated by several authors. Figueroa-
López and Houdré (2006) use a penalized projection method to estimate the Lévy density
on a compact set separated from 0. Other authors develop an estimation procedure based
on empirical estimations of the characteristic function ψ∆(u) of the increments (Z∆

k =
Lk∆ −L(k−1)∆, k = 1, . . . , n) and its derivatives followed by a Fourier inversion to recover
the Lévy density. For low frequency data (∆ is fixed), we can quote Watteel and Kulperger
(2003), or Jongbloed and van der Meulen (2006) for a parametric study. Still in the low
frequency framework, Neumann and Reiß (2009) estimate ν(x) = x2N(x) in the more
general case with drift and volatility, and Comte and Genon-Catalot (2010b) use model
selection to build an adaptive estimator. An adaptive method to estimate linear functionals
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is also given in Kappus (2012). Belomestny (2011) addresses the issue of inference for time-
changed Lévy processes with results in term of uniform and pointwise distance. One can
also cite Gugushvili (2012) or Nickl and Reiß (2012) for recent works at fixed ∆.

In the high frequency context, which is our concern in this paper, the problem is simpler
since, for any fixed u, ψ∆(u) → 1 when ∆ → 0. This implies that ψ∆(u) need not to be
estimated and can simply be replaced by 1 in the estimation procedures. This is what is
done in Comte and Genon-Catalot (2009). These authors start from the equality:

(2) E
[
Z∆
k e

iuZ∆
k

]
= −iψ′∆(u) = ∆ψ∆(u)g∗(u),

obtained by differentiating (1). Here g∗(u) =
∫
eiuxg(x)dx is the Fourier transform of

g, well defined since we assume g integrable. Then, as ψ∆(u) ' 1, equation (2) writes

E
[
Z∆
k e

iuZ∆
k

]
' ∆g∗(u). This gives an estimator of g∗(u) as follows:

1

n∆

n∑
k=1

Z∆
k e

iuZ∆
k .

Now, to recover g, the authors apply Fourier inversion with cutoff parameter m. Here, we
rather introduce a kernel to make inversion possible:

1

n∆

n∑
k=1

Z∆
k K

∗(uh)eiuZ
∆
k

which is in fact the Fourier transform of 1/(nh∆)
∑n

k=1 Z
∆
k K((x − Z∆

k )/h). At the end,
in the high frequency context, a direct method without Fourier inversion can be applied.
Indeed, a consequence of (2) is that the empirical measure:

µ̂n(dz) =
1

n∆

n∑
k=1

Z∆
k δZ∆

k
(dz)

weakly converges to g(z)dz (note that the idea of exploiting this weak convergence is
already present in Figueroa-López (2009b)). This suggests to consider kernel estimators
of g of the form

(3) ĝh(x) = Kh ? µ̂n(x) =
1

n∆

n∑
k=1

Z∆
k Kh(x− Z∆

k )

where Kh(x) = (1/h)K(x/h) and K is a kernel such that
∫
K = 1. Below, we study the

quadratic pointwise risk of the estimators ĝh(x) and evaluate the rate of convergence of this
risk as n tends to infinity, ∆ = ∆(n) tends to 0 and h = h(n) tends to 0. This is done under
Hölder regularity assumptions for the function g. Note that a pointwise study involving a
kernel estimator can be found in van Es et al. (2007) for more specific compound Poisson
processes, but the estimator is different from ours, as well as the observation scheme. In
Figueroa-López (2011) a pointwise central limit theorem is given for the estimation of the
Lévy density, as well as confidence intervals. Still in the high frequency context, but for
integrated distance, we can cite Ueltzhöfer and Klüppelberg (2011), and Duval (2012) for
the estimation of a compound Poisson process with low conditions on ∆. Bücher and
Vetter (2013) deal with the multivariate case.
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In this paper, we study local adaptive bandwidth selection (which the previous au-

thors do not consider). For a given non-zero real x0, we select a bandwidth ĥ(x0) such
that the resulting adaptive estimator ĝĥ(x0)(x0) automatically reaches the optimal rate of

convergence corresponding to the unknown regularity of the function g. The method of
bandwidth selection follows the scheme developped by Goldenshluger and Lepski (2011)
for density estimation. The advantage of our kernel method is that it allows us to estimate
the Lévy density at a fixed point, with a local adaptive choice. This method is easy to
implement, and we show its good numerical performance on different examples. Moreover
our contribution includes an alternative proof for a lower bound result (see Figueroa-López
(2009a)) which proves the optimality of the rate for this pointwise estimation. We also
study the framework of irregular sampling.

In Section 2, we give notations and assumptions. In Section 3, we study the pointwise
mean square error (MSE) of ĝh(x0) given in (3) for g belonging to a Hölder class of
regularity β and we present the bandwidth selection method together with both lower
and upper risk bound for our adaptive estimator. The rate of convergence of the risk
is (log(n∆)/n∆)β/(2β+1) which is expected in adaptive pointwise context. Examples and
simulations in our framework are discussed in Section 4. The case of irregular sampling is
addressed in Section 5 and proofs are gathered in Section 6.

2. Notations and assumptions

We present the assumptions on the kernel K and on the function g required to study
the estimator given by (3). First, we set some notations. For any functions u, v, we denote
by u∗ the Fourier transform of u, u∗(y) =

∫
eiyxu(x)dx and by ‖u‖2, < u, v >, u ? v the

quantities

‖u‖2 =

(∫
|u(x)|2dx

)1/2

,

< u, v >=

∫
u(x)v(x)dx with zz = |z|2 and u ? v(x) =

∫
u(y)v(x− y)dy.

We shall also use ‖u‖1 =
∫
|u(x)|dx and ‖u‖∞ = supx∈R |u(x)|. For a positive real β,

bβc denotes the largest integer strictly smaller than β. Let us also define the following
functional space:

Definition 2.1. (Hölder class) Let β > 0, L > 0 and let l = bβc. The Hölder class

H(β, L) on R is the set of all functions f : R −→ R such that derivative f (l) exists and
verifies:

|f (l)(x)− f (l)(y)| ≤ L|x− y|β−l, ∀x, y ∈ R.

We can now define the assumptions concerning the target function g, defined by g(x) =
xN(x), where N is the Lévy density.

G1: g ∈ L2

G2: g∗ is differentiable almost everywhere and its derivative belongs to L1

G3(p): For p integer,
∫
|x|p−1|g(x)|dx <∞

G4(β): g ∈ H(β, L)
G5: g′ exists and is uniformly bounded
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The first assumption is natural to use Fourier analysis, as well as G3(1). Assumption
G3(p) ensures that E|Z∆

1 |p <∞. G4 is a classical regularity assumption in nonparametric
estimation; it allows to quantify the bias (see Tsybakov (2009)). Note that G5 and G3(2)
imply G1. Moreover G5 implies that g ∈ H(1, L′) so we can assume β ≥ 1.

Now let us describe which kind of kernel we choose for our estimator. For m ≥ 1 an
integer, we say that K : R → R is a kernel of order m if functions u 7→ ujK(u), j =
0, 1, ...,m are integrable and satisfy∫

K(u)du = 1,

∫
ujK(u)du = 0, j ∈ {1, ...,m}.

Let us define the following conditions

K1: K belongs to L1 ∩ L2 ∩ L∞ and K∗ ∈ L1

K2(β): The kernel K is of order bβc and
∫
|x|β|K(x)|dx < +∞

These assumptions are standard when working on problems of estimation by kernel
methods. Note that there is a way to build a kernel of order l. Indeed, let u be a bounded
integrable function such that u ∈ L2, u∗ ∈ L1 and

∫
u(y)dy = 1, and set for any given

integer l,

K(t) =

l∑
k=1

(
l

k

)
(−1)k+1 1

k
u

(
t

k

)
.(4)

The kernel K defined by (4) is a kernel of order l which also satisfies K1 (see Kerkyacharian
et al. (2001) and Goldenshluger and Lepski (2011)). As usual, we define Kh by

∀x ∈ R Kh(x) =
1

h
K
(x
h

)
.

In all the following we fix x0 ∈ R, x0 6= 0.

3. Risk bound

3.1. Risk bound for a fixed bandwidth. In this subsection, the bandwidth h is fixed,
thus we omit the subscript h for the sake of simplicity: we denote ĝ = ĝh, defined in (3).
The usual bias variance decomposition of the Mean Squared Error yields:

MSE(x0, h) := E[(ĝ(x0)− g(x0))2] = E[(ĝ(x0)− E[ĝ(x0)])2] + (E[ĝ(x0)]− g(x0))2.

But the bias needs further decomposition:

b(x0)2 := (E[ĝ(x0)]− g(x0))2 ≤ 2b1(x0)2 + 2b2(x0)2

with the usual bias,

b1(x0) = Kh ? g(x0)− g(x0),

and the bias resulting from the approximation of ψ∆(u) by 1,

b2(x0) = E[ĝ(x0)]−Kh ? g(x0).

We can provide the following bias bound:

Lemma 3.1. Under G3(1), G4(β), G5 and if the kernel K satisfies K1 and K2(β)

|b(x0)|2 ≤ c1h
2β + c′1∆2

with c1 = 2
(
L/bβc!

∫
|K(v)||v|βdv

)2
and c′1 = 2(2‖g′‖∞‖g‖1‖K‖1)2.
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Moreover, the variance is controlled as follows:

Lemma 3.2. Under G1, G2, G3(2) and if the kernel satisfies K1, we have

Var[ĝ(x0)] ≤ c2
1

nh∆
+ c′2

1

nh

with c2 = ‖(g∗)′‖1‖K‖22/(2π) and c′2 = ‖K‖22‖g‖22.

Lemmas 3.1 and 3.2 lead us to the following risk bound:

Proposition 3.1. Under G2, G3(2), G4(β), G5 and if K satifies K1 and K2(β), we have

MSE(x0, h) ≤ c1h
2β + c2

1

nh∆
+ c′2

1

nh
+ c′1∆2.(5)

Recall that ∆ = ∆(n) is such that limn→+∞∆ = 0, thus 1/nh is negligible compared

to 1/nh∆. For the two first terms the optimal choice of h is hopt ∝ ((n∆)
− 1

2β+1 ) and

the associated rate has classical order O
(

(n∆)
− 2β

2β+1

)
. Next, a sufficient condition for

∆2 ≤ (n∆)
− 2β

2β+1 for all β is

(C*) ∆ = O(n−1/3).

Proposition 3.2. Under the assumptions of Proposition 3.1 and under condition (C*),

the choice hopt ∝ ((n∆)
− 1

2β+1 ) minimizes the risk bound (5) and gives MSE(x0, hopt) =

O((n∆)
− 2β

2β+1 ). As a consequence E[(ĝ(x0)/x0 −N(x0))2] = O((n∆)
− 2β

2β+1 ).

We can link this result to the one of Figueroa-López (2011) who proves that his pro-

jection estimator N̂ is such that (N̂(x0)−N(x0))(n∆)α tends to a normal distribution
for any 0 < α < β/(2β + 1). Note that when condition (C*) is not satisfied, the rate
of convergence is spoiled. For example, if ∆ ∼ n−γ with 0 < γ < 1, then the rate of

convergence becomes (n∆)
−2 min

(
β

2β+1
, γ
1−γ

)
.

The rate obtained in Proposition 3.2 turns out to be the optimal minimax rate of
convergence over the class H(β, L). This result is proved in Figueroa-López (2009a) in the
more general case of estimators based on the whole path of the process up to time n∆.
In our case of discrete sampling, another proof is given in Section 6.3, where we prove the
following result:

Theorem 3.1. Assume ∆ = O(1) and ∆−1 = O(n). Let x0 6= 0. There exists C > 0 such
that for any estimator ĝn(x0) based on observations Z∆

1 , . . . , Z
∆
n , and for n large enough,

sup
g∈H(β,L)

Eg
[
(ĝn(x0)− g(x0))2

]
≥ C(n∆)

− 2β
2β+1 .

Obviously, the result is also true replacing g by the Lévy density N .

3.2. Bandwidth selection. As β is unknown, we need a data-driven selection of the
bandwidth. We follow ideas given in Goldenshluger and Lepski (2011) for density esti-

mation. We introduce a set of bandwidth of the form H = { jM , 1 ≤ j ≤ M} with M an
integer to be specified later. Actually it is sufficient to control

∑
h∈H h

−w for some w so
that more general set of bandwiths are possible. We set:

V (h) = C0
log(n∆)

nh∆
(6)
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with C0 to be specified later. Note that V (h) has the same order as the variance multiplied
by log(n∆). We also define ĝh,h′(x0) = Kh′?ĝh(x0) = Kh?ĝh′(x0). This auxiliary estimator
can also be written

ĝh,h′(x0) =
1

n∆

n∑
k=1

Z∆
k Kh′ ? Kh(x0 − Z∆

k ).

Lastly we set, as an estimator of the bias,

A(h, x0) = sup
h′∈H

[
|ĝh,h′(x0)− ĝh′(x0)|2 − V (h′)

]
+
.

Heuristically, this term has the same order as suph′∈H
[
E(ĝh,h′(x0)− ĝh′(x0))

]2
because

the distance to the expectation is canceled by V (h′). And, if h′ tends to 0, E(ĝh,h′(x0))−
E(ĝh′(x0)) tends to E(ĝh(x0)) − g(x0). The precise link with the bias is detailed in the
proofs. Then, the adaptive bandwidth h is chosen as follows:

ĥ = ĥ(x0) ∈ arg min
h∈H
{A(h, x0) + V (h)}.

This can be seen as a bias-variance trade-off since V (h) is close to the variance.
Before to study the performance of our final estimator ĝĥ(x0), let us clarify the obser-

vation context. We still work in the high frequency framework, and we have seen that we
need conditon (C*). Thus, the assumption on the observation step is the following

S: ∆→ 0 and n∆→∞. Moreover ∆ ≤ 1 and ∆ = O(n−1/3)

We can now state the following oracle inequality.

Theorem 3.2. We use a kernel satisfying K1 and a set of bandwidth H = { jM , 1 ≤ j ≤
M} with M = O((n∆)1/3). Assume that g satisfies G1, G2, G3(5) and take V (h) such
that

(7) C0 = C0(c) =
c

2π
‖K‖22

(
‖(g∗)′‖1 + ‖g∗‖22

)
with c ≥ 16 max(1, ‖K‖∞). Then, under scheme S,

E[|g(x0)− ĝĥ(x0)|2] ≤ C
{

inf
h∈H

{
ess sup |g − E[ĝh]|2 + V (h)

}
+

log(n∆)

n∆

}
.

Thus our estimator ĝĥ has a risk as good as any of the collection (ĝh)h∈H , up to a
logarithmic term. The pointwise control of the bias has been replaced by an uniform
control. Actually, it is possible to keep the pointwise risk in the right term at the cost of a
supplementary term suph′∈H |Kh′ ?bh(x0)|2. Although our estimator is not linear (we have
an extra bias), it is exactly the same situation as in Goldenshluger and Lepski (2013), and
we can conjecture it is in some sense unavoidable.

Note that the theorem is valid for c large enough, say c ≥ c0. In the proof, we obtain
the upper bound 16 max(1, ‖K‖∞) for c0, unfortunately we can conjecture that this bound
is not the optimal one. To obtain a sharper bound we have tuned c0 in the simulation
study.

The definition of the estimator uses ‖(g∗)′‖1 and ‖g∗‖22, but these quantities can be
estimated with a preliminar estimator of g∗. More precisely, we set K∗0 = 1[−1,1] and

̂‖(g∗)′‖1 =

∫ ∣∣∣∣∣ 1

n∆

n∑
k=1

(Z∆
k )2K∗0 (uh1)eiuZ

∆
k

∣∣∣∣∣ du with h1 = (n∆)−1/3,



ADAPTIVE POINTWISE ESTIMATION FOR PURE JUMP LÉVY PROCESSES 7

‖̂g∗‖22 = ‖ĝ∗h2
‖22 =

∫ ∣∣∣∣∣ 1

n∆

n∑
k=1

Z∆
k K

∗
0 (uh2)eiuZ

∆
k

∣∣∣∣∣
2

du with h2 = (n∆)−1/3.

We introduce the following smoothness condition: a function ψ belongs to the Sobolev
space Sob(1) if

∫
|ψ∗(u)|2|u|2du <∞ (this means that ψ has a derivative which is square-

integrable). Then, reinforcing the conditions on g, we obtain a similar theorem with an
empirical C0.

Theorem 3.3. We use a kernel satisfying K1 and K2(1) and M = O((n∆)1/3). Assume
that g satisfies G2, G3(32), G4(1), G5. Assume also that g and xg(x) belong to Sob(1).

In the definition of ĥ, replace V (h) by V̂ (h) = Ĉ0log(n∆)/(nh∆) where

Ĉ0 =
c

2π
‖K‖2

(
̂‖(g∗)′‖1 + ‖̂g∗‖22

)
with c ≥ 32 max(1, ‖K‖∞). Then, under scheme S,

E[|g(x0)− ĝĥ(x0)|2] ≤ C
{

inf
h∈H

{
ess sup |g − E[ĝh]|2 + V (h)

}
+

log(n∆)

n∆

}
,

where V (h) is defined by (6) and (7).

Let us now conclude with the consequence of this theorem in term of rate of convergence.
As already explained, as we need assumption G5 to control the bias, we can assume β ≥ 1.
Then hopt ∝ (log(n∆)/n∆)1/(2β+1) ≥ (n∆)−1/3 belongs to H as soon as M is larger than

a constant times (n∆)1/3. Hence we can state the following corollary.

Corollary 3.1. Assume that g satisfies G2, G3(5), G4(β) with β ≥ 1 and G5. We choose

a kernel satisfying K1 and K2(β), and M = b(n∆)1/3c. Take C0 as in Theorem 3.2 (or
as in Theorem 3.3 with assumptions of this latter theorem). Then, under scheme S,

E[|g(x0)− ĝĥ(x0)|2] = O
(

(log(n∆)/n∆)
− 2β

2β+1

)
.

Then the price to pay to adaptivity is a logarithmic loss in the rate. Nevertheless this
phenomenon is known to be unavoidable in pointwise estimation (see Butucea (2001)).
Thus ĝĥ(x0) (resp. ĝĥ(x0)/x0) is an adaptive estimator for g(x0) (resp. N(x0)).

4. Examples and Simulations

We have implemented the estimation method for four different processes (listed in Exam-
ples 1-4 below). As usual in nonparemetric estimation, to obtain the rate of convergence,
the kernel has to be of order larger than β, or, equivalently, the smoothness has to be
smaller than the order of the kernel. In practice this does not play a big role, so we use
the kernel described in (4) with l = 2 and u the Gaussian density.

The bandwidth set has been fixed to H = { j
2M , 1 ≤ j ≤M} with M = b2(n∆)1/3c. For

the implementation, a difficulty is the proper calibration of the constant c in (7). This
is usually done by a large number of preliminary simulations. We have chosen c = 0.1
as the adequate value for a variety of models and number of observations (as previously
announced, this practical c is different from the theoretical one). The estimation and
adaptation are done for 50 points x0 on the abscissa interval. For clarity, we have computed
the Mean Integrated Square Error (MISE) of the estimators. We also give the MSE(x0) =

MSE(x0, ĥ) in some points x0, by way of example. Illustratively, Figures 1 and 2 plot
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ten estimated curves corresponding to our four examples with in the first column ∆ =
0.2, n = 5.103, and in the second ∆ = 0.05, n = 5.104.

Example 1. Let Lt =
∑Nt

i=1 Yi, where (Nt) is a Poisson process with constant intensity
λ and (Yi) is a sequence of i.i.d random variables with density f independent of the process
(Nt). Then, (Lt) is a Lévy process with characteristic function

(8) ψt(u) = exp

(
λt

∫
R

(eiux − 1)f(x)dx

)
.

Its Lévy density is N(x) = λf(x) and thus g(x) = λxf(x). For our first example, we

choose λ = 2 and f such that g(x) = xf(x) = (1/2)
√
x/2 for 0 < x ≤ 2. Then assump-

tion G4(1/2) holds (on (0, 2)), but not G4(β) for other β. Since β is small, the rate of
convergence is slow. The discontinuity in 2 damages the estimation as it can be seen in
Figure 1.

Example 2. Let α > 0, γ > 0. The Lévy-Gamma process (Lt) with parameters (γ, α)
is such that, for all t > 0, Lt has Gamma distribution with parameters (γt, α), i.e the
density:

αγt

Γ(γt)
xγt−1e−αx1x≥0.

The Lévy density is N(x) = γx−1e−αx1x>0 so that g(x) = γe−αx1x>0 satisfies assumptions
G1, G2 and G3(p). Here we choose α = γ = 1. This example allows to study the role of
the discontinuity in 0, which invalidates assumptions G4-G5. It is simulated in Ueltzhöfer
and Klüppelberg (2011) who obtain a better MISE (for N) than ours because of this
singularity. Nevertheless we can observe that the estimation become very good if we move
away from 0.

Example 3. For our third example, we also choose a compound Poisson process, but

with f the Gaussian density with variance δ2. Thus g(x) = λxf(x) = λxe−x
2/(2δ2)/(δ

√
2π)

and g∗(u) = iλδue−δ
2u2/2. Assumptions G1, G2, G3(p),G5 hold for g. Moreover g belongs

to a Hölder class of regularity β for all β > 0. Thus the rate is close to (n∆/ log(n∆))−1,
and the good performance of our estimator is visible on Figure 2. Note that is the jump
part of the so-called Merton model used for describing the log price in financial modeling.
Here we choose λ = 0.1 and δ = 0.05.

Example 4. Our last example is the Variance Gamma process, as described in Madan
et al. (1998). It is used for modeling the dynamics of the logarithm of stock prices. The
process is obtained in evaluating a Brownian motion at a time given by a Lévy-Gamma
process. Denoting (Bt) a standard Brownian motion, and (Xt) a Lévy-Gamma process
with parameters (1/ν, 1, ν) independent of (Bt), we set Lt = θXt + σBXt . Then Lt is a
Lévy process, with

g(x) =
x exp(θx/σ2)

ν|x|
exp

(
− 1

σ

√
2

ν
+
θ2

σ2
|x|

)
.

As in example 2, there is a discontinuity in 0. Here we choose θ = 0.1, σ2 = 0.1, ν = 0.5.

5. Irregular sampling

For high frequency data, it is frequent that the sampling is irregular, i.e. the interval ∆ is
not necessarily the same at each time. In this section we consider the following framework.
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Ex 1 (n∆ = 1000) Ex 1 (n∆ = 2500)
MISE= 0.032 MISE= 0.014

MSE(0.1)=0.006 , MSE(1.6)=0.014 MSE(0.1)=0.001 , MSE(1.6)=0.002
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Ex 2 (n∆ = 1000) Ex 2 (n∆ = 2500)
MISE= 0.089 MISE= 0.057

MSE(0.5)=0.001, MSE(4)= 0.12× 10−3 MSE(0.5)= 0.93× 10−3 , MSE(4)= 0.87× 10−4
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Figure 1. Function g (solid line) and estimators ĝĥ (dotted lines).

The observations are (Ltk , k = 1, ..., n) where (Lt) is still a Lévy process with characteristic
function (1). For each k ≥ 1, we denote ∆k = tk − tk−1 the sampling intervals. Notice
that it includes the previous case when for each k, ∆k = ∆. The increments are denoted
by Zk = Ltk − Ltk−1

. In this context of irregular sampling, they are still independent but
with non-identical distribution: Zk has the same law than L∆k

. To define an estimator,
we observe that E

[
Zke

iuZk
]

= ∆kψ∆k
(u)g∗(u), and then

E

[
1∑n

k=1 ∆k

n∑
k=1

Zke
iuZk

]
=

(∑n
k=1 ∆kψ∆k

(u)∑n
k=1 ∆k

)
g∗(u).
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Ex 3 (n∆ = 1000) Ex 3 (n∆ = 2500)
MISE= 0.76× 10−5 MISE= 0.24× 10−5

MSE(0)= 0.13× 10−5, MSE(0.1)= 0.15× 10−4 MSE(0)= 0.22× 10−6 , MSE(0.1)= 0.11× 10−4
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Ex 4 (n∆ = 1000) Ex 4 (n∆ = 2500)
MISE= 0.023 MISE= 0.022

MSE(0.1)=0.159, MSE(0.4)=0.006 MSE(0.1)=0.014 , MSE(0.4)= 0.26× 10−3
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Figure 2. Function g (solid line) and estimators ĝĥ (dotted lines).

Thus, denoting ∆̄ = 1
n

∑n
k=1 ∆k, we introduce

(9) ĝ∗h(u) =
1

n∆̄

n∑
k=1

Zke
iuZkK∗(hu), ĝh(x) =

1

n∆̄

n∑
k=1

ZkKh(x− Zk).

Additionally, for all real δ, we denote ∆δ = 1
n

∑n
k=1 ∆δ

k. We can bound the Mean Squared
Error of this estimate:
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Proposition 5.1. Under G2, G3(2), G4(β), G5 and if K satifies K1 and K2(β), we have

MSE(x0, h) ≤ c1h
2β + c2

1

nh∆̄
+ c′2

∆2

nh∆̄2
+ c′1

(
∆2

∆̄

)2

(10)

with c1 = 2
(
L/bβc!

∫
|K(v)||v|βdv

)2
, c′1 = 2(2‖g′‖∞‖g‖1‖K‖1)2, c2 = ‖(g∗)′‖1‖K‖22/(2π),

c′2 = ‖K‖22‖g‖22.

The proof is similar to the case of regular sampling, therefore it is omitted.

In this section, we are still interested in the high frequency context: the asymptotic
framework is

S’: ∆̄→ 0 and n∆̄→∞ when n→∞. We shall also assume that (∆2)2/∆̄ ≤ 1 and

(∆2)2

∆̄
= O(n−1).(11)

Condition (11) is verified for instance if ∆k = Ck−α with α ∈ [1/3, 1]. Then we find
the same rate of convergence replacing ∆ by ∆̄:

Proposition 5.2. Under the assumptions of Proposition 5.1 and under condition (11),

the choice hopt ∝ ((n∆̄)
− 1

2β+1 ) minimizes the risk bound (10) and gives MSE(x0, hopt) =

O((n∆̄)
− 2β

2β+1 ).

As already noticed in Comte and Genon-Catalot (2010a), other estimation strategies
than (9) are possible. For each real δ, we obtain an estimator by setting

ĝh(x) =
1

n∆δ+1

n∑
k=1

∆δ
kZkKh(x− Zk).

Under suitable conditions, this estimate has a MSE bounded by a constant times (n∆δ+1
2
/

∆2δ+1)
− 2β

2β+1 . But, for all δ, by the Schwarz inequality, ∆δ+1
2
/∆2δ+1 ≤ ∆̄. That is why

we prefer estimator (9).
To build an adaptive estimator, we use the same method of bandwidth selection. The

set of bandwidth is still H = { jM , 1 ≤ j ≤M}. We also define

ĝh,h′(x0) = Kh′ ? ĝh(x0) =
1

n∆̄

n∑
k=1

ZkKh′ ? Kh(x0 − Zk)

and we set as previously A(h, x0) = suph′∈H
[
|ĝh,h′(x0)− ĝh′(x0)|2 − V (h′)

]
+

with

V (h) = C0
log(n∆̄)

nh∆̄
.

Then the estimator is ĝĥ(x0) with ĥ = ĥ(x0) ∈ arg minh∈H{A(h, x0) + V (h)}.
We can state the following oracle inequality (the proof is very similar to the one of

Theorem 3.2 and is therefore omitted).
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Theorem 5.1. We use a kernel satisfying K1 and M = O((n∆̄)1/3). Assume that g
satisfies G1, G2, G3(5) and take

(12) C0 =
c

2π
‖K‖22

(
‖(g∗)′‖1 + ‖g∗‖22

)
with c ≥ 16 max(1, ‖K‖∞). Then, under scheme S’,

E[|g(x0)− ĝĥ(x0)|2] ≤ C
{

inf
h∈H

{
ess sup |g − E[ĝh]|2 + V (h)

}
+

log(n∆̄)

n∆̄

}
.

Moreover, if g satisfies G5, G4(β) with β ≥ 1 and the kernel satisfying K1 and K2(β) ,

and M = b(n∆̄)1/3c, then

E[|g(x0)− ĝĥ(x0)|2] = O
(

(log(n∆̄)/n∆̄)
− 2β

2β+1

)
.

Thus the rate of convergence in this case of irregular sampling is (log(n∆̄)/n∆̄)
− 2β

2β+1

provided that (∆2)2/∆̄ = O(n−1).

6. Proofs

Let us first state two classical propositions (see for instance Proposition 2.1 in Comte
and Genon-Catalot (2009) for a proof).

Proposition 6.1. Denote by P∆ the distribution of Z∆
1 and define µ∆(dx) = ∆−1xP∆(dx).

If
∫
R |x|N(x) <∞, the distribution µ∆ has a density h∆ given by

h∆(x) =

∫
g(x− y)P∆(dy) = Eg(x− Z∆

1 ).

Proposition 6.2. Let p ≥ 1 an integer such that
∫
R |x|

p−1|g(x)|dx <∞. Then E(|Z∆
1 |p) <

∞ and E[(Z∆
1 )p] = ∆

∫
R x

p−1g(x)dx + o(∆). Moreover, if g is integrable, E(|Z∆
1 |) ≤

2∆‖g‖1.

6.1. Proof of Lemma 3.1. First, we study b2(x0) using Proposition 6.1:

b2(x0) =
1

h∆
E
[
Z∆

1 K

(
x0 − Z∆

1

h

)]
− 1

h

∫
K

(
x0 − u
h

)
g(u)du

=
1

h

∫
K

(
x0 − u
h

)
E[g(u− Z∆

1 )− g(u)]du.

Now, applying the mean value theorem to g, we get

|b2(x0)| =

∣∣∣∣1h
∫
K

(
x0 − u
h

)
E[−Z∆

1 g
′(uZ1)]du

∣∣∣∣ with uZ1 ∈ [u− Z∆
1 , u ]

≤ ‖g′‖∞‖K‖1E
∣∣Z∆

1

∣∣ .
From the results of Proposition 6.2 we obtain

|b2(x0)| ≤ 2‖g′‖∞‖K‖1‖g‖1∆.(13)

To study b1(x0) = Kh ? g(x0)− g(x0), it is sufficient to use Taylor’s theorem and G4(β)
(this is a classic computation, see Tsybakov (2009) for details) and we obtain

|b1(x0)| ≤ hβL

l!

∫
|K(v)||v|βdv.(14)
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Gathering (13) and (14) completes the proof of Lemma 3.1. �

6.2. Proof of Lemma 3.2. As the Z∆
k are i.i.d., we have:

Var[ĝ(x0)] = Var

[
1

nh∆

n∑
k=1

Z∆
k K

(
x0 − Z∆

k

h

)]
=

1

n(h∆)2
Var

[
Z∆

1 K

(
x0 − Z∆

1

h

)]
.

Thus,

Var[ĝ(x0)] ≤ 1

n(h∆)2
E
[
(Z∆

1 )2K2

(
x0 − Z∆

1

h

)]
.

Writing

K2

(
x0 − Z∆

1

h

)
=

∣∣∣∣ 1

2π

∫
K∗(u)e−i

(x0−Z
∆
1 )u

h du

∣∣∣∣2,
we obtain with v = u/h

Var[ĝ(x0)] ≤ 1

n∆2
E

[
(Z∆

1 )2

∣∣∣∣ 1

2π

∫
K∗(vh)e−i(x0−Z∆

1 )vdv

∣∣∣∣2
]

≤ 1

n∆2(2π)2E
[∫∫

Z∆
1 e

iZ∆
1 vK∗(vh)e−ix0vZ∆

1 e
iZ∆

1 uK∗(uh)e−ix0udvdu

]
.

Using Fubini and E[(Z∆
1 )2eiZ

∆
1 (v−u)] = −ψ′′∆(v − u) we find

Var[ĝ(x0)] ≤ 1

n∆2(2π)2

∫∫
| − ψ∆

′′(v − u)K∗(vh)K∗(uh)|dvdu.

Now the following formula

ψ∆
′′ = i∆ψ∆

′g∗ + i∆ψ∆g
∗′ = −∆2ψ∆g

∗2 + i∆ψ∆g
∗′.

gives Var[ĝ(x0)] ≤ T1 + T2 with

T1 =
1

n∆2(2π)2

∫∫
|∆2ψ∆(v − u)(g∗)2(v − u)K∗(vh)K∗(uh)|dvdu,

T2 =
1

n∆2(2π)2

∫∫
|∆ψ∆(v − u)(g∗)′(v − u)K∗(vh)K∗(uh)|dvdu.

We first bound T2:

T2 ≤ 1

n∆(2π)2

√∫∫
|ψ∆(v − u)||(g∗)′(v − u)||K∗(vh)|2dvdu

×

√∫∫
|ψ∆(v − u)||(g∗)′(v − u)||K∗(uh)|2dvdu

≤ 1

n∆(2π)2

∫
|K∗(vh)|2dv

∫
|ψ∆(z)||(g∗)′(z)|dz

≤ 1

nh∆(2π)2

∫
|K∗(u)|2du

∫
|(g∗)′(z)|dz, because |ψ∆(z)| ≤ 1

≤ ‖K‖22
2πnh∆

∫
|(g∗)′(z)|dz
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where (g∗)′ exists and is integrable by G2. Following the same line for the study of T1, we
get

T1 ≤
‖K‖22
2πnh

∫
|(g∗)2(z)|dz ≤

‖K‖22‖g‖
2
2

nh
.

This completes the proof of Lemma 3.2. �

6.3. Proof of the lower bound. Here we prove Theorem 3.1 The essence of the proof
is to build two functions g0 and g1 which are far in term of pointwise distance but with
close associated distribution. Let

g0(x) = xfλ(x) =
1

π

λx

1 + (λx)2

where fλ is the density of the Cauchy distribution C(0, λ) with scale parameter λ. Here λ
is a positive and small enough real (it will be made precise later). Now let K a infinitely

differentiable and even function such that
∫
K = 0, K(0) 6= 0 and |K(k)(x)| ≤ |x|−2−k for

|x| large enough (say for |x| > B) and for all k ≥ 0. We shall also use that the Fourier
transform K∗ exists, is differentiable almost everywhere with K∗ and (K∗)′ ∈ L1∩L2∩L∞.
Take for instance K equals to the difference between the Cauchy density and the normal
density. Using this auxiliary function K, we can define

g1(x) = g0(x) + chβnK

(
x− x0

hn

)
x

where c is a constant to be specified later and

hn = (n∆)
− 1

2β+1 .

We denote N0(x) = g0(x)/x and N1(x) = g1(x)/x. Remark that if L0,t =
∑Nt

i=1 Yi is a
compound Poisson process with Nt a Poisson process of intensity 1 and Yi Cauchy C(0, λ)
variables, then its characteristic function is

ψ0,t(u) = exp (t

∫
R

(eiux − 1)N0(x)dx)

and Z0,∆
k = L0,k∆ − L0,(k−1)∆ has distribution P0(dx) = e−∆δ0(dx) + ϕ0(x)dx with

ϕ0(x) =
∞∑
k=1

e−∆ ∆k

k!
f?kλ (x)

(where ? denotes the convolution). Moreover N1 is a density if c small enough. Indeed

the definition of K guarantees that
∫
N1(x)dx =

∫
N0(x)dx + chβn

∫
K
(
x−x0
hn

)
dx = 1.

And to ensure the positivity of N1, it is sufficient to prove that |N1 −N0| ≤ N0. But, if
|x| > |x0|+Bhn ,

N−1
0 (x)|N1(x)−N0(x)| ≤ Cchβ+2

n x2|x− x0|−2 ≤ 1

for c small enough, and if |x| ≤ |x0|+Bhn,

N−1
0 (x)|N1(x)−N0(x)| ≤ Cchβn(1 + (λ(|x0|+Bhn))2)‖K‖∞ ≤ 1

for c small enough. Then, if L1,t =
∑Nt

i=1 Yi with Nt a Poisson process of intensity 1 and Yi
random variables with density N1, it is a Lévy process with Lévy measure N1(x)dx. We



ADAPTIVE POINTWISE ESTIMATION FOR PURE JUMP LÉVY PROCESSES 15

denote ψ1,∆ the characteristic function of L1,∆ with distribution P1, and ϕ1 the function

such that P1(dx) = e−∆δ0(dx) + ϕ1(x)dx.

Now let us denote for two probability measures P andQ, χ2(P,Q) =
∫

(dP/dQ− 1)2 dQ.
We shall use the following result stated in Tsybakov (2009) (section 2.2 and Theorem 2.2):

Theorem. Let Θ be a nonparametric class of functions containing the function θ to esti-
mate, and {Pθ, θ ∈ Θ} be a family of probability measures on a measurable space (X ,A)
associated with the data. Let d be a distance on Θ. Let θ0 and θ1 be two functions in Θ
such that d(θ, θ1) ≥ 2ψn. If χ2(P1, P0) ≤ α <∞ then

inf
θ̂n

sup
θ∈Θ

Eθ
[
ψ−2
n d2(θ̂n, θ)

]
≥ max

(
e−α

4
,
1−

√
α/2

2

)
Then it is sufficient to show that

1) g0, g1 belong to H(β, L),

2) |g1(x0)− g0(x0)| ≥ C(n∆)
− β

2β+1 ,
3) χ2(Pn1 , P

n
0 ) ≤ C < ∞ where Pn1 (resp. Pn0 ) is the distribution of a sample

Z∆
1 , . . . , Z

∆
n s.t the associated Lévy process L0 (resp. L1) has Lévy measure

N0(x)dx (resp. N1(x)dx).

In the following we denote all constants by C, even if it changes from line to line.

Proof of 1). Belonging to the Hölder space
To prove that our hypotheses belong to H(β, L), it is sufficient to show that, for i = 0, 1,

‖g(k+1)
i ‖p ≤ L where k = bβc and p−1 = 1 + k − β. Indeed Hölder inequality gives

|g(k)
i (x)− g(k)

i (y)| =
∣∣∣∣∫ g

(k+1)
i (v)1[x,y](v)dv

∣∣∣∣ ≤ ‖g(k+1)
i ‖p|x− y|β−k for all x, y.

When x goes to infinity, g
(k+1)
0 (x) = Cλ−1x−k−2 + o(x−k−2) so it belongs to Lp since

p(k+2) = (k+2)/(k+1−β) > 1. Choosing λ small enough ensures ‖g(k+1)
0 ‖p ≤ L/2 ≤ L.

Now to study g1, we can write

(g1 − g0)(k+1)(x) = cxK(k+1)

(
x− x0

hn

)
hβ−k−1
n + c(k + 1)K(k)

(
x− x0

hn

)
hβ−kn .

Let us see if this two terms are in Lp. Writing x = x− x0 + x0 and changing variables∫ ∣∣∣∣xK(k+1)

(
x− x0

hn

)∣∣∣∣p dx ≤ 2p−1hp+1
n

∫
|vK(k+1)(v)|pdv + 2p−1|x0|phn

∫
|K(k+1)(v)|pdv.

In the same way ∫ ∣∣∣∣K(k)

(
x− x0

hn

)∣∣∣∣p dx ≤ hn ∫ |K(k)(v)|pdv.

These integrals are finite since |K(k)(v)| ≤ v−(2+k) so that |vK(k+1)(v)| ≤ v−(2+k) for v
large enough and p(k + 2) = (k + 2)/(k + 1− β) > 1. Thus

‖(g1 − g0)(k+1)‖pp ≤ Ccp(hnhp(β−k−1)
n + hnh

p(β−k)
n ) ≤ Ccphp(1/p+β−k−1)

n ≤ Ccp ≤ (L/2)p

for suitable c. Then g1 − g0 belongs to H(β, L/2) and g1 belongs to H(β, L).
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Proof of 2). Rate

By assumption, x0 6= 0 and we can see that |g1(x0)−g0(x0)| = chβn|K(0)x0| with K(0) 6= 0.

Since hn = (n∆)
− 1

2β+1 , this quantity has the announced order of the rate: (n∆)
− β

2β+1 .

Proof of 3). Chi-square divergence
Since the observations are i.i.d., χ2(Pn1 , P

n
0 ) = (1 + χ2(P1, P0))n − 1. Thus, it is sufficient

to prove that χ2(P1, P0) = O(n−1) where

χ2(P1, P0) =

∫
x 6=0

(
ϕ1(x)

ϕ0(x)
− 1

)2

ϕ0(x)dx.

Indeed P1({0}) = e−∆ = P0({0}). Now let us remark that

ϕ0(x) =
∞∑
k=1

e−∆ ∆k

k!
f?kλ (x) ≥ e−∆∆fλ(x) ≥ ∆e−Cλπ−1/(1 + (λx)2)

since ∆ is bounded. Then ϕ0(x) ≥ C−1∆x−2 for |x| large enough, say |x| ≥ A and ϕ0(x) ≥
C−1∆ for |x| ≤ A. Next we write χ2(P1, P0) =

∫
x 6=0 (ϕ1(x)− ϕ0(x))2 (ϕ0(x))−1dx = I1+I2

where I1 is the integral for |x| < A and I2 for |x| ≥ A. We will bound these two terms
separately.

Since ϕ0(x) ≥ C−1∆ for |x| small

I1 =

∫
|x|<A

(ϕ1(x)− ϕ0(x))2 (ϕ0(x))−1dx ≤ C∆−1

∫
|x|<A

(ϕ1(x)− ϕ0(x))2 dx.

For i = 0, 1, the Fourier tranform of ϕi is ψi,∆(u)− Pi({0}). Thus Parseval equality gives

I1 ≤ C∆−1

∫
|ψ1,∆(u)− ψ0,∆(u)|2 du.

In order to get a bound on |ψ1,∆ − ψ0,∆|, we apply the mean value theorem:

|ψ1(u)− ψ0(u)| ≤ sup
z∈Iu
|ez||∆

∫
(eiux − 1)(N1(x)−N0(x))dx|

where Iu is the segment in C between au = ∆
∫

(eiux − 1)N0(x)dx and bu = ∆
∫

(eiux −
1)N1(x)dx. But∫

(eiux − 1)(N1(x)−N0(x))dx = chβn

∫
(eiux − 1)K

(
x− x0

hn

)
dx = chβ+1

n eiux0K∗(hnu).

Thus

|ψ1(u)− ψ0(u)| ≤ (supz∈Iu e
R(z))∆chβ+1

n |K∗(hnu)|
where R(x) means the real part of x. We can compute R(au) = au = ∆(N∗0 (u) − 1) =
∆(exp(−|u/λ|)− 1) ≤ 0 and

R(bu) = R(∆(N∗0 (u)− 1 + (N1 −N0)∗(u))) = ∆(N∗0 (u)− 1 + chβ+1
n R(K∗(hnu)eiux0)).

Since K is even,

R(bu) = ∆(exp(−|u/λ|)− 1 + chβ+1
n K∗(hnu) cos(ux0)) ≤ c∆hβ+1

n ‖K∗‖∞ ≤ C
so that

|ψ1(u)− ψ0(u)| ≤ eC∆chβ+1
n |K∗(hnu)|.(15)
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Then

I1 ≤ C∆−1

∫ ∣∣∣∆hβ+1
n K∗(hnu)

∣∣∣2 du ≤ C∆h2β+1
n .(16)

Let us now bound the term I2, using that ϕ0(x) ≥ C−1∆x−2 for |x| large enough

I2 =

∫
|x|≥A

(ϕ1(x)− ϕ0(x))2

ϕ0(x)
dx ≤ C∆−1

∫
(ϕ1(x)− ϕ0(x))2 x2dx.

But F = ϕ1 − ϕ0 has Fourier transform

F ∗ = ψ1,∆ − ψ0,∆ = exp(∆(e−|u/λ| + chβ+1
n K∗(hnu)eiux0 − 1))− exp(∆(e−|u/λ| − 1))

and this function is differentiable everywhere except at u = 0, with derivative

F ∗′ = ∆γ1ψ1,∆ −∆γ0ψ0,∆

where

γ0(u) = −sign(u).e−|u/λ|/λ, γ1(u) = γ0(u) + chβ+1
n eiux0(ix0K

∗(hnu) + hnK
∗′(hnu)).

Let us now prove that the Fourier transform of F ∗′ is −2πixF (−x). Let us write the
factorization

(17) ∆−1F ∗′ = γ1ψ1,∆ − γ0ψ0,∆ = (γ1 − γ0)ψ1,∆ + γ0(ψ1,∆ − ψ0,∆)

with |ψ1,∆| ≤ 1. Since K∗ and K∗′ are uniformly bounded, γ1 − γ0 is bounded as well.
In the same way, the inequality (15) entails that ‖ψ1,∆ − ψ0,∆‖∞ < ∞, so that F ∗′ is
bounded. Thus F ∗ is Lipschitz and absolutely continuous. Moreover, using again (17),
we can see that F ∗′ is integrable. Then, according to Rudin (1987), the Fourier transform
of F ∗′ is −ixF ∗∗(x) (it is in fact a simple integration by parts). Since F ∗ is integrable,
F ∗∗(x) = 2πF (−x) almost everywhere, and we have proved that (F ∗′)∗(x) = −2πixF (−x)

a.e.. Next, the Parseval equality provides
∫
|xF (x)|2dx = (2π)−1

∫
|F ∗′(u)|2du. Thus

I2 ≤ C∆−1
∫
|xF (x)|2dx ≤ C∆(2π)−1

∫
|γ1ψ1,∆ − γ0ψ0,∆|2.

Hence, using the factorization (17) we can split I2 ≤ π−1C∆(I2,1 + I2,2) with{
I2,1 =

∫
|γ1 − γ0|2,

I2,2 =
∫
|γ0(ψ1,∆ − ψ0,∆)|2.

Using the definition of γ1, we compute

I2,1 = c2h2β+2
n

∫
|ix0K

∗(hnu) + hnK
∗′(hnu)|2du

≤ 2c2h2β+1
n

(
x2

0

∫
|K∗|2 + hn

∫
|K∗′|2

)
≤ 4πc2h2β+1

n

(
x2

0

∫
|K|2 + hn

∫
|xK(x)|2

)
≤ Ch2β+1

n .(18)

Now, in order to deal with I2,2, we use the previous bound (15) on |ψ1,∆ − ψ0,∆|

I2,2 ≤ Cc2∆2h2β+2
n

∫
|γ0(u)K∗(hnu)|2du

≤ Cc2∆2h2β+2
n ‖K∗‖∞‖γ0‖22 ≤ Ch2β+1

n(19)

since ∆ is bounded.



18 MÉLINA BEC*, CLAIRE LACOUR**

Finally, by gathering (16), (18) and (19), since hn = (n∆)1/(2β+1), we get

χ2(P1, P0) ≤ C∆h2β+1
n = O(n−1).

This ends the proof of Theorem 3.1. �

6.4. Proof of Theorem 3.2. The goal is to bound E[|g(x0) − ĝĥ(x0)|2]. To do this, we
fix h ∈ H. We write

|g(x0)− ĝĥ(x0)| ≤ |ĝĥ(x0)− ĝh,ĥ(x0)|+ |ĝh,ĥ(x0)− ĝh(x0)|+ |ĝh(x0)− g(x0)|.

So we have

|g(x0)− ĝĥ(x0)|2 ≤ 3R2
1 + 3R2

2 + 3R2
3

with R1 = |ĝĥ(x0)− ĝh,ĥ(x0)|, R2 = |ĝh,ĥ(x0)− ĝh(x0)|, R3 = |ĝh(x0)− g(x0)|. According

to the definition of A(h):

A(h) ≥ |ĝĥ(x0)− ĝh,ĥ(x0)|2 − V (ĥ) = R2
1 − V (ĥ).

So R2
1 ≤ A(h) + V (ĥ). In the same way, A(ĥ) ≥ |ĝh,ĥ(x0)− ĝh(x0)|2 − V (h) = R2

2 − V (h).

So R2
2 ≤ A(ĥ) + V (h). Therefore,

|g(x0)− ĝĥ(x0)|2 ≤ 3(A(h) + V (ĥ)) + 3(A(ĥ) + V (h)) + 3|ĝh(x0)− g(x0)|2.

Now, by definition of ĥ, A(ĥ) + V (ĥ) ≤ A(h) + V (h). This allows us to write

|g(x0)− ĝĥ(x0)|2 ≤ 6A(h) + 6V (h) + 3|ĝh(x0)− g(x0)|2.

Let us denote bh(x0) = E[ĝh(x0)]− g(x0) and bh,2(x0) = E[ĝh(x0)]−Kh ? g(x0) (these are
the same notation as in Lemma 3.1, but with subscript h). Thus

E[|g(x0)− ĝĥ(x0)|2] ≤ 6E[A(h)] + 6V (h) + 3b2h(x0) + 3Var(ĝh(x0))

≤ 6E[A(h)] + 3b2h(x0) + (6 + 3/c)V (h).

It remains to bound E[A(h)]. Let us denote by gh,h′ = E[ĝh,h′ ] and gh = E[ĝh]. We write

(20) ĝh,h′ − ĝh′ = ĝh,h′ − gh,h′ − ĝh′ + gh′ + gh,h′ − gh′ ,

and we study the last term of the above decomposition. We have

gh,h′(x0)− gh′(x0) = E[ĝh,h′(x0)− ĝh′(x0)] = E[Kh′ ? ĝh(x0)− ĝh′(x0)]

= Kh′ ? E[ĝh(x0)− g(x0)] +Kh′ ? g(x0)− E[ĝh′(x0)].

This can be written:

gh,h′(x0)− gh′(x0) = Kh′ ? bh(x0)− bh′,2(x0).

Now, using inequality (13), |bh′,2(x0)| ≤ 2‖g′‖∞‖K‖1‖g‖1∆, so that

|gh,h′(x0)− gh′(x0)|2 ≤ 2|Kh′ ? bh(x0)|2 +O(∆2)

≤ 2‖K‖21 ess sup |bh|2 +O(∆2).(21)
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Then by inserting (21) in decomposition (20), we find:

A(h) = sup
h′
{|ĝh,h′(x0)− ĝh′(x0)|2 − V (h′)}+

≤ 3 sup
h′
{|ĝh,h′(x0)− gh,h′(x0)|2 − V (h′)/6}+

+3 sup
h′
{|ĝh′(x0)− gh′(x0)|2 − V (h′)/6}+ + 6‖K‖21 ess sup |bh|2 +O(∆2).(22)

We can prove the following concentration result:

Proposition 6.3. Assume that g satisfies G1, G2, G3(5) , K satisfies K1, M = O((n∆)1/3),
∆ ≤ 1 and take c in (7) such that c ≥ 16 max(1, ‖K‖∞). Then

E
[
sup
h′
{|ĝh′(x0)− gh′(x0)|2 − V (h′)/6}+

]
= O

(
log(n∆)

n∆

)
,(23)

E
[
sup
h′
{|ĝh,h′(x0)− gh,h′(x0)|2 − V (h′)/6}+

]
= O

(
log(n∆)

n∆

)
.(24)

This proposition is proved in Section 6.6 page 23. Inequalities (23) et (24) together
with (22) imply

E[|g(x0)− ĝĥ(x0)|2] ≤ C1 ess sup |bh|2 + C2V (h) + C3
log(n∆)

n∆
.

This completes the proof of Theorem 3.2. �

6.5. Proof of Theorem 3.3. In all this proof, we shall use the following notation:

θ̂∆(u) =
1

n

n∑
k=1

Z∆
k e

iZ∆
k u, η̂∆(u) =

1

n

n∑
k=1

(Z∆
k )2eiZ

∆
k u,

and θ∆(u) = Eθ̂∆(u), η∆(u) = Eη̂∆(u). We also denote f(x) = xg(x), so that f∗(u) =

−i(g∗)′(u) is estimated by f̂∗h1
= η̂∆(u)K∗(uh1)/∆. We shall use the following Lemma.

Lemma 6.1 (Proposition 2.3 in Comte and Genon-Catalot (2009)). Assume that g is
integrable, then we have:

(25) |ψ∆(u)− 1| ≤ |u|∆‖g‖1.
Moreover under G3(2p), for p ≥ 1,

(26) ∆−2pE
∣∣∣θ̂∆(v)− θ∆(v)

∣∣∣2p ≤ C(n∆)−p.

Now, let

Ω = {‖g∗ − ĝ∗h2
‖2 ≤ ‖g∗‖2(1− 1/

√
2) and ‖f∗ − f̂∗h1

‖1 ≤ ‖f∗‖1/2},

where h1 = (n∆)−1/3 = h2, as defined page 7. The proof is decomposed in three steps.
First we shall prove that the inequality is true on Ω, i.e.

E[|g(x0)− ĝĥ(x0)|21Ω] ≤ C
{

inf
h∈H

{
ess sup |g − E[ĝh]|2 + V (h)

}
+

log(n∆)

n∆

}
.
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The second step is to show the rough upper bound

E[|g(x0)− ĝĥ(x0)|4] ≤ C(n∆)2/3.

Finally we will show that P(Ωc) ≤ C(n∆)−8/3. Consequently

E[|g(x0)− ĝĥ(x0)|21Ωc ] ≤
√
E[|g(x0)− ĝĥ(x0)|4]P(Ωc) ≤ C(n∆)−1

and the theorem is proved.

• First step:
Following the proof of Theorem 3.2, we can obtain

|g(x0)− ĝĥ(x0)|21Ω ≤ 6A(h)1Ω + 6V̂ (h)1Ω + 3|g(x0)− ĝh(x0)|2.
Now, let us remark that on Ω

1

2
‖g∗‖22 ≤ ‖ĝ∗h2

‖22 ≤ (2− 1/
√

2)2‖g∗‖22 and
1

2
‖f∗‖1 ≤ ‖f̂∗h1

‖1 ≤
3

2
‖f∗‖1

with ‖f∗‖1 = ‖(g∗)′‖1, so that on Ω, 1
2C0 ≤ Ĉ0 ≤ 2C0 and

(27)
1

2
V (h)1Ω ≤ V̂ (h)1Ω ≤ 2V (h)

We thus get

E
[
|g(x0)− ĝĥ(x0)|21Ω

]
≤ 6E [A(h)1Ω] + 12V (h) + 3E|g(x0)− ĝh(x0)|2,

which leads to

E
[
|g(x0)− ĝĥ(x0)|21Ω

]
≤ 6E[A(h)1Ω] + 3b2h(x0) + (12 + 3/c)V (h).

Using the definition of A(h), it is then sufficient to prove

E
[
sup
h′
{|ĝh′(x0)− gh′(x0)|2 − V̂ (h′)/6}+1Ω

]
= O

(
log(n∆)

n∆

)
,(28)

E
[
sup
h′
{|ĝh,h′(x0)− gh,h′(x0)|2 − V̂ (h′)/6}+1Ω

]
= O

(
log(n∆)

n∆

)
(29)

to obtain the result. Using (27) and Proposition 6.3, since c/2 ≥ 16 max(1, ‖K‖∞),

E
[
sup
h′
{|ĝh′(x0)− gh′(x0)|2 − V̂ (h′)/6}+1Ω

]
≤ E

[
sup
h′
{|ĝh′(x0)− gh′(x0)|2 − 1

6

c/2

2π
‖K‖2

(
‖(g∗)′‖1 + ‖g∗‖22

) log(n∆)

n∆
}

+

]
= O

(
log(n∆)

n∆

)
and we prove (29) in the same way.
• Second step:
First, using Lemma 3.1, |gĥ(x0)− g(x0)|2 ≤ suph∈H

(
c1h

2 + c′1∆2
)
≤ C. Then the bias

term is uniformly bounded. Let us now study the “variance” term. We can write

ĝh(x0) =
1

2π

∫
e−ix0uK∗(uh)

1

∆
θ̂∆(u)du
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and, since all h ∈ H is larger than 1/M ,

|ĝĥ(x0)− gĥ(x0)| ≤ 1

2π
sup
h∈H

∫
|K∗(uh)|

∣∣∣∣∣ θ̂∆(u)− θ∆(u)

∆

∣∣∣∣∣ du
≤ M

2π

∑
h∈H

∫
|K∗(u)|

∣∣∣∣∣ θ̂∆(u/h)− θ∆(u/h)

∆

∣∣∣∣∣ du.
With a convex inequality

|ĝĥ(x0)− gĥ(x0)|4 ≤ M7

(2π)4

∑
h∈H

(∫
|K∗(u)|

∣∣∣∣∣ θ̂∆(u/h)− θ∆(u/h)

∆

∣∣∣∣∣ du
)4

Next, we use the following inequality (obtained with two uses of the Schwarz inequality):

E
[
(

∫
φ(u)du)4

]
=

∫∫∫∫
E [φ(u1) . . . φ(u4)] du1 . . . du4

≤
∫∫∫∫

E1/4
[
φ(u1)4

]
. . .E1/4

[
φ(u4)4

]
du1 . . . du4 =

(∫
E1/4

[
φ(u)4

]
du

)4

with φ(u) = |K∗(u)|
∣∣∣ θ̂∆(u/h)−θ∆(u/h)

∆

∣∣∣. Thus,

E
[
|ĝĥ(x0)− gĥ(x0)|4

]
≤ M7

(2π)4

∑
h∈H

∫ |K∗(u)|E1/4

∣∣∣∣∣ θ̂∆(u/h)− θ∆(u/h)

∆

∣∣∣∣∣
4
 du

4

.

But, according to (26) in Lemma 6.1, under G3(4), ∆−4E
∣∣∣θ̂∆(v)− θ∆(v)

∣∣∣4 ≤ C(n∆)−2.

Hence, under G3(4),

E|ĝĥ(x0)− gĥ(x0)|4 ≤ CM7
∑
h∈H

(∫
|K∗(u)|(n∆)−1/2du

)4

≤ C‖K∗‖41M8(n∆)−2 ≤ C‖K∗‖41(n∆)2/3.

• Third step:

P(Ωc) = P(‖g∗ − ĝ∗h2
‖2 > ‖g∗‖2(1− 1/

√
2) or ‖f∗ − f̂∗h1

‖1 > ‖f∗‖1/2)

≤ (‖g∗‖2(1− 1/
√

2))−8E‖ĝ∗h2
− g∗‖82 + (‖f∗‖1/2)−16E‖f̂∗h1

− f∗‖16
1

≤ C
(
E‖ĝ∗h2

− g∗h2
‖82 + E‖g∗h2

− g∗‖82 + E‖f̂∗h1
− f∗h1

‖16
1 + E‖f∗h1

− f∗‖16
1

)
.

Thus we have four terms to upperbound.

First term: Since ĝ∗h2
(u) = K∗0 (uh2)θ̂∆(u)/∆,

‖ĝ∗h2
− g∗h2

‖22 =
1

h2

∫
|K∗0 (u)|2

∣∣∣∣∣ θ̂∆(u/h2)− θ∆(u/h2)

∆

∣∣∣∣∣
2

du.



22 MÉLINA BEC*, CLAIRE LACOUR**

Then, according to (26) in Lemma 6.1, under G3(8),

E‖ĝ∗h2
− g∗h2

‖82 ≤ 1

h4
2

∫ E1/4

|K∗0 (u)|8
∣∣∣∣∣ θ̂∆(u/h2)− θ∆(u/h2)

∆

∣∣∣∣∣
8
 du

4

≤ 1

h4
2

(∫
|K∗0 (u)|2(n∆)−1du

)4

≤ ‖K∗0‖82M4(n∆)−4 ≤ 16(n∆)−8/3.

Second term: Since g∗h2
= K∗0 (uh2)g∗(u)ψ∆(u), we can decompose the bias into

g∗(u)− g∗h2
(u) = g∗(u)(1−K∗0 (uh2)) + g∗(u)K∗0 (uh2)(1− ψ∆(u)) = b1 + b2.

Using that g ∈ Sob(1) (
∫
|g∗(u)|2u2du <∞),

‖b1‖22 =

∫
|g∗(u)(1−K∗0 (uh2))|2du =

∫
|g∗(u)|21|uh2|>1du

≤
∫
|g∗(u)|2|uh2|2du ≤ Ch2

2.

On the other hand, using (25) in Lemma 6.1,

‖b2‖22 =

∫
|g∗(u)K∗0 (uh2)(1− ψ∆(u))|2du ≤ C∆2

∫
|g∗(u)u|2du

≤ C∆2 ≤ C(n∆)−1.

Thus, taking h2 = (n∆)−1/3 gives ‖g∗ − g∗h2
‖8 ≤ Ch8

2 + C(n∆)−4 ≤ C(n∆)−8/3.

Third term: Since f̂∗h1
(u) = K∗0 (uh1)η̂∆(u)/∆,

‖f̂∗h1
− f∗h1

‖1 ≤ 1

h1

∫
|K∗0 (u)|

∣∣∣∣ η̂∆(u/h1)− η∆(u/h1)

∆

∣∣∣∣ du.
Next, we use the following inequality

E
[
(

∫
φ(u)du)16

]
≤
(∫

E1/16
[
φ(u)16

]
du

)16

.

Exactly as Lemma 6.1, using the Rosenthal inequality, we can prove under G3(4p),

for p ≥ 1, ∆−2pE |η̂∆(v)− η∆(v)|2p ≤ C(n∆)−p. Then, under G3(32),

E‖f̂∗h1
− f∗h1

‖16
1 ≤ 1

h16
1

(∫
E1/16

[
|K∗0 (u)|16

∣∣∣∣ η̂∆(u/h1)− η∆(u/h1)

∆

∣∣∣∣16
]
du

)16

≤ 1

h16
1

(∫
|K∗0 (u)|(n∆)−1/2du

)16

≤ C‖K∗‖1(n∆)−8/3

since h1 = (n∆)−1/3.
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Fourth term: Since η∆ = −ψ′′∆ = ∆f∗ψ∆ +∆2(g∗)2ψ∆, we can decompose the bias
into

f∗(u)− f∗h1
(u) = f∗(u)−K∗0 (uh1)f∗(u)ψ∆(u)−∆K∗0 (uh1)(g∗(u))2ψ∆(u)

= f∗(u)(1−K∗0 (uh1)) + f∗(u)K∗0 (uh1)(1− ψ∆(u))

−∆K∗0 (uh1)(g∗(u))2ψ∆(u)

= b1 + b2 + b3.

Since xg(x) ∈ Sob(1) (
∫
|f∗(u)|2u2du <∞),

‖b1‖1 ≤
∫
|f∗(u)(1−K∗0 (uh1))|du =

∫
|f∗(u)|1|uh1|>1du

≤
(∫
|f∗(u)|2|uh1|2du

∫
|uh1|−21|uh1|>1du

)1/2

≤ Ch1/2
1 .

On the other hand, using (25) in Lemma 6.1,

‖b2‖1 ≤
∫
|f∗(u)K∗0 (uh1)(1− ψ∆(u))|du ≤ C∆

∫
|f∗(u)uK∗0 (uh1)|du

≤ C∆

(∫
|f∗(u)u|2du

∫
|K∗0 (uh1)|2du

)1/2

≤ C∆h
−1/2
1 ≤ C(h1n∆)−1/2,

and

‖b3‖1 ≤ ∆

∫
|K∗0 (uh1)(g∗(u))2ψ∆(u)|du

≤ ∆

∫
|(g∗(u))2|du ≤ C∆ ≤ C(n∆)−1/2.

Thus ‖f∗ − f∗h1
‖16

1 ≤ Ch8
1 + C(h1n∆)−8 + C(n∆)−8 ≤ C(n∆)−8/3.

This completes the proof of Theorem 3.3. �

6.6. Proof of Proposition 6.3. Note that

ĝh′(x0)− gh′(x0) =
1

n

n∑
k=1

[
Zk

∆

∆
Kh′

(
x0 − Zk∆

)
− E

(
Zk

∆

∆
Kh′

(
x0 − Zk∆

))]
.(30)

In order to apply a Bernstein inequality, since the Z∆
k ’s are not bounded, we truncate

these variables and consider the following decomposition:

{|Zk∆| ≤ µn} and {|Zk∆| > µn}

where

(31) µn = µn(h′) =
‖K‖22(‖(g∗)′‖1 + ‖g∗‖22)

2π‖K‖∞
√
V (h′)/6

.
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We then decompose (30) as follows

ĝh′(x0)− gh′(x0) =
1

n

n∑
k=1

Wk(h
′) + Tk(h

′)− E
(
Wk(h

′) + Tk(h
′)
)

= Sn(W (h′)) + Sn(T (h′))

where Sn(X) means (1/n)
∑n

i=1[Xi − E(Xi)] and

Wk(h) =
Zk

∆

∆
Kh

(
x0 − Zk∆

)
1{|Zk∆|≤µn(h)},(32)

Tk(h) =
Zk

∆

∆
Kh

(
x0 − Zk∆

)
1{|Zk∆|>µn(h)}.(33)

Thus

E
[
sup
h′
{|ĝh′(x0)− gh′(x0)|2 − V (h′)/6}+

]
≤ 2

∑
h′∈H

E
[
Sn(W (h′))2 − V (h′)/12

]
+

+ 2
∑
h′∈H

E
[
Sn(T (h′))2

]
.

Then we use the two following lemmas

Lemma 6.2. Assume that g satisfies G1, G2, K satisfies K1, and c ≥ 16,M = O((n∆)1/3),
∆ ≤ 1. Then there exists C > 0 only depending on K and g such that∑

h∈H
E
[
S2
n(W (h))− V (h)/12

]
+
≤ C log(n∆)

n∆
.

Lemma 6.3. Under assumptions K1, G3(5) and if M = O((n∆)1/3),∑
h∈H

E
[
S2
n(T (h))

]
≤ C ′ 1

n∆
.

Lemmas 6.2 and 6.3 yield

E
[
sup
h′
{|ĝh′(x0)− gh′(x0)|2 − V (h′)/6}+

]
≤ C ′′

(
1

n∆
+

log(n∆)

n∆

)
.

Inegality (24) is obtained by following the same lines as for inequality (23) with Kh

replaced by Kh′ ? Kh. This ends the proof of Proposition 6.3. �

6.7. Proof of lemma 6.2. First, note that

E
[
S2
n(W (h))− V (h)/12

]
+
≤

∫ ∞
0

P(S2
n(W (h)) ≥ V (h)/12 + x)dx

≤
∫ ∞

0
V (h)P

(
|Sn(W (h))| ≥

√
V (h)(1/12 + y)

)
dy.

Next, we recall the classical Bernstein inequality (see e.g. Birgé and Massart (1998) for a
proof):
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Lemma 6.4. Let W1, ...,Wn n independent and identically distributed random variables
and Sn(W ) = (1/n)

∑n
i=1[Wi − E(Wi)]. Then, for η > 0,

P(|Sn(W )| ≥ η) ≤ 2 exp

(
−nη2/2

ν2 + bη

)
≤ 2 max

(
exp

(
−nη2

4ν2

)
, exp

(
−nη
4b

))
,

where V ar(W1) ≤ ν2 and |W1| ≤ b.

We apply this form of Bernstein inequality toWi(h) defined by (32) and η =
√

(1/12 + y)V (h).
Using Lemma 3.2 and ∆ ≤ 1, it is easy to see that

Var(Wi) ≤ ν2 :=
‖K‖22(‖(g∗)′‖1 + ‖g∗‖22)

2π∆h
and |Wi| ≤ b :=

‖K‖∞µn(h)

∆h
.

We find

exp

(
−nη2

4ν2

)
= exp

(
− π(1/12)V (h)n∆h

2‖K‖22(‖(g∗)′‖1 + ‖g∗‖22)

)
× exp

(
− πyV (h)n∆h

2‖K‖22(‖(g∗)′‖1 + ‖g∗‖22)

)
= (n∆)−c/48 × (n∆)−cy/4

and

exp

(
−nη
4b

)
≤ (n∆)−c/48 × (n∆)−c

√
y/192.

Then we deduce

E
[
S2
n(W (h))− V (h)/12

]
+
≤

∫ ∞
0

V (h)(n∆)−c/48 max
(

(n∆)−cy/4, (n∆)−c
√
y/192

)
dy

≤ V (h)(n∆)−c/48

(∫ ∞
0

(n∆)−cy/4dy +

∫ ∞
0

(n∆)−c
√
y/192dy

)
≤ 4

c
V (h)(n∆)−c/48

(
1

log(n∆)
+

96

c log(n∆)2

)
using that

∫∞
0 e−y/λ = λ and

∫∞
0 e−

√
y/λ = 2λ2. Replacing V (h) by its value, it gives∑

h∈H
E
[
S2
n(W (h))− V (h)/12

]
+
≤ 4C0

c
(n∆)−1−c/48

(
1 +

96

c log(n∆)

)∑
h∈H

1

h
.

Recall that H = { kM , 1 ≤ k ≤M}. Then

∑
h

1

h
=

M∑
k=1

M

k
≤ log(M)M ≤ 1

3
log(n∆)(n∆)1/3.

Finally ∑
h∈H

E
[
S2
n(W (h))− V (h)/12

]
+
≤ 4C0

3c
(n∆)−2/3−c/48

(
log(n∆) +

96

c

)
≤ 4C0

3c
(n∆)−1

(
log(n∆) +

96

c

)
as soon as c ≥ 16. This completes the proof of lemma 6.2. �
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6.8. Proof of lemma 6.3. For a fixed bandwidth h in H, we can establish the following
bound:

E
[
|Sn(T (h))|2

]
= Var

[
1

n

n∑
k=1

Z∆
k

∆h
K

(
x0 − Z∆

k

h

)
1{|Z∆

k |>µn}

]

≤ 1

n

‖K‖2∞
(∆h)2

E[(Z∆
1 )21{|Z∆

1 |>µn}
]

≤ 1

n∆

‖K‖2∞
h2

E[|Z∆
1 |

w+2
/∆]

µnw

for any w > 0. Recall that, according to Proposition 6.2, E[|Z∆
1 |

w+2
/∆] is bounded under

G3(w + 2). We search conditions for
∑

h h
−2µn

−w ≤ constant. The following equalities
hold up to constants:∑

h∈H

1

h2µnw
=
∑
h

V (h)w/2

h2
=

log(n∆)w/2

(n∆)w/2

∑
h

1

h2+w/2
.

Since h = k/M , this provides∑
h

1

h2+w/2
=

M∑
k=1

(
M

k

)2+w/2

= M2+w/2
M∑
k=1

1

k2+w/2
= O(M2+w/2).

Finally, as M = O((n∆)1/3), we have∑
h

1

h2µnw
≤ CM

2+w/2 log(n∆)w/2

(n∆)w/2
≤ C log(n∆)w/2(n∆)

1
3

(2+w
2

)−w
2 .

We need that (2 + w/2) × 1/3 − w/2 < 0, so we need the Zi admit a moment of order
w + 2 ≥ 5. This completes the proof of lemma 6.3. �
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characteristic function estimation. Ann. Statist., 39(4):2205–2242.
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