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INTERACTION OF COHERENT STATES FOR HARTREE EQUATIONS

REMI CARLES

ABSTRACT. We consider the Hartree equation with a smooth kernel arektatnal po-
tential, in the semiclassical regime. We analyze the praiag of two initial wave packets,
and show different possible effects of the interactionoeding to the size of the nonlin-
earity in terms of the semiclassical parameter. We shovettiféerent sorts of nonlinear
phenomena. In each case, the structure of the wave as a swu oblherent states is pre-
served. However, the envelope and the center (in phase)spfabese two wave packets
are affected by nonlinear interferences, which are desdnirecisely.
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1. INTRODUCTION

Consider the following Hartree equation in the semicladsiegimes — 0:
2
L1) 0wt + %Awa = V(t,2)p" +e% (K« |[v°])¢°, t>0, xR,

wherea > 0, K : R - R,V : Ry x R? = R, d > 1. Equation[(I.1l) appears for
instance as a model to study superfluids, with applicatidBase—Einstein condensation:
in [5]6], the kernelK is given by the formula

K(z) = (a1 + az|z|* + as|z|*) e~ A1 4 g,e B’ 41 4o a3, a4, A, B € R.

Assume

(12) w(o,:w—e‘d/4a(%§0>e“wm/i a€SRY, q.p € R

Such initial data are called semiclassical wave packetsyloerent states. They correspond
to a wave function which is equally localized in space andé@uytfiency (at scal¢/z), so
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2 R. CARLES

the uncertainty principle is optimized: the three quamditi

=(0)| p2(res aV—z‘ﬂ) £(0 : =D ye(o
W Ollmo, | (ve9 - ) v Aol
have the same order of magnitude(l), ase — 0. In the linear caséS = 0, another
reason why such specific initial data are particularly ie$téing is that the superposition
principle is available: if we can descrié in the case[(1]2), then the evolution of a sum
of initial wave packets of the forni (1.2) is simply the sum lné £volutions of each initial
wave packet. In this paper, we address this question in thinsar setting. We describe
several nonlinear interference phenomena in the case vihetd is smooth, an@* (0, x)
is the sum of two such wave packets.

The value of the parameterin (1.J) measures the strength of the nonlinear interaction
in the limite — 0. In [10], where the Hartree nonlinearity is replaced by alownlinear-
ity, it is established that if nonlinear effects are criticaterms of semiclassical dynamics
(that is, the value of is critical, see§1.2 for this notion), then despite the fact that the
problem is nonlinear, the superposition principle remaiimshe limite — 0. In [9], the
case of an homogeneous Hartree nonlinedkify:) = \|z|~7 is considered: conclusions
similar to those in[[100] are proven. In these two framewotke,description of the wave
packet dynamics in a “supercritical” case (nonlinear éffere stronger than in the crit-
ical case) is an open question, even on a formal level. Onfttier dand, in the case of
a smoothHartree kernel, the propagation of a single wave packet bas Hescribed in
supercritical regimes|[([3, 9]). In this paper, we prove thahe critical regime, nonlinear
interferences affect the propagation of two initial wavekms at leading order, in contrast
with the case of an homogeneous kernel. We also describeothien@ar interactions in
supercritical regimes, where even stronger interfereacepresent. In all cases, we prove
a convergence result on all finite time intervalsq [0, T'] with 7" independent o), as
e —0.

and

Assumption 1.1. The external potential is C?3, real-valued, and at most quadratic in
space:

VeC*RyxRER), and 99V e L™ (Ry xRY), |8 =23.
The kernelK is C3, real-valued, bounded as well as its first three derivatives
K e C®*nW**(R%4R).
Consider the Hamiltonian flow:
(1.3) a(t) =p(t), pt)=-VV(t,q(t); q¢(0)=qo, p(0) = po.
The regularity of” implies that[[Z.B) has a unique, global solution
t— (q(t),p(t)) € C* (Ry; R*) .

Since we shall consider only bounded time intervals in thisgs, the growth in time of the
classical trajectories is not discussed.

1.1. The linear caseK = 0. Introduce the function
. —a(t )
Solsin(tax) _ Efd/4uhn (t, T \/qg( )) ez(S(t)er(t)-(zfq(t)))/s’

where(q, p) is given by [1.B), the classical action is given by

1.9 5= [ (5067 - Vissaton) as
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and the envelope'™ solves
R R | . .
(15) Zatuhn + §Auhn = 5 <y7 VQV (t7 Q(t)) y> uhn ) uhn(o’ y) = a(y)a

where the notatio? stands for the Hessian matrix. The following lemma is stadida
seee.g.[l4, 11,12, 13,120,121 22] and references therein.

Lemmal.2.Leta € S(R?), andy® solve I)with K = 0. There exist positive constants
C and(, independent of such that

14°(t) = @hin ()| L2(mey < CVE™,
In particular, there existg > 0 independent of such that

sup [[9°(t) — @i (D)l L2(re) — 0
0<t<celn L =0
1.2. Nonlinear case: notion of criticality. In the nonlinear cas& # 0, the following
distinction was established inl[9]:

e If a > 1, nonlinear effects are negligible at leading order: with $ame function
¢}, as in the previous section, there exists> 0 such that

105 (t) — @5 (t)]| 2(ray < CVee, Wt > 0.

e If a = 1, nonlinear effects become relevant at leading order (8mg®) = 0):
there exists > 0 such that

[ (®) = (e @ el

From this point of view, the case = 1 is critical: the supercritical behavior is described
in two casesq = 1/2 ([9]) anda = 0 ([3,[9]). The approximate solution derived in these
two cases may be viewed as a particular case of the appraxsohition presented below,
when one of the two initial wave packets is zero, so we choosémbe more explicit
about these two cases here. Other cases could be descrilvetl:ake casex €]0,1/2[ is
similar to the casex = 0, and the case: €]1/2,1] is similar to the caser = 1/2, up to
several modifications in the notations essentially.

In the casex > 1, nonlinear effects are negligible at leading order, so theegosition
principle remains: the nonlinear evolution of two (or moir@jial wave packets is well
approximated by the sum of the linear evolutions of each weaaket. We will see that
whena < 1, nonlinear interferences affect the behavior/6fat leading order.

Throughout this paper, fdr € IN, we will denote by

Ct
L < Cveett, vt>0.

Ek = f € LQ(Rd) 5 ||f||§3’C = Z HxaaffHLz(Rd) <00,
lal+18]<k

and¥! = X. As established in]9], it)*(0,-) € L?(R%), then under Assumptidn 1.1,
(T) has a unique solutiapf € C(R.; L2(R%)), regardless of the value ofl, and

[9° Ol 2wy = [19°(0) [ L2mey,  VE = 0.

To be complete, the regularity assumptionionn [9] is stronger, but Assumptidn 1.1 is enough.
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1.3. Critical case: a = 1. We now considei(1]1) in the case of two initial wave packets:
(@I.2) is replaced by

(1.6) Y(0,2) =Y g (L ;gﬂ) el=am) o/,

=12

with (qlo,plo) }é (QQo,pgo). Let (qjapj) be the solution tdIIIS) with initial da(@jo,pjo),
andS; the associated classical action given[by](1.4). Define tpecsgmate solution as

@7 ehta) ==Y (t, L\/‘Ig(’f)) (S5 (42,0 (=0 (D)) e
e

app
j=1,2
where the envelopas; are given by the formulas:

u (¢, — glin t, efitK(O)HalHr‘;riHazHr‘;zfJI((tzl(S)ﬂIz(S))tis7
(1.8) { 1(t,y) 1( Y)

us(t,y) = ™ (t, y)e~ K Ollazla —ilarll}a fi K(aa(9)=ar())ds.
with obvious notations adapted from (IL.5).

Theorem 1.3. Letd > 1, V, K satisfying Assumptidn1.1. Let, a» € X2, andvy° be the
solution to(T.d) with o = 1 and initial data(I.g). Then for anyl" > 0 independent of,
there existg” > 0 independent of such that

t:[%%] H¢5(t) B ipp(t)HB(Rd) < CVe,

wherey;  is given by(L.A)-(1.8).

The nonlinear effects are described at leading order byxperentials in[(118). Evenin
the case of a single initial wave packet (say= 0), the nonlinearity affects the envelope
by a phase self-modulation. The second terms in the expiatedescribe the effect of
nonlinear interferences.

As pointed out above, it may be surprising to notice that éwéhe critical casex = 1,
nonlinear interferences are present at leading order. i lvissharp contrast with the case
of an homogeneous kerndk (z) = Az|~7, 0 < v < min(2,d). It was shown in[[B]
than in this case, the critical value foris a. = 1 + /2, and that whenx = a., the
superposition principle remains, even though the nontibeaffects the propagation of a
single wave packet at leading order (the envelope equatiparilinear).

1.4. Casea = 1/2. The approximate solution is now constructed as follows. Jies
(g5,p), j = 1,2, are still given by the usual classical flow (1.3). On the otend, we
modify the actions, and make therdependent:

st = [ (37 = Visan(o) ) s

t
~VER Ol ey — Vel [ K (@n(s) ) ds
(1.9) 0

550 = [ (37~ Vissan(s) ) s

t
KOsy — VEa1 2 e, / K (g2(5) — au(s)) ds.
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Consider the system of Schrodinger equations

101 + %Aﬂl L <y,V V(t,qi(t)y) 1 + llar]|72y - VK (0)iy
+ HazHLzy VK (q:(t) — g2(t)) n,

10: o + %Aﬁg L <y,V V (¢, q2()) y> U + HaQHLzy VK (0)tus

+ HalHLzy VK (g2(t) — 1 (1)) 12,

with initial dataa; andas, respectively. These are two linear equations with timeedep
dent potentials, which are polynomialin of degree (at most) two. The following result
is classical, see e.d. [32,]15,]16]:

Lemma 1.4. For j = 1,2, leta; € L*(R%), and(q;,p;) € C°(R4;R2?) given by
(I3). There exists a unique solutidii;, i2) € C(R4;L*(R%))? to (I.I0) such that
(@1, 2)|4=0 = (a1, az). In addition, the following conservations hold:

(1.10)

Haj(t)HL2(Rd) = ”a’jHL2(Rd)a vt > 0, j =1,2.
To define the envelopes i (1.7), set

wlteon) = aslt)exp (i [ (VEO) Gals) + VK (aa(5) ~ ax(6) - Ga(s)) ds ).
us(t,y2) = ta(t, y2) exp (2 /Ot (VE(©) - Gas) + VK (g2(5) = 1(s)) - Ga(s)) d8> 7

whereG(t) = / z|u;(t, 2)|?dz. SinceG; is a nonlinear function ofi;, the system

formed by (u1,u2) is nonlinear, with a nonlinear coupling: nonlinear inteefeces are
present both in rapid oscillations — the modified actionsagate,/=-oscillations in time
— and in the envelopes. The presence of the funct@pm the above formulas reveals
non-local (in space) nonlinear phenomena concerning thel@pes iny: Since the

app’
problem is now supercritical, it should not be surprisingttstronger regularity properties

are assumed in the following result (see Renjark 4.2).

Theorem 1.5. Letd > 1. Assume that’ and K are real-valued and satisfy:
VeC Ry xRER), and 92V e L™ (Ry xRY), 2<8/<5
K € W5 (R%R).

Letay, as € X5, andyy,,, be given b{LAHI.8)-(L.10) Then for anyl" > 0 independent
of e, there exist€” > 0 independent of such that

Sup 1% (8) = o ()| 2 gty < CVE-

1.5. Casea = 0. In this last case, nonlinear interferences affect even ¢oengtric prop-
erties of the wave packets, in contrast with the cases1 anda = 1/2. The trajectories
are required to evolve according to the system

qi(t) = p(t),

a1y {7 1(t) = =VV (t,q1(t)) = laa[|72 VK (0) — [|az]|7- VK (1(t) — g2(t)) ,
G2(t) = pa(t),
pat) = =VV (t,q2(t)) = llaz]| 12 VK (0) = [la1 |72 VE (g2() — aa(t))
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UnlessV K is a constant (which would implies th#f is constant, a trivial case), one
cannot distinguish the unknowrs,, p;) and (g2, p2): the coupling cannot by undone,
and the “good unknown” igq:, p1, g2, p2) € R*?. Note that in general[{I.11) has no
Hamiltonian structure. In view of Assumptibn 1.1, Cauchipdchitz Theorem implies:

Lemma 1.6. For j = 1,2, let(gjo, pjo) € R?®. If V and K satisfy Assumptidn 1.1, then
(L.I1)has a unique solutiofiy; , p1, g2, p2) € C3 (R ; R*).

Before defining the modified actions, we have to constructthis envelopes. Consider
the coupled, nonlinear system

. 1 1
i0ruy + §Au1 =3 (y, My (t)y) uy — (V2K (0)G1(t),y) u1

—(V’K(q1 — ¢2)G2(t), y) us + %/(z, V2K (0)2) Jui(t, 2)dz x uy
(1.12) " % / (2, V2K (q1 = g2)2) |ua(t, 2)|*dz x ua,
|0 g Aus = £t M0 s — (P E )G (1), )

(V2K (g2 — q1)G1(t), y) us + %/<z, V2K (0)2) Jus(t, 2)[*dz x ua

1
+ 3 / <z, V2K (g2 — q1)2> lui (t, 2)|?dz x ug,

where the functiong; are assessed at timeand we have denoted

Gy(t) = / syt 2)[2dz, G =1,2,

Rd
Mi(t) = lla1]|72ma) VPE(0) + [laz]| 72 ma) VK (q1(t) — g2(t)) + VIV (8, 1 (t)) ,
Ma(t) = llaz]|72ra) V2K (0) + a1 |72 ma) VK (g2(t) — a1(t)) + V2V (2, g2(t)) -

The system defining the envelopes is more nonlinear thanadese = 1 anda = 1/2,
and, as in the case = 1/2, involves nonlinear terms which are non-local in space. In
Sectiorl b, we prove the following result:

Proposition 1.7. Let (q1, p1, ¢2, p2) be given by Lemnial.6, and, a; € X* with k > 1.
Then(@12) has a unique solutiofiuy, us) € C(R4;3F) with initial data (ay,az). In
addition, the following conservations hold:

llu; (Ol 2rey = lajllL2ray, VE=0, j=1,2.

We can then define the modifieddependent actions:

S5(t) = / t (5P =V (5, 0:(5)) — KOl ~ K (01(5) — aa(5)) a2l
+VEVE(0) - Gi(s) + VEVE (a1(s) - a2(s)) - Gals) ) ds,

S5(t) = / t (32 = V (5, 02(5)) — K(O)aallf ~ K (a2(5) — ar(s))

+VEVE(0) - Ga(s) + VEVE (g2(s) — qu(s)) - Gl(s))ds.
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Theorem 1.8. Letd > 1. Assume thaV’ and K are real-valued and satisfy:
Vel Ry xRER), and 92V e L™ (Ry xRY), 2<B|<7.
K e WI>(R%R).
Leta;,as € X7. There existy, 6, € C?(R; R), with §;(0) = 6,(0) = 0, such that the

following holds. For anyl” > 0 independent of, there exist€” > 0 independent of such
that

sup [[9°(t) = > @5(8)e ) < OV,
t€[0,T] j=1,2
: L2 (R
— . (t e
where we have denoted (, z) = e~/ *u; (t, S 1L jg( )> e/ (S5 (0 4p; (1) (a=a; (1)) /¢

In general, the phase shifs are not identically zero. In Sectiffh 8, we give the expres-
sion of these functions (which is probably a bit too involtecpresent at this stage), and
check thatin generalf, (0), 62(0)) # (0,0).

1.6. Comments.

The results.In the three cases studied here, the interferences arepanliThey always
affect the envelopes. In the case= 1/2, they affect moreover the action, and in the case
a = 0, the system[{1.11) reveals a nonlinear coupling of thedtajes, so all the terms
involved iny;,, are influenced by the nonlinearity.

Nonlinear interferences always carry a non-local in tinygeat Even ifK is decaying
at infinity, the interactions ignore the mutual distancehaf two wave packets: no matter
how largey; (t) — g2(t) is, nonlinear interferences affect the solution at okdér) on finite
time intervals, as — 0.

Our results yield a unified picture concerning Wigner meesisee e.gl [8, 18, 28]):

Corollary 1.9. In all the casesy = 1, « = 1/2 anda = 0, and under the Assumptions
of Theoreni 113, Theordm 1.5 and Theokem 1.8, respectitielyigner measure af° is
given by
w(t,z,6) = > [lal|2amed (v — (1) @6 (€ — p; (1)),
j=1,2
with (¢;, p;) given by the standard Hamiltonian flqf.3)in the cases: = 1 anda = 1/2,
and (QIapla q27p2) given bqu)'ﬂ the casex = 0.

To be complete, the proof of this corollary relies also onrémults established in Sec-
tion[3. In the two cases = 1 anda = 1/2, the Wigner measure of;,  is not affected
by the nonlinearity, even though we have seen that the Hantwalinearity does affect the
leading order behavior of the wave function, and that n@aimexchanges are present at
leading order. In the case = 0, nonlinear effects alter the Wigner measureen when
VK (0) = 0, a case which is often encountered in Physics (typicallfs-z) = K(x), so
the Hartree nonlinearity has an Hamiltonian structure)othrer words, the Wigner mea-
sure ofy° is always affected by nonlinear interferences. This is int@st with the case
of a single initial wave packet, where the trajectgqyp) is modified as if an electric field
|al|2.VK(0) - = was added to the initial Hamiltonian A + V: if VK (0) = 0, then the
Wigner measure ignores nonlinear effect even in the aase) (see([3[ 9]).

Note that if VK (0) # 0 (a case which is not necessarily physically relevant, frben t
above remark), Theorelm 1.8 is newen in the case of a single wave packet
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In this paper, we treat the case of two initial wave packets:approach can easily be
generalized to any (finite) number of initial wave packetg tain difference being that
formulas get more and more involved as the number of initelevpackets increases (but
the main analytical aspects are essentially the same).

We have examined the leading order behavior of the exactisoJwp to an error of
orderO(/¢): like in [3], v° could be approximated by a series involving powers/ef
up to arbitrary order. This statement is made more preci§g ifsee in particular Equa-
tion (8.2)): to prove Theorem1.8, the asymptotic expansfahe main unknown functions
has to be pushed one step further than in the cased anda = 1/2.

Comparison with related works/e briefly give more details concerning the propagation
of two wave packets described [n [9,/10]. Since both casesadiner similar, we describe
the case of a Hartree nonlinearity only/([9]). The main difece in the setting is thdt (1.1)
is replaced with

2
i+ 5 AU =Vt ) + A (j2 7 [F?) 47, 10, 2 R,

with A € R and0 < v < min(2, d). The critical value forvisa, = 1 + /2 > 1. When
a = ag, the propagation of one initial wave packet is well approatied by

— alt )
ot 7) = ey (t, “’7\/‘?)) (S0 (=) /e

where(q, p) is given by [1.B),S is the classical actiofi (1.4), and the envelep®lves the
nonlinear equation

1 1
i+ 5 Au = 2 (5, V2V (t.a(t) y) u+ A (jy] ™« ul?) w

Itis proved that two such wave packets evolve independé&otty each other, up to an error
whichisO (54%1%) ) . A way to understand this result compared to the ones pred&etre
is that sincex. > 1, no interference can occur at leading order.

There are several results which may seem similar to ourkgigdse of one initial wave
packet: see e.g. [T, 14,]17,123,] 24] 25| 26]. In those pageesinttial amplitudea is
very specific, since it is a ground state. The propagationsaalility of multi-solitons
for the nonlinear Schrodinger equation (without exteiatiential) have been studied in
[29,/30) 31, 3B] (see alsb [B6]). In the framework of thesegpathe waves do not interfere.

In [1], a problem which shares several features with ourtiidied: there is an external
potential, the regime is semiclassical (se€ [23]), andineat. The envelopes of the initial
data are two solitons. The structure of the soliton manifwiglies some rigidity on the
evolution of the initial data. Eventually, the two waves dx imteract at leading order.

On the other hand, in [27], the case of two solitons for thetitdarequation has been
studied. In this non-semiclassical setting, and in the rdxsef an external potential, the
authors construct a solution which behaves, for large tiike,the sum of two solitary
waves, whose respective centers in phase space evolvelaartrthe two-body problem.
This feature can be compared to Theofenh 1.8 (With: 0), where the centers of the wave
packets evolve according to the nonlinear sysfem [1.11yeMeeless, the envelopes are
given by the ground state, and do not evolve with time. Théyéinal approach is different:
in [27], a fine study of the Hartree operator linearized alibatsoliton is performed, in
particular to understand the spectral properties of thexatpr. On the other hand, we
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do not consider such an operator; a similar approach witlergéprofilesa,, a, like we
consider would probably be out of reach.

In [19,[34]35], a semiclassical regime is studied, in theg@nee of an external potential
and a nonlinearity. The potential is a double well potentad the associated has two
eigenfunctions. For initial data carried by these two efgeations, it is shown that the
nonlinear solution may remain concentrated on the eigentifums, with time-dependent
coefficients which interact nonlinearly.

In all the cases mentioned above, the nonlinear interferehthe envelopes is negligi-
ble, due to the fact that the envelopes decay exponentialiyur case, the decay is much
weaker. However, even though we have seen that the envelbpegs interact nonlinearly
in the cases studied here, we will see that some “rectangleis are negligible in the limit
e — 0, thanks to a microlocal argument (see Sedtion 3).

2. FORMAL DERIVATION

We resume the same approach as in the case of a single wawt ({&t) in the case
of (I.8): from this point of view the computations below indk the ones presented in [9].

2.1. The general strategy. We seek an approximate solution of the form

1) Ulta) ==Y (t, L\/‘Ig(’f)) (S (0+py () (e—as () e
e

app
7j=1,2

for some profiles:; independent of, and some functionS,(¢) to be determined. These
functionsS; correspond to the classical actidn {1.4) in the linear c&%e.will see that
according to the value in (1), the expression of; may vary, accounting for nonlinear
effects due to the presence of the Hartree nonlinearity,senid may be convenient to
considere-dependent functionS;. Also, according to the value ef, the pairs(q;, p;)
will solve the standard Hamiltonian systelm {1.3), or a medifine. Denote

¢;(t,z) = S;(t) +p;(t) - (x — g;(1)) -
In the casest = 0,1/2 anda = 1 considered in this paper, we will see that we can write

2
iedybe +%Aw5 S Vg — e (K |gE 1) vS,, =

app app app app app

(2.2) —d/4 i, (t,z) /e . x —q;(t)
£ Z e'Pil\t (bOj =+ \/gblj + Ebgj + ET‘j) t, T s
j=1,2

for b;; independent of. The approximate solution;, , is determined by the conditions

boj:blj:ijZO, _]:1,2

The remaining factor; accounts for the error between the exact solutiorand the ap-
proximate solution); . Introduce two new space variables, which are naturallgass
ated to each of the two approximating wave packets:

x—q;(t .
g =280 o

NG
At this stage, the introduction of these variables may seem artificial, since only the
variable will eventually remain. It can be understood asange of variable corresponding
to the moving frame of each wave packet. Technically, it Wwél justified by the fact,
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already present in the linear case = 0, that the remainders; will satisfy pointwise
estimates of the form

75 (12| < E ) )

_z—qi(t)
yj_T

The functionsA; are well localized, in the sense that— <y,) A% (t,y;) in bounded in
L*(RY) at Ieast fork = 3 (but possibly for largek’s), while typically, a function of the

form ,
<yj + nm\/ng(t)> A5(t,y;)

cannot be controlled ii?(R?) uniformly ine andt € [0, T if  # 0.

To conclude this paragraph, we expand each term on the ledt $ide of [Z.R) so it has
the form of the right hand side. In the other paragraphs, weudis the outcome according
to the valuex = 0,1/2 ora = 1.

The linear terms are computed as follows:

Zeatwapp c—d/4 Z el (tm)/e (ia&tuj _ ’L\/qu (t) - Vu; — Ujat¢j) .

j=1,2

62 — i z) Dj t 2

5A fxpp:E v Z ot ( Auj 4 iv/ep;(t) - Vu, — | J(2)| uj)'
j=1,2

Here, as well as below, one should remember that the furecdom assessed as in (2.1).
Recalling that the relevant space variabledgis y;, we have:

Qe = S;(t) + % (pi(t) - (& — q;(1))) = S5(8) + Ve (t) - yj —p;(t) - 45 (1)

For the linear potential term, we write

Viheop = V(t,x)e= 4 Z et ey (1)
j=1,2

= 5-d/4 Z ei¢j(t,m)/sv (t, 4 (t) + y]\/g) u; (t,yj),

j=1,2
and we perform a Taylor expansion faraboutz = g;(¢):
V (t.qi(t) +yivE) u(t,y;) =V (t,q5(t) ui(t, y;) + Vey; - VV (£, ¢;(t)) u;(t,y5)
5 (U VRV (6 (0) y) s 5) + 2205y (),
with
75y (ty)| < C (i) ug(t, ),

for someC' independent of, ¢ andy;, in view of Assumptiofi 1]1. In the cagé = 0, we
come up with the relations:

by == (850 i) 50+ S v gy

blil_] — (QJ(t) _ pj( )) . Vuj — Y- (pj(t) + VvV (tv QJ(t))) Uy
l1n = z@tug + Au] - % <yj7 VQV (t7 qj(t)) yj> uj'
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For the nonlinear term, the computations are heavier:

(5 % [y 7) 05y = =44 3 citse)/e ( [ KGN z>|2dz)uj<t,yj>.

7j=1,2

Eventually, each envelope; will solve a Schrodinger equation, the two equations being
coupled. The precise expression of these equations depamddut at this stage, we can
notice that forj = 1, 2, u; solves an equation of the form

) 1
(23) z@tuj + iAuj = <yj,V2V (t,qj(t)) yj>uj +FjUj,

N =

where the functior¥’;, accounting for nonlinear effects due to the Hartree keisetal-
valued We infer an important property: the*-norm ofu; is independent of time,

(2.4) llu; (Ol 2rey = lajllL2rey, VE=0, j=1,2.

At this stage, this is only a formal remark.

In the above sum, the variahlemust be expressed in termsygt

K*|1/)&pp /K dep t ,q;(t) + Vey; —z)’ dz

2

- K (2 ; - () —ae(t) =
d/2/ quk(t,m z)/suk <t Y + QJ( _ dz
y Yj .

k 1o \/g \/g

Before changing the integration variable, we develop thmsegd modulus:

2

: i(t) — t
Z ezd)k(t,m—z)/auk (t,y_j + q]( ) qk( ) _ i) —

k=1,2

o (s + RO ) (1 20720 -

+ 2Reel®1-92)/2y, (t yi + q;(t) _5 () %) o (t,ijrm\/;Q(t) _%)’

+ |u2

whereg, — ¢ stands forp, (t, 2 — z) — ¢2(t,x — z). To ease notations, we shall denote
in the rest of this paper:

0q(t) = q1(t) — q2(t);  p(t) = pr(t) — pa(t).

We can write

(K * |1/1app| ) spp = E_d/4 Z ei(bj(t’w)/a‘/jNL(tvyj)uj(tvyj)a
=12
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with

VN (t,y1) = E‘d/z/K(z)< u (t,yl _ %) + s (t,y1 " 5‘1_(? _ i)

. dq(t
+ 2Reel(91792)/5q, (t,yl - i) Uo (t,yl + at) _ i) )dz,

Ve Ve e
V'QNL t y2 d/2/K < uy

2

2

(o83

(b oq(t) z\ _ z
+ 2ReeHP1=%2)/5y, (t y —— U |ty — — dz.
Ve o /e T e

Each nonlinear potentif’yzfjl\’L is the sum of three terms. We will examine the third term in
Sectior B, to show that at least on finite time intervals, itegligible in the limite — 0,
regardless of the value af Therefore, we now consider only the other four terms. Denot

G,(t) :/Rd z|ui(t, 2)|*dz.

Changing variables in the integrations and performing doraxpansion of the kerné{’,

we find successively:
<t Yy — Z> dz—/K yl—z)|u1(t,z)|2dz
E

afd/z/K(z
= K(0)laslZ> + vellaillzop1 - VE(0) — VEVE(0) - Gi(t)
<y1, VQK(O)y1> HCLlH%z =+ % / <Z, VQK(O)Z> |U1(t, Z)|2dZ

~(PROGOm) + = [ 15,z = plat, )Pz,

oq(t) =
o (02 - )
— [ K (3att) + VE( - 2) fua 6,2 =

= K(6q)|laz||7> + VEllazl 7291 - VK (8q) — VEVK (3q) - Ga(t)

+ B <y1, VZK(éq)y1> HGQHLQ + = 5 /<Z, VQK(éq)Z> |U,2(t,z)|2d2

5

N ™

2

dz

e(VEK(69)Ga(t), y1) + &%/ /ng(ta 2 = yn)lua(t, 2)7dz,

2

Efd/Q dz

om0
= K(=6q)[|a1]|7> + Vellar[72y2 - VK (=dq) — VEVE(=dq) - Gi(t)
g <y2,V K(- 5q)y2> ||a1|\%2 + B / <z,V2K(—5q)z> |u1(t,z)|2dz
—€ <V2K(_5q)Gl(t)7y2> + 63/2/7,51 (Z - y2)|u1(t7 Z)|2dzv
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afd/Q/K(z) U <t,y2 — %)
— K(0)Jas]2: + VElaslaye - VE(0) — VEVE(D) - Galt)

<y2, VQK(O)y2> HCLQH%z + % / <Z, V2K(O)Z> |U2(t, Z)|2dZ

2
dz

4 €
2

—€ <V2K(O)G2(t), y2> +&3/2 /7’52(,2 —yo)|ua(t, 2)|2dz,
where the functions?, satisfy uniform estimates of the form
Ire(t, 2)| < C(T)Velz?, Vz e Rt € [0,T),

with C(T") independent of, j andk, but possibly depending df.

2.2. The critical case: & = 1. Whena > 1, we haveby; = b}ij‘.‘ for all £, j: nonlinear
effects are not present at leading order. When 1, we still haveby; = b‘);.‘ for¢ =0,1:

we still demandg;, p;) to solve [1.B) in order for the equatiobs = 0, ¢ = 0, 1, to be
satisfied, and; is defined as i (1]14). On the other hand, the expressiobfas altered:

. 1 1
b21 = i0yu1 + EAul ~3 {y1, V2V (t,q1(t)) y1) ur — K(0)]Jay |7 -u1

— K (5q(t)) laz|72u1,

1
3 (Y2, V2V (t,q2(t)) y2) uz — K(0)[|az||72uz
— K (—0q(t)) |la1[|7 2uz.

1
bog = i0sus + §Au2 —

The last term in each expression accounts for a couplingatieg a leading order inter-
action of the two wave packets. This coupling can be undedstather explicitly, since
it consists of a purely time dependent potential. Solvirgehuations,; = 0, we infer,
with obvious notations adapted from _([1.5),

t
ui(t,y1) = ui™(t,91) exp (—itK(O)lalliz - il\azl\%z/ K(5Q(S))d8> ;
0

t
ua(t,y2) = uy" (t,y2) exp (—itK(O)Iazliz - il\all\iz/ K (=dq(s)) d8> :
0

The presence of these phase shifts accounts for nonlinkateht leading order in the
approximate wave packet,, : nonlinear effects in the case of a single wave packet, and
nonlinear coupling, since we assutheg;|| > # 0. For the remainder terms, we have the
(rough) pointwise estimate

2.5)  |r5(ty)| < COIWVeE ) lus(ty) [ 1+ D @3 |, te0,T).
k=1,2

To be precise, this estimate is valid up to the rectanglegéhat we have discarded so far,
when we have developed the squared modulus. We will sg&timat they satisfy a similar
estimate (see Corollafy 3.2).
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2.3. The casen = 1/2. We still haveby; = by}, but now

bir = —i(q1(t) —pi(t)) - Vur —y1 - (01(t) + VV (£, 1 (1)) u
K(0)[lar[[72u1 — K (8q) [|las||72u1,

b1 = —i ((Jz( ) = pa(t)) - Vuz — y2 - (P2(t) + VV (£, q2(t))) uz
(0)Ha2|\L2u2— (—5Q)Ha1|\%2u2v

. 1
bgl = thul + —Aul <y1,V V t, ql >U1 - Ha1||%2y1 : VK(O)’U,l
||a2HL2y1 VK(éq)ul +VK(0)-G (t)ul + VK (dq) - Ga(t)uq,
. 1
b22 = z@tuQ + §A’U,2 - 5 <y2,V V t QQ 2>U2 - HCL2||%2(1]2 . VK(O)UQ
2(

- ||a1|\%2y2 -VK(—6q)us + VK(0) - Go(t)us + VK (=4dq) - G1(t)us.

The first line inby; is zero if (¢;, p;) is the classical trajectory given by (1.3). On the
other hand, it does not seem to be possible to cancel out teaddine inb,;, even by
modifying (1.3): we have three sets of terms, involv¥ig, y1u; andus, respectively, so
they must be treated separately. Aslih [9], we then modifygireeral strategy, and allow
bo; to depend ors. We alter the hierarchy as follows:

b = = (S0 = (0 - s + 2L v .00
+ VEK (0)]jas 32 + VEK (60) lazl3: ),
. 2 2

b = o (52(8) — po(8) - in(8) + 20E v a0

+VEK (0)]jas 3 + VEK (~8g) aa 32,
bir = —i(4u(t) —pi(t)) - Vur —y1 - (pa(t) + VV (t, qu(t))) ua,
biz = —i(g2(t) — p2(t)) - Vua —y2 - (p2(t) + VV (¢, q2(t))) ua,

and we leavé,; unchanged. Like beforé; ; = 0 provided thatg;, p;) solves[(1.B). The
novelty is that we now consider modifieddependent, actions:

st = [ (37 - Visan(s) ) s

VRO g~ VEl0s g [ K () s
550 = [ (37— Vissan(s) ) s

VR O)asl e~ Ve [ K (a5 ds

These expressions are exactly those given in the intrastufi9). The equatiorts; = 0
are envelope equations, which are nonlinear si#gés a nonlinear function ofi,. Note
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however that this yields a purely time-dependent poter@iahsider the solution to
10yt + %Afu = % (Y1, V2V (t, 1 (1) y1) @1 + llaa[|Z291 - VE(0)i
+ llaz)| 72, y1 - VK (3g)an,
iOytiz + %Aag - % (y2, V2V (t,42(1)) y2) G2 + [|az||72y2 - VK (0)is
+ lal72y2 - VK (~0g)is.
Set

ui(t,y1) = @1(t, y1) exp <z /Ot (VK(O) - G1(s) + VK (8¢(s)) - GQ(S)) d$> ,
us(t, y2) = o (t, y2) exp <z /Ot (VK(O) - Ga(s) + VK (=dq(s)) - Gl(s)) ds) ,

where
éj(t)z/ ity (¢, =) [2dz.
Rd

Itis clear thatu;| = |u,], henceéj = G, and sou; andus are such thaliy; = bap =0,
and correspond to the envelopes introduceflid. Finally, we still have a remainder term
satisfying [2.b) (up to the terms treatediB).

2.4. The casen: = 0. Now all the coefficient$,; are affected by the nonlinearity:

I

5 TV (ta(t) + K(0)]a|7:

bor = —ua ($1(8) = pa(8) - a (8) +
+ K (3q) [lazll3: )

Ip2(t)?
2

bos = —us (SQ( ) = pa(t) - Go(t) + =+ V (t,q2(t)) + K(0)] a2 7

+ K (~8q) o132,
bir = =i (Gi(t) = p1(t)) - Vur = g1 - (01(8) + VV (£, q1(1))) w1 — [lar[| 7291 - VE(0)us
— llaz||Z291 - VK (6g) ur + VE(0) - Gi(t)ur + VK (3q) - Ga(t)us,
biz = —i (G2(t) = p2(t)) - Vuz — y2 - (92(t) + VV (£, ¢2(t))) uz — [laz]| 7242 - VK (0)us
— Ha1||2L2y2 - VK (—0q) ugs + VK(0) - Go(t)ug + VK (—=dq) - G1(t)us,

5 i MO + (VKOG (1), 31)
+ (V2K (6q)G2(t), y1) w1 — %/<z, V2K (0)2) Jui(t, z)[?dz X ug

o %/<Z’ VQK(5Q)Z> lua(t, 2)|2dz x uy,

1
bo1 = i0ruq + §Au1 -

. 1 1
bao = i0ius + §AU2 -3 (y2, Ma(t)y2) uz + (V2K (0)Ga(t), y2) uz

+ (V2K (—06q)G1(t),y2) us — %/<z, V2K (0)2) Jus(t, 2)[*dz x ua

1

~3 / (2, V2K (=6q)2) |ui(t, 2)[Pdz x us,
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where we have denoted
M(t) = ||a1[|72(ra) V2K (0) + [laz]| 72 (ray V2K (8¢(1) + VEV (a1 (1)),
Ma(t) = ||az||72ma) V2K (0) + [la1[|72(ray V2K (=8(t)) + VIV (£, q2(1)) -

Similar to the case: = 1/2, we incorporate the last term bf; into by, that is we modify
the action as follows:

510 = [ () =V (5.0:) ~ KOsl ~ K (5a(5) sl
£ VEVE(0) - Gi(s) + VEVE (5q(s)) - Gg(s))ds,

550 = [ (30~ V (5, 029) ~ KOsl — K (-5 o
+VEVE(0) - Ga(s) + VEVEK (—dq(s)) - Gl(s))ds

Note that forS5 to be well defined, we have to first defimg, for which we solve the
envelope equauons given by; = bep = 0. Canceling the termk; ; yields the modified
system of trajectories:

q1(t) = pa(t),
pi(t) = =VV (t,q1(t) = a1]|72VK(0) — [laz|| 72V K (q1(t) — g2(1))
42(t) = pa2(1),
P2(t) = =VV (t,2(t)) — [|az||7:VK(0) = [lar||7-VK (g2(t) — a1 (1)) ,

which is exactly[(T.1l1). The remainder term still satisfigg) (up to the terms treated in
93). We will examine more carefully the envelope systerffan

3. ANALYSIS OF THE RECTANGLE INTERACTION TERM

In the previous section, we have left out the rectangle tegl@ming that they are
negligible in the limit: — 0. In this section, we justify precisely this statement. 8ittee
two terms that we have discarded are similar, we shall sirophsider the first one:

| dq(t
- Re/K(z)ezwl—m)(t,w—z)/aul b — 22V (o + 290 2 g
VE €

Notice that we have not yet expressed the phages terms of the variablg;, and that
the expression afy, varies accordingte = 1, « = 1/2, ora = 0. We shall retain only a
common feature though, that ig; (¢, ) = ©5.(t) + « - px(t), where only the purely time
dependent functio® may depend oa (whena € {1/2,0}), and the spatial oscillations
are singled out. Since = ¢; (t)++/cy1, we get, once the real part and the time oscillations
are discarded:

7d/2/K i(Vey1—z)- 617(75)/6u1 (@yl — %) Uo (t,yl + 5q_\/(_) - %) dz.

Changing the integration variable, and introducing momgegal notations, we examine:

BD ) = [ K (VB - ) =0y (42w (154 200 )

The main result of this section is:
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Proposition 3.1. LetT > 0. Suppose thatt € W%, u; € C([0,T]; X*) with k, ¢ € N,
and consider® defined by@3.1). There exist&' > 0 independent of €]0, 1], K, u; and
ug such that

tS[%PT] T2 (t, )| o (ray < Ce™™MER2) K|l yyrece [ || oo (0,775 1wz | oo (0,755 -
€lo,

In view of the computations performed in Sectidn 2, we reeidiler:
Corollary 3.2. Considery;,, given by(2.1), derived in Section]2, whose exact expression

varies according to the cases = 1, « = 1/20or a = 0. LetT > 0, and suppose
u; € C([0,T]; £3). Thenys, € C([0,T]; X3) satisfies)e =, and

app app|t=0

app app app app app

2
0y + 5 My = V (6,2) Yy + VE (K 5 U5 [2) ¥ + 217,
wherers € C(R; L?(R?)) is such that there exists independent of with

sup |[7°(t)| 2(ra) < CVe.
te[0,T]

Remark3.3. At this stage, the property; € C([0,T];£?) is established in the cases
a = 1anda = 1/2. It will require some work to prove it in the case= 0; see Sectionl5.
The assumptions of Corollary 3.2 are fulfilled, modulo thegfrof Proposition 1J7.

3.1. A microlocal property. The proof of Propositioh 311 is based on the following re-
mark: the function that we integrate is localized away from ¢rigin inphase space

Lemma 3.4. Suppos€éqio,p10) # (g20,p20). In either of the casea = 1, = 1/2 or
a = 0, the following holds. For an§" > 0, there exists) > 0 such that for allt € [0, T,
10g(t)] =n, or|op(t)] = n.
Proof. We argue by contradiction: if the result were not true, welddind a sequence
t, € 10,7 so that
18g(ta)| +13p(tn)] — 0.

By compactness df), '] and continuity of(¢;, p; ), there would exist.. € [0, 7] such that

@1 (t) = q2(t+),  pi(ts) = pa(ts).

In the casesr = 1 anda = 1/2, (g;, p;) is given by the classical Hamiltonian flojv (1..3):
uniqueness foi(113) impligg:10, p10) = (20, P20), hence a contradiction.

The casex = 0 is a bit more delicate, sinde;, p;) is no longer given by a Hamiltonian
flow. From [1.11), we infer:

d(dq) _
@ P
@ = VV (t,q2(t)) = VV (£, q1(1) + llar||72 (VK (=dq(t)) — VK (0))

+ [laz|[Z2 (VK (0) = VK (5q(t))) -
In view of Assumptiom 1]1, there existsindependent of such that

d(dq) | , |d(dp)
— 7 — K .
‘ I + | S C (|op| + |dq|)

Gronwall's Lemma yields a contradiction, and the lemma evpd in the three cases[]
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3.2. Proof of Proposition[3.1. From Lemmd_3}, if suffices to prove the estimate of
Propositio 311 in either of the two cadés(t)| > n, or |0p(t)| = 7.

First case.If |d¢(t)| > n, we use Cauchy—Schwarz inequality to infer
()"

k
dq(t)
2T dqlt
15t 0)] < |/C|Loo/—,€|u1<t,z>|7< 2) 1., (10 + 22) |

A )
—k
< e [l (8) | s lua (B) | sup ()" <Z+ 6q(t)> .

\@
zeR?
In view of Peetre inequality (see e.@l [2]37]),

sup ()" <z - 5q—\/(?>k < Ci (%)k < %ak/Q.

Second caself |0p(t)| > n, we perform repeated integrations by parts (like in thedzah
proof of the nonstationary phase lemma, see elg. [2]) rglgmthe relation

|op(t

Note that since we assumée W% andu; € >*, we perform no more thamin(¢, k)
integrations by parts, and Cauchy—Schwarz inequalitygiel

\/g d o0
iz:0p(t) /e — _; iz-0p(t)/\/€
e i I ;Zl(&p(t))é_azf (e ) .

1 min
(¢, y)| < ﬁWCHwemIIU1(t)szIIU2(t)sz€ Rz,

The proof of the proposition is complete.

4. PROOF OF CONVERGENCE IN THE CRITICAL CASE

In this section, we complete the proof of Theollen] 1.3. Fiwstrecall that as a conse-
quence ofi[15, 16], the system for the envelopes in the linase is well-posed iR*:

Lemma4.1. Letk € N, anda € ©*. Then(LB) has a unique solution € C(R; XF).
In addition, the following conservation holds:

[u@®)llz2®ey = llall2@e), VE=0.

We infer that ifa;, as € 32, thenuy, ua, given by [1.8), belong t6¢’(R.,; ¥*). Corol-

lary[3.2 implies that); ,, satisfies

2
. g
€0y app + ?Awipp =V +€ (K * |¢§pp|2) Vapp T €75 Yipp(0,2) = 9°(0, 2),
where the source termf satisfies:

VT >0,3C >0, sup [r°(t)]lp2ma) < CVe.
t€[0,T]

Denote byw® = ¢° — 47, the error term. It satisfies

2
iedyw® + %Aws =Vu® +e (K= [0 P) v — (K = |vip°) vipp) — 7,

app app



INTERACTION OF COHERENT STATES FOR HARTREE EQUATIONS 19
with wj,_o = 0. Writing
2
(K [9°]?) v — (K |¥zpp ) -

= (K = w + 95, [7) (w +95p,) — (K # [¥5,,1) ¥i,
(K* |w +1/’dpp| )w + (K* (|w +¢app|2 |1/Japp| )) app’

energy estimates yield, fore [0, T'], and since)*,
in L (Ry; L2(RY)):

app (Nencew?) are uniformly bounded

”w HL2 / HK* |’U} +1/Jdpp| |z/1dpp ) HLOO ||1/1dpp )||L2ds

n / 7% ()| =dls

C/ H |w* +wapp Vapp ) HLl d5+/ [7(s)[|2ds

c / () 22 + / 17 ()] o,

for C > 0 independent of €]0,1] andt > 0. Theoreni_1B is then a consequence of
Gronwall’'s Lemma.

Remark4.2. Assuming that we have proved the propertye C([0,T];¥3) in the case
a = 0, which will stem from Propositionh 117, the conclusion of Gltary[3.2 holds. How-
ever, the estimate given by the above approach is not sgtisjan the cases = 1/2 and
a = 0. We could prove this way:

145 (8) — 5pp (B)]| 22 < CVECYS ™™, 1€ (0,T],

fora« = 1/2 anda = 0, respectively. Contrary to the case= 1 (where Gronwall’'s
Lemma yields a similar estimate), we can only conclude#liat ¢Z__ is goes to zero on
a small time interval: there exist> 0 andf > 0 such that

app

sup 19 (t) = Yapp®)llL2 — 0.
0<t<cel = | Inel? e—=0

Corollary[3.2 is a consistency result, which is not enougimter convergence. This can
be understood as a feature of supercritical regimes: aréiffapproach is needed, which
requires more regularity fro, K, and the initial data;.

5. THE ENVELOPE EQUATIONS IN THE CASEx = 0

In this section, we prove Propositibn11.7. We first remark tha last two terms in
each equation involved i (1.112) correspond to purely tdependent potentials, and can
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be treated thanks to the gauge transforms
vi(t,y) = u1(t,y) exp —z/ / 2, V2K (0)2) |ui(s, z)*dzds

—i/ /<Z,V2K (6q(s)) z) |u2(s,z)|2dzds),

va(t,y) = ua(t,y) exp —z/ / 2, V2K (0)2) |us(s, z)|*dzds

—i/ /<Z,V2K (—0q(s)) z) |u1(s,z)|2dzds).
0

SinceK is real-valued, we havie; (¢, y)| = |u;(t,y)|, and [5.1) is equivalent to

(5.1)

ui(t,y) = v1(t,y) exp / / 2, V2K (0)z) [v1(s, 2)|*dzds

(5.2) +i/ /<Z, V2K (0q(s)) z> lva (s, Z)|2dzds)7

uz(t,y) = va(t,y) exp / / 2, V2K (0)z) [va(s, 2)|*dzds

+i/ /<Z’ V2K (—dq(s)) z) o1 (s, Z)|2dzds).
0
Formally, (u1, uz) solves[(Z.IR) if and only ifv;, v) solves

1001 + %Avl _ % (v, Mi (D)) v1 — (V2K (0)C1 (1), ) 0n
— (VK (8q(t)) Ga(t), y) v1,

i0yvs + %AUQ ;<y,M2() Yus — (V2K (0)Gal(t), ) vz
— (V2K (=8q(t)) G1(t),y) va,

with the same initial datay;;,—o = a;, j = 1,2, and where we have kept the notation

(5.3)

G;(t) = /z|vj(t,z)|2dz.

Note that the terms involved in the gauge transforms are defihed when the functions
are inX* with k£ > 1, so Propositiof 1]7 stems from the following:

Proposition 5.1. Let (q1, p1, ¢2, p2) be given by Lemnial.6, and, a; € XF with k > 1.
Then(5.3) has a unique solutiorfuy, v2) € C(R.y; %) with initial data (ay,az). In
addition, the following conservations hold:

vj(O)llL2rey = lajll2@may, ¥t =0, 5=1,2.

Proof. The main difficulty is that since the last two terms in eachatigun involve time
dependent potentials which are unbounded,ithey cannot be treated by perturbative
arguments. So to construct a local solution, we modify tarddrd Picard iterative scheme
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in the same fashion as in|[9], to consider

1

0} + 380" = = (g, My(Oy) o = (T2 O)G V(1) y) ol

— (V2K (6a(t) G5V (0).y) vi”,
(5.4)

with o7 = a; for all n, v} (£, y) = a;(y), and

G () = / 2
. -

At each step, we solve a decoupled system of linear equatiibih,time dependent po-
tentials which are at most quadratic: G£" ", G{"™" € L (R,), [16] ensures the

loc

existence ob\"™, v{" € C(R,; L*(R%)). In addition, we have

(n)
ij (t)‘ L2(R4)

Applying the operatorg andV to (5.4) yields a closed system of estimates, from which
we infer thatv§") € C(R4;Y), henceGg.") € L2 (Ry). Therefore, the scheme is well-
defined. Higher order regularity can be proven similarly: #a> 1, by applyingk times
the operatorg andV to (5.4), we check that!™ , v{™ € C(R,; S*). As a matter of fact,
due to the particular structure ¢f(5.4), the only inforrnati needed to prove this property
area; € ¥* anduj(."_l) € C(Ry;Y).

To prove the convergence of this scheme we need more preciger(n inn) estimates.
A general computation shows thatifolves

2

v§k) (s,2)| ds.

= llajllp2may VE20, j=1,2.

1 1
0w + 580 = 2 (g, M{tlg) v+ F(0) - yo,

where M (t) is a real-valued, symmetric matrix, arft(t) is a real-valued vector, then
G(t) = /z|v(t,z)|2dz satisfies formally

Glt) = Im/@Vu — J(),

J(t) = - / (M(t)y + F(t) [o(t,y)dy = =M )G (t) — F(t)||v]Z-,

where the last expression uses implicitly the fact thatiherorm ofv is independent of
time. We have in particular:

G(t) + M)G(t) = —||v||72F ().
In our case, this yields:
GP 4+ M (DG = a3V KOG + [laal32V7K (3(t)) G5,
G5 4+ My()GSY = [laa| 2 V2K (0)GS Y + [|aa]|2. V2K (—q(t)) G V.
Let
) 2

£ty =G| +e ol + e ol + e )
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We have

ftty <2 3 (670|657 0| + |6 0| |6 o)
<Cfat)+C Y \GE-”*%)}Q,

J=12

for someC independent of andn, sinceV2V, V2K € L, and where we have used
Young’s inequality. By Gronwall's Lemma, we infer

t
fn(t) < fn(0)eCt + C/ eCt=)f 1 (s)ds.
0
With our definition of the schemg,,(0) does not depend o
2 2
+ ‘/z|aj(z)|2dz ) =: Cy.
t
fn(t) < Coe®t + C’/ =) 1 (s)ds,
0

and by induction, we infer

fa(0)=>" (‘Im/ajvaj

j=1,2

Therefore,

fn(t) <200e3°t, t>0.

By using energy estimates (applying the operatoradV successively to the equations),
we infer that there exist§; independent of > 0 andn such that

>

§=1,2

v§n) (t)HEk < Cret.

The convergence of the sequer(@é"),vén)) then follows: we check that, converges
in C([0,T); %) if T > 0 is sufficiently small. To simplify the presentation, we pet
this argument in the case of a single envelope equation ase af [5.4) bearing no extra
difficulty:

1 (n) (n-1) (n)
> (0 M(0)y) v+ (QUOGI (@), y) v,

whereQ(¢) is a real-valued, symmetric matrix, with € L>*(R.). Denoting by

1
(5.5) 0™ + §Av(") =

H(t) =~ 5A+ 5 (o, M(D)y),
we have
i0y (v(”) — v(”’l)) =H (v(") - v<"*1>) + <Q(t)G<”*1>(t),y> (U(n> _ U(n—l))

Q) (¢ (1) - G m) y) oD

Energy estimates and the above uniform bound yield
t
J
t
< / ecls
0

HU(")(t) - U("_l)(t)‘

L <C G (s) — G("_Q)(s)‘ ds
<C Y (5) — w2 (s) . ds
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By applying the operatorgandV to (5.8), we obtain similarly:

"D (5) — ™2 ()| ds.

t
(")t—(”’l)tH <C/ Crs
v(E) =) < L © -

Therefore, we can fin@ > 0 such that the sequene€”) converges inC([0, T]; %), to
v € C([0,T); X*). The uniform bounds for the sequend® imply thatv is global in
time: v € C(R.; ¥¥), with ©*-norms growing at most exponentially in time. O

6. CONVERGENCE IN SUPERCRITICAL CASESSCHEME OF THE PROOF

We present the proof of Theordm11.8 in details; the proof afdrbni 1.b can easily be
adapted (see Remdrkb.2 below).

6.1. The general picture. In [3,[9], where the case of only one wave packet is considered
the proof of stability relies on a change of unknown functiamiting

- t ; €
PE(t, x) = e~ V4 (t, %) IS () +(@=a®)-p(t) /e

with S¢, ¢ andp as given by the construction of the approximate solutiois, équivalent
to work onv® or «* in order to prove an error estimate, since

19°(8) = Yapp (Dl L2mey = [[0°(8) = u(®)l L2y

Passing from the unknowgr to «* amounts to using very fine geometric properties related
to the dynamics: the modified actiéfi, and(q, p). One changes the origin in phase space,
to work in the moving frame associated to the wave packehdmase of two wave packets,
there are two moving frames, so the approach that we follatifierent. We construct a
solution to [1.1) of the form

(6.1) Y (t, ) = /4 Z us (t, L\/‘fg(”) ei(85(O+ps (1) (2=a; () /2
j=12

where the quantitiegg;, p;) and S5 are those given by the constructionyf, , so we
consider two unknown functions] andu5. To do so, we derive formally a system for
(u§,u§), which is morally equivalent td (1.1): rigorously, the sidm to this system yields

a solution to[(T), and by uniqueness far{1.1), the retaf@l) is valid. In turn, the con-
struction of the solutioffus, ©5) on arbitrary time intervals relies on a bootstrap argument,
consisting of a comparison of a modification(ef, u5) with (u1, u2). This modification
eventually corresponds to the presence of the phase épiﬁlsTheorenm.

In order to shorten the formulas, we consider indiceZ jRBZ: typically, ¢; stands for
q1 Wwheneverj = 1 or 3. Plugging [6.1L) into[(T11) in the case= 0, we find:

2 . e
iEatwa + %A’L/JE _ Vwa _ (K % |wa|2) 1/15 — g_d/4 Z el¢j(t,z)N;,
j=1,2
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where we have denoted

¢5(t,x) = S7(t) +p;(t) - (x — g5 (1)),

biOF,

TN (2, ) = / K (Va(y; — 2) uS(t, 2)Pdz
+ / K (g — 41+ Ve — 2)) U6 41 (1, 2)[2dz
+2Re ot (S5 =551 =45 pitaie1pita)/e g

X /K(\/E(yj —Z)) 1z (PJ PJ+1)/\/E E(t Z) J+1 <t Z+q7\/%]+1) dZ

Note that the computations which we do not detail corresgorttie computations pre-
sented in Sectionl 2, up to the fact that now, we do not perfaphoF expansions fov” or
K. As in Sectiof R, we distinguish the variablgsandys.

—V (t,q5(t) +y;vE) us — Vs,

J

N; = ieOus — 305 + < Auf -

Our approach consists in considering the set of coupledinmear equations
N =N;=0.

Itis important to notice at this stage of the constructiaat this system conserves formally
the L? norms: since we naturally impos@lt:O = a;, we have
w5 ()l 2re) = lajllLamay, J=1,2,

as long agus, u$) is well defined. This property is the reason why we can periarpor-
tant reductions in the system. Taking into account the esgiwa of the modified actions
S5, we find:

N; = iedhs =5 (850 + VEB(0) vy — 0y (1) - (1))
€. . p;i(t)]? . RS R
+ §Auj — | J(2)| uj =V (t,qj(t) + yj\/g) uj — VjNL(t,yj)uJ
= ieduu — (Vep;(t) - y; — pi(t) - 45 (1)) u5
1
- (3 - Vit - KOlasliz ~ Koy — el ) w
+ (VEVK(0) - G4(t) + VeVK(qj — gjy1) - Gja(t)) us
+ EAUJE _ Mui -V (t (t) 4 \/g) ué — f/NL(t _)us
5 2Uj 5 W 145 Yi 3= Vi b)Y
. € g c . e
= iedpuj + §Auj — Vep;(t) - yus
—(V(t,q;(t) +y;v/e) = V(t,45)) u5
- (f/jNL(tvyj) - K(O)HQJ'HL2 - K(QJ —qj+1 HajJrlHLz) U
J

+ (VEVK(0) - Gj(t) + VEVEK (g — qj+1) - Gi41(t)) u
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If we now take into account the expressiorpgf given in [1.11), we infer:
N; = is@tuj + %Auj

+Vey; - (VV(t¢) + llagl7VE(0) + llaj+all72VE (4 — gj41)) u5

— (V(tq;(t) + y;ve) = V(t,q5)) 5

— (VN w5) = KOl 32 = K(g; = 51 llaallf)

+ (VEVEK(0) - Gj(t) + VEVK (g — gj+1) - Gt (t)) uj-
It is now natural to introduce the following notations:
(V (t,q;(t) + y;v/E) = V (t,q;(t)) — Vey; - VV (¢, 4;(1))) ,
K (Vey;) — K(0) — Vey; - VE(0)),

(K (45 — ¢j+1 + Vey;) — K(g — qj41) — Vey; - VK (g5 — gj11)) -

Vjs(tv yj) =

—~

Kidiag(t’ yj) =

MO | =M~

K_]E’,oﬂ”(t’ y]) =
From the assumptions driand K, there exist€”' > 0 independent of €]0, 1] such that

6.2) 3 ]aan HL + Y ]

o K| <o

2<|a|<6 2<|a|<6
whereK7 stands forKs ., or K g, indistinctly. In view of Taylor’s formula, we have:
1
(6.3) Vi (t,;) :/ (4, V2V (£, 4;(t) + 0y;/€) ;) (1 = 6)db,
0

1
64)  Kiuuultows) = | (3 VK (G,vE) 1) (1 6)as,
0
1
(6.5) Koty = /0 (9, V2K (g;(t) = gj41(8) + 0y;v/E) y;) (1 - 6)do.
Therefore, we consider the coupled system (coupling isepites K5):

) 1
Zatuj + §Au§ = ‘/ja(tu y])uj + (Kj,diag * |u§|2) u; + (Kj,oﬁ' * |u§+1|2) u

_LVK(O) . </z (lus(t, 2)|* = Juy (¢, 2)[?) dz> u

(6.6) 15
- JE VK~ g < [# (@502 =~ gt 2)P) dz> s
-I—é (2 Re st(t, yj)) U
with

W (t y] = 6 (S S]+1 q5P;+qi+1- pj+1)/ %

/K 2)) @ PP/ VEE (1 oY (t,z+ 4 —\/%m) iz,
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6.2. Further simplification and bootstrap argument. The last three terms if (8.6) are
singular in the limite — 0. However, the singularity of the last term is expected to
be artificial, since in view of Propositidn_3.1, it should evee small, provided we have
uniform estimates fou in ¥:3. The other two singular terms have an interesting feature:
they are real-valued, and depend only on time, so we canttieat thanks to a gauge
transform. Introduce

i0;05 + = Au = Vi (t,y;)u5 +(K diag * |u | )u +(K5»OH*|11§+1|2)@

s s

(6.7) 1 )
+2 (2 ReTV; ) i,

- :
with initial dataas,,_, = a;, and where we have denoted

VN[/{? — (S5 =S5 11— a5 P+ ai41pi1) /e (0505 1) o

/K = 7)) =) Ve (1 )T <t72+ qg'—qm) i

\/E
= % /Ot VK(0) - (/z (Ja5(s, 2) > = |u;(s, 2)[?) dz) ds
+ 2 [ 6 ) (= (850628 = (s, 20P) =) .

with

We then haveus (t,y) = @5(t, y) 5" Note thatjus| = i3], so itis equivalent to pass
from u$ to @, or from @5 to u3. In view of these reductionsn a first approximation

Theoreni 1.B stems from

Theorem 6.1. Letd > 1 anday, as € £°. Assume thal’ and K are real-valued and:
VeC'Ry xRER), and 92V e L™ (RyxRY), 2<|8/<6
K € Wo>(R%R).

LetT > 0. There existgg > 0 such that fore €]0,<0|, (64) has a unique solution
(a$,a$) € C([0,T); £3)2. Moreover, there exist§' independent of €]0, o] such that

(6.8) sup |[|a () — wa (t)[lgs + P [a5(t) — ua(t) 55 < CVe.
te(o,

tel0,T

Several comments are in order. First, this result impliasfbr j = 1, 2, éj is bounded
on [0, T], uniformly ine. To get the result stated in Theorém]|1.8, we will prove that th
functionsd; converge as — 0, by performing a second order asymptotic expansion of
(us,as) (Theoreni6.ll yields the first order asymptotic expansion).

Even in the case of a single wave packet, this result is newgsive do not assume
VK (0) = 0. In that case, the last term in(6.7) vanishes, and the pratfwe present
below becomes simpler.

The proof is based on a bootstrap argument. For fixed0, (6.4) has a unique, local
solution: (a5, a5) € C([0,7¢]; 23)?, for somers > 0. This can be proven by adapting the
approach presented in Sect[dn 5. To prove the theorem, wengsgy estimates to prove
that so long asis, 5) is bounded irC ([0, 7]; £3)%, ¢ < 7 < T, (€.8) is true. Therefore,
choosingey > 0 sufficiently small,(a5, @5) € C([0,T]; X3)? for € €]0, 0], and [6.8) is
satisfied.
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The reason why we work i&L? and not in a larger space is that we want to be able to
neglecth : because of the singular factbfe in front of the last term in(617), we need to
proveVT/jE = o(e), and Proposition 311 suggests that we need to woBkinin which case
Wj = 0(e%/?). To differentiatel/” and K5 three times (we work in0®), (6.3)-{6.5) and
Propositiod 3.1 suggest to work with the regularity stated@heorenf 6]l (the same as in
Theoreni 1.B).

Remark6.2 In the casex = 1/2, one can consider that all the terms involviAgare
multiplied by \/z. As a first consequence, it is enough to work’ih to prove that the
term involvingWE is negligible. By working in>2, we only need to differentiaté® and
K twice, hence the regularity assumption in Theokem 1.5. IFirgince the phase shift
reIatmgu andu; is multiplied by+/¢, itis O(y/¢), as opposed t@(1) in the casex = 0.

7. THE BOOTSTRAP ARGUMENT
In this section, we prove TheorémB.1. More precisely, wagam [6.8), in view of the
discussion at the end of Sectiah 6.

In Section 6, we have essentially resumed the computatib&ection[2, up to two
aspects:

¢ \We have not used Taylor’s formula fotr and K.
e The terms; do not appear in the case of the's (replacingu with u; in the
expression ob; yields6s = 0).

In Section’8, we have seen that the analogue of the téim(or, equwalentIyWE) is
negligible in the limit= — 0. These properties can be summarlzed as follows: the furectio
u; andug solve

. 1
(7.1) Oy + §Auj = Vjsuj + (K?diag * |uj|2) u; + (K;OH * |uj+1|2) u; + pj,

s
wherep5 is given by the formula:
= (V7 = Vi) us + (G atag = K aing) * [usl*)
+ (K5 on — Kjog) * [ujil?) uy,

whereV?, K¢ are given by[(613)E(615) with = 0. We infer from [6.8)-{6)5) and Propo-
sition[1.7 that for alll” > 0, there exists”' > 0 independent of €]0, 1] such that

sup [|5(t) s < CVE.

te[0,T

Since the bootstrap argument runsdip, it is natural to work with such an estimate for
the source term. This in turn imposes to work with € X6, as well asi and K as in

Theoreni 6.11.

Setw§ = a5 —uy;: subtracting[(Z11) froni(617), we see that the error sasigfie coupled
system, fory =1,2,

. 1 _ ~
zatwj + §Aw§ = Vfw;T + ( j_’diag * |u§|2) ; — (K;,diag % |uj|2) uj
(72) + (‘Kr_;;oﬂr |ﬂ’§'+1|2) ~§ - (Kioff * |u.j+1|2) U

(2ReWE) i — pf,
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with initial dataw® Slt=0 = = 0. Fix T" > 0 once and for all in the course of the proof. By
Propositiod 117, there exists > 0 such that

sup [Jur(t)l[sz + sup [Juz(t)[[sz < Co.
te[0,T t€[0,T]

Sincew$|,_, = 0 andaj € C([0, 7°; ¥3) for somere, we can find® > 0 such that

(7.3) [wi(®)llss + [lwz(t)l[zs < Co

for 0 < t < t°. So long as[(7]3) holds, we perform energy estimates, to shai6.8) is
true, with a constant’ independent of. It will follow that up to choosing €]0, £¢] with
eo > 0 sufficiently small,[[Z.B) holds far € [0, T'], which yields Theorer & 1.

Notation. For two positive numberg® andb®, the notatiors® < b° means that there exists
C > 0 independent of such that for alk €]0, 1], a® < Cb°.

Note that so long a§ (4.3) holds, similarly to the caséoPropositio 311 implies
e 3/2
o0, <
hence

SVE
3

Therefore, the last line i (7.2), viewed as a source ter@)(ige) in 23, so long as[{713)
holds. The other terms i (7.2) can then be considered aarligems, in view of the
application of Gronwall's Lemma.

H (2 Re WE) i

We write
(K;,diag |U | ) - (st',diag * |uj|2) ( B dlag )sz
+ (55 diag * (|“ 1 = fu;[*)) u;
= (K; j.diag * ) wj

+ (K diag * (|w§|2 + 2Reﬂjw“§)) uj,

VB

and a similar relation for the off-diagonal kernel. We deyethe general convolution,
whereKe is of the form [G.4):

1
= //0 (y—2, V2K (0(y — 2)vVe) (y — 2)) (1 — 0)dOf(2)dz x g

~(u(/] (1= VK (8(y - 2)vE) 1)) 9

+ //0 (2, V’K (0(y — 2)v/E) 2) (1 — 0)dOf(2)dz x g

—9 <y //01(1 —O)V?K (0(y — 2)Ve) zd@f(z)dz> g.

The same computation is available for {6.5), with heavigations, so we leave it out.
From this we readily infer

[ (K5 diag * ([05]? + 2Reajwf)) ujl| g S [[wfl3 + [[wfllss S [|wflss
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where we have used Proposition]1.7, Cauchy—Schwarz ingquald [7.8) for the last
estimate. We can infer ab® estimate forw5: since all the terms of the forf(s « |a°|?
are real valued, the standard energy estimate yields

t
s ()12 < / (S g (0512 + 2Regucs)) ), ds

t
- /o [ (K5 ot * (|05 |* + 2Rewjiws ) ui| . ds

t
+f
0

t t
< / (Il + s (5)e) s+ [ e

To pass from thid.? estimate to &3 estimate, we have to assess the action of the operators
of multiplication byy; andV,; on (Z.2). FirstV, . commutes with the left hand side of
(Z.2), but not with the right hand side. We write

B (VEwS) = VEOR,,, w5 + Z c(a, k, £,m)9° Vo ws.
o< || <2
|B]=3—«|

1 o\ -
- (2Re ;) @

t
ds + / 165 () | o ds
L2 0

The first term vanishes in ab® estimate of9},,, w5,

indicesa, B with 0 < |a] < 2and|3] =3 — |a|,
107V 0w 2 S s lss-

and in view of [6.R), for all multi-

Remark7.1 The presence of the potentigf, which is morally a time dependent harmonic

potential, forces us to work ii?, and not simply inf3(R%): this is a standard feature
of such potentials, whose associated dynamics consistgaifans in phase space, so the
regularity/decay of the functions must be the same in spagérefrequency.

The terms(K5

£ diag * |T5] )w and( £ ot ¥ U541 7 )w? are treated similarly, and

produce a term of the form reaby},, w5, plus a term controlled > by ||w$|| s, S0 long

as [Z.3) holds.

On the other hand, the multiplication gy commutes with the right hand side b (7.2),
but not with the left hand side:

1
|:Zat + §A7y:| = V,

so the commutation errors for the equation satisfie¢blyws consists of a linear combi-

nation, with constant coefficients, of terms of the fOzjffﬁBw with |a| + [3] = 3. We
end up with, so long ag (7.3) holds:

t t
[wi ()52 < /O (lws (s)llzs + w41 (s)lls) ds +/0 Veds.
Gronwall's Lemma yield4{618), hence Theoren 6.1.

8. SECOND ORDER EXPANSION AND LIMITING PHASE SHIFTS

In view of Theoreni 611, the phase shifts are such thaé;T are bounded of0, T,
uniformly in e €]0, 0], sincefus|?> = |a5|* = |u;|* + O(y/). To study the limit off5 as
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¢ — 0, we need to perform a second order expansiofigfus) ase — 0, to understand
the contribution of ordey/z. Therefore, we seek

(8.1) @ = u; + veulV + Oe).

Remark8.1 An error term of orde(¢) is natural, since one could actually seek a more
general asymptotic expansion to arbitrary order, of thefor

N
(8.2) @ = uj + 255/2@5?) +0 (E(NJrl)/Z) .
(=1

Resuming the arguments presented in Seéflon 6, we see thalfg the last line in
(6.8) isO(£>), if we work with an infinite regularity. To get a second ordppeoximation
of @5, we simply need to prove that this term@¢), but we can certainly not perform the
study with only anO(,/¢) information like we did in order to establish Theorem|6.1. To
compute the limit ob);, we need to establish the asymptotic behavioi’péip to O(¢) in
¥, and not only inL?, so we make an extra regularity assumption. We remark that if
Theoreni 6.1, we require, as € X7, with

VeC Ry xRER), and 09V e L™ (Ry xRY), 2<|8<7T,
K e WI=*(R%R),
then the conclusions of Theoréml6.1 can be replacediiyis) € C((0,7]; %4)? and

sup a5 (t) — ur(t)llgs + sup [|a5(t) — ua(t)llza < CVE.
te[0,T] te[0,T]
In particular,(a5, u5) € C([0,T]; X*)? uniformlyfor e €]0, eo]. Thanks to Propositidn 3.1,
this enables us to claim that in (6.7),
Ve < g2
750y %
hence

Se.

1 ~
H (2ReW;) @ .

€

To derive an equation for the correcmjl), we plug [8.1) into[(617), and discard all the
terms which are, at least formallf),<), including thus the last line. The term correspond-
ing to the powek/z yields:

. 1 1 1 1 1 1
i) + AU = VU 4 (K g g ) 0 + (S g0 ]?)
(8.3) +2 (Kﬁdiag * Re (ﬂju;l))) u; + 2 (K?,oﬂf * Re (ﬂj+1u§1+)1)) Uj
+ Vju; + (Kjaiag * |u*) wj + (Kjom * [uj1]?) g,

with Cauchy datatg.‘lt)zo = 0, where we have denoted the third order Taylor expansions

1
Vi(t,y) = EV?’V (t,a; () y -y -y,
1
K diag (y) = EV?’K(O)y Y-y,

1
Kot (t,y) = EV?’K (gi(t) =g+ 1(t) y-y-y.
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These equations are naturally linear in the unknc(wﬁ),ugl)). In view of Proposi-
tion[L.7, the last line in{813), which corresponds to a sedecm, belongs t6’(R.,; ©4).

This non-trivial source term makeél) non-zero. Even though(8.3) is a linear system, it
seems easier to prove that it has a unique solution, by pdotwga the same way as in the
proof of Proposition 1]7 (see Sectigh 5). We have:

Proposition 8.2. Suppose that,, a» € X7, and
Vel Ry xRER), and 92V e L™ (Ry xRY), 2<8/<7,
K e WI>=(R%R).

Then(8.3) has a unique solutimﬁugl), uél)) € C(Ry; 24,

Denote byv; = u; + \/Eu§1) the second order approximate solution, andugy =
a$ — v the corresponding error term. It s:’;\tisﬁ@%t:0 =0,and

1
105 + 5805 = VE5 + (K5 g * [351°) @5 = (K5 aiag * [05]°) 05

+ (Kas',off * |ﬂ§+1|2) uj — (Kas',off * |“JE‘+1|2) vj
1 ¥7e\ ~¢ ~c
+ z (2Rer) uj — P,
where the new source term is such that

sup [|75()]|s: < Ce.
te[0,T]

Resuming the energy estimates used in Setiion 7, we infer:
Proposition 8.3. LetT > 0. Under the assumptions of Proposit[on]8.2, there exists 0

such that fore €]0, 0], (6:7) has a unique solutiois, @5) € C([0, T]; *)2. Moreover,
there exists” independent of €]0, ¢¢] such that

@ () — i (t) = VEu ()| + s as(t) = wat) = Ve )| < C=.

sup
te[0,T)

Note that unlike in the proof of Theordm 6.1, no bootstrapiargnt is needed at this
stage, since we already have uniform estimateg§ou;, u§1) in C([0,T7]; %%). We readily
infer:

9;(15) — oj(t) + O (\/E) in LOO([OvT])a
whered; is given by

0,(t) = /O t VK(0) - (2 Re / zaj(s,z)u;”(s,z)dz) ds
+ /0 t VK (q;(s) — qj41(s5)) - (2 Re / zﬂjJrl(s,z)u;i_)l(s,z)dz) ds.

We have obviously,; € C'(]0,T]), andd,(0) = 6,(0) = 0. To see thad; € C2([0,T)),
in view of the Cauchy—Schwarz inequality, and simgeu§.1) € C([0,T7; %), it suffices
that verify thatu;, u§_1) € CY([0,T7; L?). This property is a straightforward consequence

of Equations[(1.12) an@ (8.3), in view of the regularitylgfandug.l). This completes the
proof of Theoren 1]8. '
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To conclude, we check that the phase stiftare non-trivial in general, by computing

their initial second order derivatives: sings 2:0 =0,

§,(0) = VK(0) - (2 Re / 2a;(2)0 (0, z)dz>

+ VK (g;(0) = gj41(0)) - (2 Re / @41 (2)0ust), (0, z)dz) .
From [8.3), we have
10V (0,9) = (V5(0,) + Kjdiag * |a;1? + K)ot * aj1]?) a;(y),

so the first line in the expression féy

—

0) is zero, and

(%(O) = VK(g;(0) — ¢;41(0)) -

~
—

2V;(0,2)2Im (@j414a5) (z)dz)
FVE(450) — 51 0)) - [ (€ aimg * |y ?) 210 (@10) <z>dz)

+ VE(¢;(0) — ¢j+1(0)) -

TN N
— —

(Kjomt * lajs1]*) 2Im (@j41ay) (Z)dz) :
Therefore in generd; # 0.
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