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Abstract—Usually, the joint transmission friction model for
robots is composed of a viscous friction force andf a constant
dry sliding friction force. However, according to the Coulomb
law, the dry friction force depends linearly on theload driven
by the transmission. It follows that this effect mst be taken into
account for robots working with large variation of the payload
or inertial and gravity forces, and actuated with tansmissions
as speed reducer, screw-nut or worm gear. This paperoposes
a new inverse dynamic identification model for n dgrees of
freedom (dof) serial robot, where the dry sliding fiction force is
a linear function of both the dynamic and the extemal forces,
with a velocity-dependent coefficient. A new identication
procedure groups all the joint data collected whilethe robot is
tracking planned trajectories with different payloads to get a
global least squares estimation of inertial and newfriction
parameters. An experimental validation is carried ot with a
joint of an industrial robot.

|l. INTRODUCTION

HE usual identification method is based on the risee

dynamic model (IDM) which is linear in relation the
dynamic parameters, and uses least squares (LUS)igee.
This procedure has been successfully applied taotifgle
inertial and friction parameters of a lot of profms and

friction.

This paper presents a new inverse dynamic ideatifin
model for n degrees of freedom (dof) serial roldtere the
dry sliding friction forceF. is a linear function of both the

dynamic and the external forces, with asymmettieddavior
depending on the signs of joint force and velocigd a
variation depending on the velocity amplitude. Awne
identification procedure is proposed. All the jojmbsition
and joint force data collected in several experitsiewhile
the robot is tracking planned trajectories with fatiént
payloads, are concatenated to calculate a gloast &guares
estimation of both the inertial and the new frintio
parameters.

An experimental validation is carried out on thiedhoint
of an industrial robot: Staubli RX13(R5]. Both models are
compared.

Il. USUAL INVERSEDYNAMIC MODELING AND
IDENTIFICATION

A. Modeling
In the following, all mechanical variables are givia SI

industrial robot41]-[10]. An approximation of the kinematic ynits in the joint space. All forces, positions|ogities and
Coulomb friction, F.sign(g), is widely used to model accelerations have a conventional positive sigthénsame
friction force at non zero velocityy, assuming that the direction. That defines a motor convention for the

friction force Fe is a constant parameter. It is identified bynechanical behavior.

moving the robot without any load (or external fror with
constant given payloads].

However, the Coulomb law suggests tRatdepends on
the transmission force driven in the mechanisntdepends
on the dynamic and on the external forces appliedugh
the joint drive chain. Consequently for robots widrying
load, the identified IDIM is no more accurate whtre
transmission uses industrial speed reducer, scutwen
worm gear because their efficiency significantlyiea with
the transmitted force. The significant dependenceload
has been often observed for transmission elenj&big19]
through direct measurement procedures. Moreovee,
mechanism efficiency depends on the sense of poamsfer
leading to two distinct sets of friction parametets
addition, when the robot moves at very low velacig for
teleoperation, one observes a velocity-dependehttyeadry

The dynamic model of a rigid robot composed rof
moving links is written as followfl 1]:

1)

Tdyn = Tin +Tf +Text

where:
74, IS the (nx1) vector of dynamic forces due to the

inertial, centrifugal, Coriolis, and gravitatioreffects:
Tayn = M ()G +C(0,0)q +Q(0) 2)

whereq, q and ¢ are respectively the (nx1) vectors of

tgeneralized joint positions, velocities and acelens,
M(q) is the (nxn) robot inertia matrixC(q, q) is the (nxn)
matrix of centrifugal and Coriolis effect®(q) is the (nx1)
vector of gravitational forces.

. Is the (nx1) input torque vector on the motor e

the drive chain:

T



Tin = gf (Vf _Vfo) (3) T= Dst(q!qvq)lst (9)

where v, is the (nx1) vector of current references of th&vhere Dg(0,q.d) is the regressor angy, is the vector of
current amplifiersy, is a (nx1) vector of amplifiers offsets, te standard parameters which are the coefficEXsXY,

° XZ, YY, YZ, ZZ of the inertia tensor of linkdenotedJ;, the
mass of the link calledm, the first moments vector of lirjk
g, =NGK, (4)  around the origin of framgdenotedM; = [MX; MY; MZ]",

the friction coefficientsFy;, F¢;, the actuator inertia called

N is the (nxn) gear ratios matrix of the joint drigkains la;, and the offset. . The velocities and accelerations are
(6., = Ng with g,, the (nx1) velocities vector on the motorcalculated using well tuned band pass filteringtha joint
side), G is the (nxn) static gains diagonal matrix of the?osition[7].

current amplifiers,K, is the (nxn) diagonal matrix of the The base parameters are the minimum number of
electromagnetic motor torque constgai]. parameters from which the dynamic model can beutatied.

They are obtained by eliminating and by regroupiogne
standard inertial parametdi&2], [13]. The minimal inverse
dynamic model can be written as:

7 =D(q,9,0)x (10)

where D(q,q,d) is the minimal regressor apds the vector

of the base parameters.

The inverse dynamic model (10) is sampled while the
robot is tracking a trajectory to get an over-deiaed linear
system such th46]:

g is the (nxn) matrix of the drive gains,

7, is the (nx1) vector of the loss force due to foics.

Usually, it is approximated with a viscous frictiand a
dry friction:

Ty =~ vq_FcSign(Q)_FcOff )

where Fy is the (nxn) diagonal matrix of viscous
parametersF¢ is the (hxn) diagonal matrix of dry friction
parameters, andign(.) denotes the sign functiofcq iS a
(nx1) vector of asymmetrical Coulomb friction force
between positive and negative velocities. Thidifsic model
is linear toFy andF¢ (Fig. 1.a). Y (r) =W (q,q.6)x +p (12)

7., IS the (nx1) external forces vector in the joipase. . .
with Y(z) the measurements vectowy the observation

matrix andp the vector of errors.
The LS solutiony minimizes the 2-norm of the vector of
Tan " Tea= IV ~FUA-FSON@) = (Fcort 9 v ) 6) ©rorsp. Wis a (wb) full rank and well conditioned matrix
e To.=T—F,q-Fsign(Q) -7 where r =N.x n, with N; the number of samples on the

Thus (1) becomes:

trajectories. The LS solutignis given by:

where 7, =7,,~ 7, is the output force (the load force) of

ext
the drive chain,z, =Fqo + 94V, is an offset force that 3 :(WTW)_lWTY “W*Y (12)
regroups the amplifier offset and the asymmetr@aililomb

friction coefficient. It is calculated using the QR factorizationWwf Standard

deviations ¢; are estimated using classical and simple
T=0V ‘
o results from statistics. The matriw/ is supposed to be
is the motor force, without offset, and definedvwhich is  deterministic, an@, a zero-mean additive independent noise,
the current reference calculated by the numerisatrol and  with a standard deviation such as:

stored for the identification.

— T) — 2
Then (1) can be rewritten as the inverse dynamideho Cp = E(/’/’ )‘Uplr (13)
(IDM) which calculates the motor torque vecteras a . ) ) )
function of the generalized coordinates: where E is the expectation operator andhe (ixr) identity

. . o . matrix. An unbiased estimation af is:
=M (q)4+C(q,0)q+Q(a) + Fcsign(d) + F,q+7 _T*’*‘(a) . ,
= o + FeSON(E) + FyG+ 7 5 =[v -walf /i -b) (14)

The covariance matrix of the standard deviation is

B. Identification calculated as follows:
The choice of the modified Denavit and Hartenber _ . AT 2 Toaract
frames attached to each link allows to obtain aadyio 74 ‘E[(X_X)(X_X) :|_GP(W W) (15)

model linear in relation to a set of standard dyicam
parametersy, [6], [11]: a; =Cy;i Is the f' diagonal coefficient ofC,; . The



relative standard deviatio¥bo; is given by: behavior. In the quadrants 2 andB,, is negative and the

actuator has a generator behavior which may savediver

%0y, =1000; /)A(i (16) (o the power supply, assuming a 4 quadrants amplifi
However, experimental data are corrupted by noist a B. Dry Friction Model Depending on the Power Sign

error modeling andV is not deterministic. This problem can In the model (19),2 and 8 do not depend on the output
bel solvedf bhy f|I:)er|ng the mea’:;urergent }i)ec‘;b.rand 8the power sign. But, generally they take different eslua,,
columns of the observation mati as described ifv], [8] and g, for the motor quadrants, and, and S, for the

IIl.  NEw DRY FRICTION MODEL AND |DENTIFICATION generator quadrants.

In this section, we introduce a dry friction model (P >0=7=(1+a, )7+ [,SI00q+ Ko7
dependent on the load, thatz d on the velocityj . L : (20)
ependent on the load, thatig, , and on the velocity) P <07 = (1-@) Tou+ B Sig 4+ K GFT o0

A. Load-Dependent Friction Model

The Coulomb friction is still writterF.sign(q) , with Fc a

(nxn) diagonal matrix. But here, for each Ii'nkFC(jyj) (the

The model (20) is illustrated in Fig. 2.b for a stant
velocity |¢,| . This model is not valid anymore for very low

- _ . forces in the stiction areaq(=0): one approximates the
()" element of the matrixF; ) depends linearly on the gicion as the limit of model (20) in the rectaagl

absolute value of the load of jointvhich is .. (Fig. 1.b), (ﬁ +E |q0|+r - (B.+F |q¢—r )/(l—ag)
m \ off 1 V] off. .
[15]-[19]. As one can see ii.B, T is a function of ’

out j

out j

... L . . A
0,4, q and is linear in relation to base parameters. a) R b) Tout 1
. . . T (8]
Then the inverse dynamic model for each Jitdecomes: 2 Approximated | <7 L
@O stiction area Tra
_ . . . m
T ‘Toutj+(”j Tout +,Bj)Slgn(q)+qu,j)q+Toﬁ,- (17) Pox<0 | Pau>0 " . el 0,70
Generator | Motor __d v 0
where a; and j; are parameters to be identified. These new ' p g | p,,<0 oS i T
parameters depend on the mechanical structure ef th ~ Motor | Generator 620 Fricgen
reducers used to actuate the robot. e 2 o
Friction
)
For ease of understanding, the subsgriptomitted for all N

variables in the following to simplify the notation Fig. 2. a) Four quadrants fran{g,r_ ) for motor or generator behavior.

out

b) Asymmetrical friction for a given velocity, and the stiction area.

a) (T +Fog ) b) ~(7; + Fog ) c) (7 +Foy )
. . C. Dry Friction Model Depending on the Velocity
P i incr;“;ses ,ncr‘;“;se For a robot moving at low velocities, one obseraedry
F ’q £ q q friction variation, functions of the velocity, witids similar
¢ % to the Stribeck model (Fig. 1.4R0], [21], [22].
Fig. 1. a) Usual friction model with constant difgtion + viscous friction. T if =0 and |T0ut| < F,
b) Model with load-dependent dry friction + viscdtistion. out o
c) Model with load- and velocity-dependent dryftie + viscous friction. F =.Fgsign(z,,) if g=0and |Tou[l 2z F, (21)
. . . () if g20
The inverse dynamic model can be written as follows with:
T =T, +a|r,,|sign(0+Bsigi 4+ o7y (18)  F(G)=(F,+(F, - Fsl)e“q""s‘) sign( g (22)

And with |T0ut| = TouSIgN(7,,) and where ¢g is a velocity constantF, is the dry friction in

sign(7,,,) sign 4 = siglr,, = sign &), one obtains: stiction andF, is the dry friction in sliding mode.

r= Z-out +ar0ulSigr( Pout) +B 5'9m .q+ E/q- Z-oﬁ (19) ) L. i
To combine the variation due to the load (17) wlih one

Thus, the IDM depends on the signs of the outpwigro due to velocity (22), one takes:
P = T8 . One defines 4 quadrants in the fraifdgr,,,) .

which can be grouped two by two (Fig. 2.a). In doadrants
1 and 3, P, is positive and the actuator has a motor Then, (22) becomes:

out

Fy=a|ro|+B et Fy=ylr | +0 (23)



F@=(alt|+ B+ 0fral +-alrod-AE*) sty

y ’ 24)
=(a+(-a)e™® |r,, st B) +(B+(0-p) &1 sighiX

As T

out

is linear in relation to parameters, sais

IV. EXPERIMENTAL SETUP AND|DENTIFICATION

Because of the dependence on power sign, one bas2 A. Study case: Staubli RX130L Robot
of parametersy, B, y, 0 for the 2 behaviors: motor and The Staubli RX130L robot is an industrial robot twik

generator. Considering, = 1+a,, b, =y, —a., C, = B,

dy=0,~B, and a,=1-a,, b, =y,-a, c,=5,

d, =9, - B,, the inverse dynamic model becomes:

-R,>0 =

r=a7,,+b 1%+ ot 4¢° sige FT ey
P,<0 =

r=a7,, b8V + g sigi q¥° sifhe Fa

D. Friction Identification Method

In order to keep a IDM linear in relation to thegraeters,
one decides on an a priori value @f. This constant
represents the exponential transitional behavioiwéen
stiction and sliding, that is abow@ds, more or less 5%.
Measurements show that the amplitude of this ttamsil
behavior is close to 10% of the nominal velocit? tad/s,
that is g =0.04 rad/s. A final adjustment togg = 0.03 rad/s
at the moment of the identification gives a minimedidual
| o] a little lower. This value forgs is close to the value
given in[22] for a Kuka IR 161 robot.

Furthermore, the model (25) depends on the sigR Qf

which is unknown. To overcome this problem, the gam
of 7 measurements are selected outside of the stiatiea

(=0 — Fig. 2.b) in order to get the same sign fg};, and
T . This allows to get the sign d&? , with:

sign(R,,) = sigii7,, 4= siglr ‘p= sidn ¥

One can then write the IDM
parameters and use the LS technique. To have amdy
expression instead of two in (25), 3 variablesiam®duced,

P*, P, andE,, defined by:

(26)

pr=2*S9MR b g | pr=1 p<0 - P =0(27)

2
p- = 17819P _ 5 (28)
2
Exp = e-\q\/os (29)
The inverse dynamic model is then written:
1=P'(a,+B,E) 7ot P~ BEYT o - (30)

PG+ d, By sighiyr P g+ d B) sigNe i

linear in relation to
o)

rotational joints. The joint 3 has been chosentffis study
because unlike the joint 1, it has large gravitsiateoon, and
no compensation gravity spring contrary to the tji@nThe
links 1 and 2 are lined up and locked in a vertjpagition.
The arm 3 is composed of the links 4, 5 and 6 bibugo
line with the link 3 and locked (Fig. 3), with atabmass of
about 30 kg and a length of 1.33 m. The maximuroargi
is 1.2 rad/s and the maximum acceptable load at
extremity is 10 kg.

The inverse dynamic model of joint 3 is written:
;=G + MX;gcog 9+ My gsihir & sitina F 1 (31)

where:
J; =la;+ZZ, is the inertia momenta, of the drive

chain plus the inertia momer¥; of the arm,
g =9.81m/< is the gravity acceleration.

All variables and parameters are given in Sl uaitsthe
joint space. In the following, the subscript 3 imitted to
simplify the notation.

/\y3
1
6, > (=== »
Z3 X3
4 5 6
2
!
Fig. 3. RX130L drawing: joints 1, 2, 4, 5 and 6Ked in position.

B. Data Acquisition

The identification of dynamic parameters is carrima
with and without payloads: two different additiomabsses
can be fixed to the arm extremity. To excite propéhe
friction parameters to be identified, sinusoidal dan
trapezoidal velocities trajectories were used.

The estimation ofj and § are carried out with pass band
filtering of q consisting of a low pass Butterworth filter and
a central derivative algorithm. The Matlab functititfilt
can be used23]. The motor torque is calculated using the
current reference (7). In order to cancel high diergy
ripple in 7, the vector Y and the columns of the
observation matrixW are both low pass filtered and
decimated. This parallel filtering procedure isrigat out
with the Matlabdecimatefunction[2], [10].

C.
To identify the load-dependent friction, measuretmen

Identification

the



with known payloads are used. Gravity and inertiates
due to the additional mass fixed to the robot emie have
to be added in the IDM.

Let R, be the frame set at the center of gra@ty of the
additional mass#,, and parallel to the fram&(x ,Y; ,3)
linked to the arm (Fig. 3). One gives the inertiatmnx | g, of

the additional mass which is a disk with a radiuand a
thicknesd:

M_r?/2 0 0
le.=| 0 M, (r?/4+1%/12) 0 (32)
0 0 M(?/4+F/12)]
The vector of translation betweeR; and R, is

with the measurements vector, the observation radnd
the vector of base parameters below:

T

37)

— — T T T
Yisua =T = [T o Te T (3)}

Waa =G os@ gin@ Ml {Lg+oned) sig@ g 1](38)

T
M

Xusual = |:‘] MX MY M = FC E/ (39)

Z-off
aw

At a second step, the proposed model is identifiitiok

Ynew :Wnewx new+ p nev (40)

.
T:|:La 0 0] and as the 2 frames are parallel, one cafjth the measurements vector, the observation rarid

apply the Huygens theorem:

M.r?/2 0 0
J=| 0 M(P/4+1?12 0 (33)
0 0 M,(P/4+17/19+ M, 2

As the termsr2 and e? are negligible, compared with

L2, one keeps only the ter L% .

For the gravity, considering the vector of trariskatT,
one has:M,L_ gcos( q.

Thus, for the samples,, with an additional mas#,,, ,
(31) becomes:

Ty =J4+ MXgcog 9+ MYgsi)r W, il: 4

. . (34)
My Lgcos @) E sign(ay F &7

where:

the vector of base parameters defined as follows:

Y =Y T (41)

new usual —
W, =[Pt PES Poosd) ..
.. P'E,gosd) P'gEn@ P'E,gEn@) .
P'M,L(LA+gxq) PEML L §i+goos@) -
. P4 -PEQH Pouso) ..
. —P'Expgcm(q) P gan(Q —P‘Emgsin(q)
- PML LG+ 0os(@) P EM L (L i+ gos() .
. P'SgQ PESOQ PEg(@ PESIQ § 1]
Y0 D) EMX BMX MY BMY & b
- gJd BRI gMX pMX aMY bMY a b (43)
- G d G g E,rdf]T

(42)

M, Is one of the additional masses, fixed to robot The expressions oW, and x., are obtained by

extremity, with accurate weighed values: 0 kg, 844kg
and 6.970 kg,
L, is the length from the joint 3 to the additionahsa

position (measured distance): 1.277 m

At a first step, to identify the usual model withsamples,
one distinguishes the weighed mddg, and the mas$

estimated by the identification. Thus, the usuatieids:
Ty =Jg+MXgcog i+ MYgsh)e

My N . (35)

M M, La G0+ gcos(Q)+ E sigh ¢ § €7

aw(k)

Then, the sampled measurements,fdrom 1 to 3, are

concatenated using theM
experimentK), to get the linear system:

Yusual :WUSUaK usuaﬂ- p usu (36)

inserting 7, = Jg+ MXgcog i+ Mvgsing MC,Lg M gdod

in the inverse dynamic model (30).

Here P*, P™, and E,, are diagonal matrices, with:

PIT :“%gdpi), P“_ :1_+gnpi), Exp(i,i) = e“qu‘/éls (44)

The two models are compared using exactly the same

identification method with the same measurements.

D. Results

The significant values identified with usual IDMA&@®LS
regressions are given in Table | and those witmthe IDM
in Table Il (the parameters with a large relatieidtion are

corresponding to each not significant and have been eliminated). For eachlel,

Fig. 4 and Fig. 5 present a direct validation corimgathe
actual ¢ with its predicted valuaVy . Moreover, Table IlI



presents the relative norm of errojtp|/|Y| for the two

T T
models and for several sets of experiments: allsuregnents 500 ==~ }*”*T*”f””}””T”*T”T*
. . . |
(all velocities), with low velocities (0 to 10% athe 400~ — — — - }ffff%wf—ff%f”f}"fw\‘ﬁ""%""}f 4
maximum velocity) or high velocities (35% to 100%tbe w0 SRR ST O RO A *MU*
maximum velocity). Finally, Table IV compares tredative 200 ,,,,*“‘,L,\:,,u, ,,1 ,W,U],,U, |l W b
. . = i i N Tk | R
norms of errors for the two models, with two diéfat £ mol R ,,}, | IR R | LLA 7# un 7} ‘
identifications: the first one is carried out withll = W TRUIR »0% \ Ll
. . .. . g “ il u h i
measurements, that is with variation of the paylfised to 5 Oﬂ WWWFW‘W WWW W W‘WWW"WWWM | W
arm extremity, and the second one is carried ot wanly E] '100”””‘,] """ " 1T TR S, |
the samples obtained without payload. T 2001 - oo -k S W— - w‘flf T ;, 1
As one can see in all figures and tables, the ngvarmic o0l - L Lm - ,M _ ’n“*}‘ SURINLL S }‘\“,
model improves the residual. 400l Measurement | 1 _ Ao 0|
Estimation | | | | |
-500 Error el i el e i
T T 1 1 1 1 1
0 2 4 6 8 10 12 14
TABLE | Samples 10t
IDENTIFIED VALUES WITH USUAL IDM ) . o )
Identified Standard Relative Fig. 4. Direct validation performed with usual IDM.
Parameters . o
Values deviation * 2 deviation
J 30.921 0.283 0.46 %
MX 21.109 0.016 0.04 %
MadMap 0.922 0.003 0.15%
Fc 39.890 0.084 0.11%
Fv 29.429 0.395 0.67 % ‘
Toft 9.931 0.077 0.39 % 2 AT
z ‘ 1
s oWwvwwmmwwwwwwwwwwww‘w‘www%w WWWWWWWWWWW
TABLE Il 5 |
IDENTIFIED VALUES WITH NEW IDM 5 1001 Yl ’l[ T ',f‘ il 1 40 } alhlet i
Parameters Identified Standard Relative = 200F - - SRR . 53‘ o iR il -
Values deviation * 2 deviation i : Jg 1| 0 }"u i |
am) 32.420 0.262 0.40 % ] Pt A Eui O AL ‘ ]
a-MX 22.204 0.033 0.07 % -400H Measurement | _ _ 1 _ _ _ Ll oL
buMX 1.621 0.050 1.55 % Estimation ! ! ! ! !
-500 H Error e e B A Ml s
am 0.942 0.005 0.25 % : : | | | | |
bm 0.240 0.008 1.72% 0 2 4 ® ol 10 2 v
agd 29.294 0.276 0.47 % P x 10
agMX 19.432 0.042 0.11 % Fig. 5. Direct validation performed with new IDM.
bgMX 1.798 0.051 1.43 %
ag 0.915 0.005 0.27 %
by 0.266 0.008 1.59 % V. D
. DISCUSSION
Cm 21.152 0.143 0.34 % _ B
Cq 15.588 0.244 0.78 % The parameters of the new model are identifiabbsv (I
Fv 48.139 0.317 0.33 % standard deviation) and so significant. The ideamatfon
0, e .
fof 9.950 0.051 0.26 % process does not change as the new model isisghrl in
relation to the parameters. The originality is ttret global
TABLE Il identification groups all measurements, with allpads, in
RELATIVE NORM OF ERRORS WITH BOTH MODELS only one LS process. The main difficulty is to giguish the
Measurements used Usual modél New model different behaviours, motor and generator, butlatem has
All Samples (all velocities) 0.0733 0.0asa| been proposed along this paper. One can also hatette
Samples with low velocities 0.0737 0.0401| Measurements have to be more exciting than usael st
Samples with high velocities 0.0863 0.0sg1| has to be done with different loads and low veiesitto
highlight the effect on the friction variations. ,Sthis
identification protocol is more time-consuming artide
TABLE IV setting up must be adapted for the measurements wit
RELATIVE NORM OF ERRORS FOR IDENTIFICATIONS additional masses.
Identification carried out Usual model| New model The figures of direct validation show an improveteh
With payload variations 0.0733 0.0484| the estimated torque by the new model, which idicord
Without payload 0.0742 0.0598 by the Table Ill. Indeed, one observes a decreb84% in

the relative norm of errors. The improvement is tyos
important for the low velocities where the errors divided



by two, thanks to the new model (decrease of 4@%khigh
velocity, the friction term with the exponential nfttion
approaches zero, and the new model is equivalerihgo
usual.

Moreover, the Table IV shows that the model is eisly
interesting for robots carrying some payloads. Hewefor
a robot without payload but with high gravity vdite, as
the third joint of the RX130L, one obtains stillacrease of
19% of the errors.

Finally, this new model can be easily applied tmalti
dof robot, using (30) for each joint

This model is important for example in teleopenatio

where the robots work at reduced velocity and camyc
payloads or perform tasks with the effector sulgiécto
external forces.

VI. CONCLUSION

This paper has presented a new dry friction modaith
load- and velocity-dependency, and its identifmatmethod.
The inverse dynamic model and the identification itsf
parameters have been successfully validated ortasiawal
joint of an industrial robot. As a result, one atves a
significant improvement comparing to the usual noée
joints with large load variations, and especially law
velocity. Robots carrying important masses or wilge
inertial or gravity variations are concerned. Irdiéidn, this
technique can be applied to multi dof robots.

Future works concern the application of this madethe
multi dof robot and for different types of transeiam. Then,
the model will be used for torques monitoring adision
detection.
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