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Abstract—Usually, the joint transmission friction model for 
robots is composed of a viscous friction force and of a constant 
dry sliding friction force. However, according to the Coulomb 
law, the dry friction force depends linearly on the load driven 
by the transmission. It follows that this effect must be taken into 
account for robots working with large variation of the payload 
or inertial and gravity forces, and actuated with transmissions 
as speed reducer, screw-nut or worm gear. This paper proposes 
a new inverse dynamic identification model for n degrees of 
freedom (dof) serial robot, where the dry sliding friction force is 
a linear function of both the dynamic and the external forces, 
with a velocity-dependent coefficient. A new identification 
procedure groups all the joint data collected while the robot is 
tracking planned trajectories with different payloads to get a 
global least squares estimation of inertial and new friction 
parameters. An experimental validation is carried out with a 
joint of an industrial robot. 

I. INTRODUCTION 

HE usual identification method is based on the inverse 
dynamic model (IDM) which is linear in relation to the 

dynamic parameters, and uses least squares (LS) technique. 
This procedure has been successfully applied to identify 
inertial and friction parameters of a lot of prototypes and 
industrial robots  [1]- [10]. An approximation of the kinematic 
Coulomb friction, ( )CF sign qɺ , is widely used to model 

friction force at non zero velocity qɺ , assuming that the 

friction force FC is a constant parameter. It is identified by 
moving the robot without any load (or external force) or with 
constant given payloads  [9].  

However, the Coulomb law suggests that FC depends on 
the transmission force driven in the mechanism. It depends 
on the dynamic and on the external forces applied through 
the joint drive chain. Consequently for robots with varying 
load, the identified IDIM is no more accurate when the 
transmission uses industrial speed reducer, screw-nut or 
worm gear because their efficiency significantly varies with 
the transmitted force. The significant dependence on load 
has been often observed for transmission elements  [15]- [19] 
through direct measurement procedures. Moreover, the 
mechanism efficiency depends on the sense of power transfer 
leading to two distinct sets of friction parameters. In 
addition, when the robot moves at very low velocity, as for 
teleoperation, one observes a velocity-dependency of the dry 

 
 

friction. 
This paper presents a new inverse dynamic identification 

model for n degrees of freedom (dof) serial robot, where the 
dry sliding friction force CF  is a linear function of both the 

dynamic and the external forces, with asymmetrical behavior 
depending on the signs of joint force and velocity, and a 
variation depending on the velocity amplitude. A new 
identification procedure is proposed. All the joint position 
and joint force data collected in several experiments, while 
the robot is tracking planned trajectories with different 
payloads, are concatenated to calculate a global least squares 
estimation of both the inertial and the new friction 
parameters. 

An experimental validation is carried out on the third joint 
of an industrial robot: Stäubli RX130L  [25]. Both models are 
compared. 

II.  USUAL INVERSE DYNAMIC MODELING AND 

IDENTIFICATION 

A. Modeling 

In the following, all mechanical variables are given in SI 
units in the joint space. All forces, positions, velocities and 
accelerations have a conventional positive sign in the same 
direction. That defines a motor convention for the 
mechanical behavior. 

The dynamic model of a rigid robot composed of n 
moving links is written as follows  [11]: 

dyn in f ext= + +τ τ τ τ  (1) 

where: 
• dynτ  is the (nx1) vector of dynamic forces due to the 

inertial, centrifugal, Coriolis, and gravitational effects: 

( ) ( ) ( )dyn ,= + +ɺɺ ɺ ɺτ M q q C q q q Q q  (2) 

where q, ɺq  and ɺɺq  are respectively the (nx1) vectors of 

generalized joint positions, velocities and accelerations, 
M(q) is the (nxn) robot inertia matrix, ( , )ɺC q q  is the (nxn) 

matrix of centrifugal and Coriolis effects, Q(q) is the (nx1) 
vector of gravitational forces. 

• inτ  is the (nx1) input torque vector on the motor side of 

the drive chain: 
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( )
0in f f f= −τ g v v  (3)  

where fv  is the (nx1) vector of current references of the 

current amplifiers, 
0f

v  is a (nx1) vector of amplifiers offsets, 

gf is the (nxn) matrix of the drive gains, 

f i t=g NG K  (4) 

N is the (nxn) gear ratios matrix of the joint drive chains 
( m =ɺ ɺq Nq  with m

ɺq  the (nx1) velocities vector on  the motor 

side), Gi is the (nxn) static gains diagonal matrix of the 
current amplifiers, Kt is the (nxn) diagonal matrix of the 
electromagnetic motor torque constants  [14]. 

• fτ  is the (nx1) vector of the loss force due to frictions. 

Usually, it is approximated with a viscous friction and a 
dry friction: 

( )f V C Coff= − − −ɺ ɺτ F q F sign q F  (5) 

where FV is the (nxn) diagonal matrix of viscous 
parameters, FC is the (nxn) diagonal matrix of dry friction 
parameters, and sign(.) denotes the sign function, FCoff is a 
(nx1) vector of asymmetrical Coulomb friction force 
between positive and negative velocities. This friction model 
is linear to FV and FC (Fig. 1.a). 

• extτ  is the (nx1) external forces vector in the joint space. 

 
Thus (1) becomes: 

( ) ( )

( )
0dyn ext f f V C Coff f f

out V C off

− = − − − +

⇔ = − − −

ɺ ɺ

ɺ ɺ

τ τ g v F q F sign q F g v

τ τ F q F sign q τ
 (6) 

where out dyn ext= −τ τ τ  is the output force (the load force) of 

the drive chain, 
0off Coff f f= +τ F g v  is an offset force that 

regroups the amplifier offset and the asymmetrical Coulomb 
friction coefficient. 

f f=τ g v  (7) 

is the motor force, without offset, and defined by vf which is 
the current reference calculated by the numerical control and 
stored for the identification. 

Then (1) can be rewritten as the inverse dynamic model 
(IDM) which calculates the motor torque vector τ as a 
function of the generalized coordinates: 

( ) ( ) ( ) ( )

( )

C V off ext

out C V off

,= + + + + + −

= + + +

ɺɺ ɺ ɺ ɺ ɺ

ɺ ɺ

τ M q q C q q q Q q F sign q F q τ τ

τ F sign q F q τ
(8) 

B. Identification 

The choice of the modified Denavit and Hartenberg 
frames attached to each link allows to obtain a dynamic 
model linear in relation to a set of standard dynamic 
parameters Stχ   [6],  [11]: 

( )St St, ,= ɺ ɺɺτ D q q q χ  (9) 

where ( )St , ,ɺ ɺɺD q q q  is the regressor and Stχ  is the vector of 

the standard parameters which are the coefficients XXj, XYj, 
XZj, YYj, YZj, ZZj of the inertia tensor of link j denoted jJj, the 
mass of the link j called mj, the first moments vector of link j 
around the origin of frame j denoted jMj = [MXj MYj MZj]

T, 
the friction coefficients FVj, FCj, the actuator inertia called 
Iaj, and the offset τoff j. The velocities and accelerations are 
calculated using well tuned band pass filtering of the joint 
position  [7]. 

The base parameters are the minimum number of 
parameters from which the dynamic model can be calculated. 
They are obtained by eliminating and by regrouping some 
standard inertial parameters  [12],  [13]. The minimal inverse 
dynamic model can be written as: 

( ), ,= ɺ ɺɺτ D q q q χ  (10) 

where ( ), ,ɺ ɺɺD q q q  is the minimal regressor and χ is the vector 

of the base parameters. 
The inverse dynamic model (10) is sampled while the 

robot is tracking a trajectory to get an over-determined linear 
system such that  [6]: 

( ) ( ), ,= +ɺ ɺɺY τ W q q q χ ρ  (11) 

with Y(τ) the measurements vector, W the observation 
matrix and ρ the vector of errors. 

The LS solution ̂χ  minimizes the 2-norm of the vector of 

errors ρ. W is a (r×b) full rank and well conditioned matrix 
where er N x n= , with Ne the number of samples on the 

trajectories. The LS solution̂χ is given by: 

( ) 1T Tˆ
− += =χ W W W Y W Y  (12) 

It is calculated using the QR factorization of W. Standard 
deviations 

iχ̂σ  are estimated using classical and simple 

results from statistics. The matrix W is supposed to be 
deterministic, and ρ, a zero-mean additive independent noise, 
with a standard deviation such as: 

( )TE 2
rρρ ρσ= =C ρρ I  (13) 

where E is the expectation operator and Ir, the (r×r) identity 
matrix. An unbiased estimation of σρ is: 

( )
22 ˆˆ r bρσ = − −Y Wχ  (14) 

The covariance matrix of the standard deviation is 
calculated as follows: 

T 2 T 1
χχ ρ

E ( )( ) σ ( )ˆ ˆ ˆ ˆ − = − − = C χ χ χ χ W W  (15) 

i

2
ˆ ˆ ˆ iiCχ χχσ =  is the ith diagonal coefficient of ˆ ˆχχC . The 



  

relative standard deviation 
riˆ% χσ  is given by: 

ri iˆ ˆ i
ˆ% 100χ χσ σ χ=  (16) 

However, experimental data are corrupted by noise and 
error modeling and W is not deterministic. This problem can 
be solved by filtering the measurement vector Y and the 
columns of the observation matrix W as described in  [7],  [8]. 

III.  NEW DRY FRICTION MODEL AND IDENTIFICATION 

In this section, we introduce a dry friction model 
dependent on the load, that is outτ , and on the velocity ɺq . 

A. Load-Dependent Friction Model 

The Coulomb friction is still written ( )Csign ɺF q , with FC a 

(nxn) diagonal matrix. But here, for each link j, ( )C j , jF  (the 

(j,j)th element of the matrix CF ) depends linearly on the 

absolute value of the load of joint j which is out jτ  (Fig. 1.b), 

 [15]- [19]. As one can see in  II.B, out jτ  is a function of 

, , ɺ ɺɺq q q  and is linear in relation to base parameters. 

Then the inverse dynamic model for each link j becomes: 

( ) ( )( )j out j j out j j j V j , j j off jsign q qτ τ α τ β τ= + + + +ɺ ɺF  (17) 

where jα  and jβ  are parameters to be identified. These new 

parameters depend on the mechanical structure of the 
reducers used to actuate the robot. 
 

For ease of understanding, the subscript j is omitted for all 
variables in the following to simplify the notation. 

 

 
Fig. 1.  a) Usual friction model with constant dry friction + viscous friction. 
b) Model with load-dependent dry friction + viscous friction. 
c) Model with load- and velocity-dependent dry friction + viscous friction. 

 
The inverse dynamic model can be written as follows: 

( ) ( )out out V offsign q sign q F qτ τ α τ β τ= + + + +ɺ ɺ ɺ  (18) 

And with ( )out out outsignτ τ τ=  and 

( ) ( ) ( ) ( )out out outsign sign q sign q sign Pτ τ= =ɺ ɺ , one obtains: 

( ) ( )out out out V offsign P sign q F qτ τ ατ β τ= + + + +ɺ ɺ  (19) 

Thus, the IDM depends on the signs of the output power 

out outP qτ= ɺ . One defines 4 quadrants in the frame ( )outq,τɺ , 

which can be grouped two by two (Fig. 2.a). In the quadrants 
1 and 3, outP  is positive and the actuator has a motor 

behavior. In the quadrants 2 and 4, outP  is negative and the 

actuator has a generator behavior which may save the power 
to the power supply, assuming a 4 quadrants amplifier. 

B. Dry Friction Model Depending on the Power Sign 

In the model (19), α  and β  do not depend on the output 

power sign. But, generally they take different values: mα  

and mβ  for the motor quadrants, and gα  and gβ  for the 

generator quadrants. 

( ) ( )

( ) ( )

out m out m V off

out g out g V off

P 0 1 sign q F q

P 0 1 sign q F q

τ α τ β τ
τ α τ β τ

> ⇒ = + + + +
 < ⇒ = − + + +

ɺ ɺ

ɺ ɺ
 (20) 

The model (20) is illustrated in Fig. 2.b for a constant 

velocity 0qɺ . This model is not valid anymore for very low 

forces in the stiction area (q 0=ɺ ): one approximates the 

friction as the limit of model (20) in the rectangle 

( ) ; ( ) ( )m V 0 off g V 0 off gF q F q 1β τ β τ α+ + + − −ɺ ɺ . 

 
Fig. 2.  a) Four quadrants frame ( )

out
q,τɺ  for motor or generator behavior.  

b) Asymmetrical friction for a given velocity 
0

qɺ and the stiction area. 

C. Dry Friction Model Depending on the Velocity 

For a robot moving at low velocities, one observes a dry 
friction variation, functions of the velocity, which is similar 
to the Stribeck model (Fig. 1.c),  [20],  [21],  [22]. 

if  and 

( ) if  and 

( ) if 

out stout

st out out st

q 0 F

F F sign q 0 F

F q q 0

ττ
τ τ

= <
= = ≥
 ≠

ɺ

ɺ

ɺ ɺ

 (21) 

with: 

( )( ) ( ) ( )sq / q
sl st slF q F F F e sign q−= + − ɺ ɺ

ɺ ɺ   (22) 

where Sqɺ  is a velocity constant, stF  is the dry friction in 

stiction and slF  is the dry friction in sliding mode. 

 
To combine the variation due to the load (17) with the one 

due to velocity (22), one takes: 

  et  sl out st outF Fα τ β γ τ δ= + = +  (23) 

Then, (22) becomes: 
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( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

S

S S

q q
out out out

q q q q
out out

F q e sign q

e sign P e sign q

α τ β γ τ δ α τ β

α γ α τ β δ β

−

− −

= + + + − −

= + − + + −

ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ

ɺ

 (24) 

Because of the dependence on power sign, one has 2 sets 
of parameters α , β , γ , δ  for the 2 behaviors: motor and 

generator. Considering m ma 1 α= + , m m mb γ α= − , m mc β= , 

m m md δ β= − , and g ga 1 α= − , g g gb γ α= − , g gc β= , 

g g gd δ β= − , the inverse dynamic model becomes: 

( ) ( )

( ) ( )

S S

S S

out

q q q q
m out m out m m V off

out

q q q q
g out g out g g V off

P 0

a b e c sign q d e sign q F q

P 0

a b e c sign q d e sign q F q

τ τ τ τ

τ τ τ τ

− −

− −

> ⇒


= + + + + +
 < ⇒
 = − + + + +

ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

i

ɺ ɺ ɺ

i

ɺ ɺ ɺ

(25) 

D. Friction Identification Method 

In order to keep a IDM linear in relation to the parameters, 
one decides on an a priori value of Sqɺ . This constant 

represents the exponential transitional behavior between 
stiction and sliding, that is about 3 Sq∗ ɺ , more or less 5%. 

Measurements show that the amplitude of this transitional 
behavior is close to 10% of the nominal velocity 1.2 rad/s, 
that is 0.04 rad/sSq =ɺ . A final adjustment to 0.03 rad/sSq =ɺ  

at the moment of the identification gives a minimal residual 

ρ a little lower. This value for Sqɺ  is close to the value 

given in  [22] for a Kuka IR 161 robot. 
Furthermore, the model (25) depends on the sign of outP  

which is unknown. To overcome this problem, the samples 
of τ  measurements are selected outside of the stiction area 
( q 0=ɺ  – Fig. 2.b) in order to get the same sign for outτ  and 

τ . This allows to get the sign of outP  with: 

( ) ( ) ( ) ( )out outsign P sign q sign q sign Pτ τ= = =ɺ ɺ  (26) 

One can then write the IDM linear in relation to 
parameters and use the LS technique. To have only one 
expression instead of two in (25), 3 variables are introduced, 

P+ , P− , and Exp, defined by: 

( )1 sign P
P

2
+ += , 0 1P P+> ⇔ = , 0 0P P+< ⇔ =  (27) 

( )1 sign P
P P

2
− +−= =  (28) 

Sq q
xpE e−= ɺ ɺ  (29) 

The inverse dynamic model is then written: 

( ) ( )

 ( ) ( ) ( ) ( )

m m xp out g g xp out

m m xp g g xp V off

P a b E P a b E ...

... P c d E sign q P c d E sign q F q

τ τ τ

τ

+ −

+ −

= + + − +

+ + + + +ɺ ɺ ɺ

 (30) 

As outτ  is linear in relation to parameters, so is τ . 

IV.  EXPERIMENTAL SETUP AND IDENTIFICATION 

A. Study case: Stäubli RX130L Robot 

The Stäubli RX130L robot is an industrial robot with 6 
rotational joints. The joint 3 has been chosen for this study 
because unlike the joint 1, it has large gravity variation, and 
no compensation gravity spring contrary to the joint 2. The 
links 1 and 2 are lined up and locked in a vertical position. 
The arm 3 is composed of the links 4, 5 and 6 brought into 
line with the link 3 and locked (Fig. 3), with a total mass of 
about 30 kg and a length of 1.33 m. The maximum velocity 
is 1.2 rad/s and the maximum acceptable load at the 
extremity is 10 kg.  

 
The inverse dynamic model of joint 3 is written: 

( ) ( ) ( )3 3 3 3 3 3 3 C3 3 V3 3 off 3J q MX gcos q MY gsin q F sign q F qτ τ= + + + + +ɺɺ ɺ ɺ  (31) 

where: 
• 3 3 3J Ia ZZ= +  is the inertia moment 3Ia  of the drive 

chain plus the inertia moment ZZ3 of the arm, 

• 
2 m/sg 9.81=  is the gravity acceleration. 

All variables and parameters are given in SI units on the 
joint space. In the following, the subscript 3 is omitted to 
simplify the notation. 

 

 
Fig. 3.  RX130L drawing: joints 1, 2, 4, 5 and 6 locked in position. 

B. Data Acquisition 

The identification of dynamic parameters is carried out 
with and without payloads: two different additional masses 
can be fixed to the arm extremity. To excite properly the 
friction parameters to be identified, sinusoidal and 
trapezoidal velocities trajectories were used. 

The estimation of qɺ  and qɺɺ  are carried out with pass band 

filtering of q  consisting of a low pass Butterworth filter and 

a central derivative algorithm. The Matlab function filtfilt  
can be used  [23]. The motor torque is calculated using the 
current reference (7). In order to cancel high frequency 
ripple in τ , the vector Y  and the columns of the 
observation matrix W  are both low pass filtered and 
decimated. This parallel filtering procedure is carried out 
with the Matlab decimate function  [2],  [10]. 

C. Identification 

To identify the load-dependent friction, measurements 

1 

2 

4 5 6 x3 

y3 

z3 
3q 0>  



  

with known payloads are used. Gravity and inertial forces 
due to the additional mass fixed to the robot extremity have 
to be added in the IDM. 

Let Rm be the frame set at the center of gravity Gm of the 
additional masse Ma, and parallel to the frame ( )3 3 3 3R x ,y ,z  

linked to the arm (Fig. 3). One gives the inertia matrix IGa of 
the additional mass which is a disk with a radius r and a 
thickness l: 

( )

( )

( )
m m

2
a

2 2
Ga a

2 2
a G ,R

M r 2 0 0

I 0 M r 4 l 12 0

0 0 M r 4 l 12

 
 = + 
 + 

 (32) 

The vector of translation between R3 and Rm is 
 T

aT L 0 0=     and as the 2 frames are parallel, one can 

apply the Huygens theorem: 

( )

( )

2
a

2 2
a a

2 2 2
a a a

M r 2 0 0

J 0 M r 4 l 12 0

0 0 M r 4 l 12 M L

 
 = + 
 + + 

 (33) 

As the terms r²  and e²  are negligible, compared with 
2
aL , one keeps only the term 2

a aM L qɺɺ . 

For the gravity, considering the vector of translation T, 
one has: ( )a aM L g cos q . 

 
Thus, for the samples ( )kτ  with an additional mass ( )a kM , 

(31) becomes: 

( ) ( )

( )

( ) ( )

                 ( ) ( )

2
k a k a

a k a C V off

Jq MXg cos q MYg sin q M L q ...

...M L g cos q F sign q F q

τ
τ

= + + + +

+ + +

ɺɺ ɺɺ

ɺ ɺ
 (34) 

where: 
• ( )a kM  is one of the additional masses, fixed to robot 

extremity, with accurate weighed values: 0 kg, 3.4584 kg 
and 6.970 kg, 

• aL  is the length from the joint 3 to the additional mass 

position (measured distance): 1.277 m 
 
At a first step, to identify the usual model with all samples, 

one distinguishes the weighed mass awM  and the mass aeM  

estimated by the identification. Thus, the usual model is: 

( )

( )
( )

( )

( ) ( )

         ( ( )) ( )

k

ae k
aw k a a C V off

aw k

Jq MXgcos q MYgsin q ...

M
... M L L q gcos q F sign q F q

M

τ

τ

= + + +

+ + + +

ɺɺ

ɺɺ ɺ ɺ
 (35) 

Then, the sampled measurements, for k from 1 to 3, are 
concatenated using the ( )aw kM  corresponding to each 

experiment (k), to get the linear system: 

usual usual usual usual = +Y W χ ρ  (36) 

with the measurements vector, the observation matrix, and 
the vector of base parameters below: 

TT T T
usual (1) (2) (3)

 = =  Y τ τ τ τ  (37) 

( ) ( ) ( ( )) ( )usual aw a a sign= +  ɺɺ ɺɺ ɺ ɺW q gcos q gsinq M L Lq gcos q q q 1  (38) 

T

ae
usual C V off

aw

M
J MX MY F F

M
τ

 
=  
 

χ  (39) 

 
At a second step, the proposed model is identified with: 

new new new new = +Y W χ ρ  (40) 

with the measurements vector, the observation matrix, and 
the vector of base parameters defined as follows: 

new usual= =Y Y τ  (41) 

( )

( ) ( ) ( )

( ( )) ( ( ))

( )

( ) ( ) ( )

new xp

xp xp

a a a xp a a a

xp

xp xp

a

...

... ...

... ...

... ...

... ...

...

+ + +

+ + +

+ +

− − −

− − −

−

=

+

−

− −

ɺɺ ɺɺ

ɺɺ ɺɺ

ɺɺ ɺɺ

W P q P E q P gcos q

P E gcos q P gsin q P E gsin q

P M L L q gcos q P E M L L q+gcos q

P q P E q P gcos q

P E gcos q P gsin q P E gsin q

P M L ( ( )) ( ( ))

( ) ( ) ( ) ( )

a a xp a a a

xp xp

...

...

−

+ + − −

+ − +




ɺɺ ɺɺ

ɺ ɺ ɺ ɺ ɺ

L q gcos q P E M L L q gcos q

P sign q P E sign q P sign q P E sign q q 1

 (42) 

T

new m m m m m m m m

g g g g g g g g

m m g g V off

a J b J a MX b MX a MY b MY a b ...

... a J b J a MX b MX a MY b MY a b ...

... c d c d F τ

=



χ

 (43) 

The expressions of newW  and newχ  are obtained by 

inserting ( ) ( ) ( ( ))out a a a aJq MXgcos q MYgsin q M L L q M gcos qτ = + + + +ɺɺ ɺɺ  

in the inverse dynamic model (30). 
 

Here +P , −P , and xpE  are diagonal matrices, with: 

( )

( ) ( )
i Sq qi i

i ,i i ,i xp i ,i

1 sign 1 sign
, , e

2 2
−+ −+ −

= = = ɺ ɺP P
P P Ε (44) 

The two models are compared using exactly the same 
identification method with the same measurements. 

D. Results 

The significant values identified with usual IDM and OLS 
regressions are given in Table I and those with the new IDM 
in Table II (the parameters with a large relative deviation are 
not significant and have been eliminated). For each model, 
Fig. 4 and Fig. 5 present a direct validation comparing the 
actual τ  with its predicted value ˆWχ . Moreover, Table III 



  

presents the relative norm of errors ρ Y  for the two 

models and for several sets of experiments: all measurements 
(all velocities), with low velocities (0 to 10% of the 
maximum velocity) or high velocities (35% to 100% of the 
maximum velocity). Finally, Table IV compares the relative 
norms of errors for the two models, with two different 
identifications: the first one is carried out with all 
measurements, that is with variation of the payload fixed to 
arm extremity, and the second one is carried out with only 
the samples obtained without payload. 

As one can see in all figures and tables, the new dynamic 
model improves the residual. 

 
 

TABLE I 
IDENTIFIED VALUES WITH USUAL IDM 

Parameters 
Identified 

Values 
Standard 

deviation * 2 
Relative 
deviation 

J 30.921 0.283 0.46 % 
MX 21.109 0.016 0.04 % 

Mae/Map 0.922 0.003 0.15 % 
FC 39.890 0.084 0.11 % 
FV 29.429 0.395 0.67 % 
τoff 9.931 0.077 0.39 % 

 
 

TABLE II 
IDENTIFIED VALUES WITH NEW IDM 

Parameters 
Identified 

Values 
Standard 

deviation * 2 
Relative 
deviation 

amJ 32.420 0.262 0.40 % 
amMX 22.204 0.033 0.07 % 
bmMX 1.621 0.050 1.55 % 

am 0.942 0.005 0.25 % 
bm 0.240 0.008 1.72 % 
agJ 29.294 0.276 0.47 % 

agMX 19.432 0.042 0.11 % 
bgMX 1.798 0.051 1.43 % 

ag 0.915 0.005 0.27 % 
bg 0.266 0.008 1.59 % 
cm 21.152 0.143 0.34 % 
cg 15.588 0.244 0.78 % 
FV 48.139 0.317 0.33 % 
τoff 9.950 0.051 0.26 % 

 
 

TABLE III 
RELATIVE NORM OF ERRORS WITH BOTH MODELS 

Measurements used Usual model New model 

All Samples (all velocities) 0.0733 0.0484 

Samples with low velocities 0.0737 0.0401 

Samples with high velocities 0.0863 0.0881 

 
 

TABLE IV 
RELATIVE NORM OF ERRORS FOR 2 IDENTIFICATIONS 

Identification carried out Usual model New model 

With payload variations 0.0733 0.0484 

Without payload 0.0742 0.0598 
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Fig. 4. Direct validation performed with usual IDM. 
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Fig. 5. Direct validation performed with new IDM. 

 

V. DISCUSSION 

The parameters of the new model are identifiable (low 
standard deviation) and so significant. The identification 
process does not change as the new model is still linear in 
relation to the parameters. The originality is that the global 
identification groups all measurements, with all payloads, in 
only one LS process. The main difficulty is to distinguish the 
different behaviours, motor and generator, but a solution has 
been proposed along this paper. One can also note that the 
measurements have to be more exciting than usual: each test 
has to be done with different loads and low velocities to 
highlight the effect on the friction variations. So, this 
identification protocol is more time-consuming and the 
setting up must be adapted for the measurements with 
additional masses. 

The figures of direct validation show an improvement of 
the estimated torque by the new model, which is confirmed 
by the Table III. Indeed, one observes a decrease of 34% in 
the relative norm of errors. The improvement is mostly 
important for the low velocities where the errors are divided 



  

by two, thanks to the new model (decrease of 46%). At high 
velocity, the friction term with the exponential function 
approaches zero, and the new model is equivalent to the 
usual. 

Moreover, the Table IV shows that the model is especially 
interesting for robots carrying some payloads. However, for 
a robot without payload but with high gravity variation, as 
the third joint of the RX130L, one obtains still a decrease of 
19% of the errors. 

Finally, this new model can be easily applied to a multi 
dof robot, using (30) for each joint j. 

 
This model is important for example in teleoperation, 

where the robots work at reduced velocity and can carry 
payloads or perform tasks with the effector subjected to 
external forces. 

VI.  CONCLUSION 

This paper has presented a new dry friction model, with 
load- and velocity-dependency, and its identification method. 
The inverse dynamic model and the identification of its 
parameters have been successfully validated on a rotational 
joint of an industrial robot. As a result, one observes a 
significant improvement comparing to the usual model, for 
joints with large load variations, and especially at low 
velocity. Robots carrying important masses or with large 
inertial or gravity variations are concerned. In addition, this 
technique can be applied to multi dof robots. 

Future works concern the application of this model to the 
multi dof robot and for different types of transmission. Then, 
the model will be used for torques monitoring and collision 
detection. 
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