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Abstract—Friction modeling is essential for joint dynamic 
identification and control. Joint friction is composed of a 
viscous and a dry friction force. According to Coulomb law, dry 
friction depends linearly on the load in the transmission. 
However, in robotics field, a constant dry friction is frequently 
used to simplify modeling, identification and control. That is not 
accurate enough for joints with large payload or inertial and 
gravity variations and actuated with transmissions as speed 
reducer, screw-nut or worm gear. A new joint friction model 
taking dynamic and external forces into account is proposed in 
this paper. A new identification process is proposed, merging all 
the joint data collected while the mechanism is tracking exciting 
trajectories and with different payloads, to get a global LS 
estimation in one step. An experimental validation is carried out 
with a prismatic joint composed of a Star high precision ball 
screw drive positioning unit. 

I. INTRODUCTION 

HE usual identification method, based on the inverse 
dynamic model (IDM) and least squares (LS) method, 

has been successfully applied to identify inertial and friction 
parameters of a lot of prototypes and industrial robots [1]-
[10]. The kinematic Coulomb friction at non zero velocity qɺ  

is widely approximated by ( )CF sign qɺ , where CF  is a 

constant parameter. The identification consists in moving the 
robot without any load (or external force) or with constant 
given payloads [9]. 

However, according to the Coulomb law, CF  is a linear 

function of the contact reaction in the mechanism. It depends 
on the dynamic and the external forces applied through the 
joint drive chain. Thus, the usual identified IDM is no more 
accurate for joints with varying load, particularly with 
transmissions as industrial speed reducer, screw-nut or worm 
gear because their efficiency significantly varies with the 
transmitted force. This dependence on load has been often 
observed in transmission elements [15]-[19] through direct 
measurement procedures. Moreover, the mechanism 
efficiency often depends on the sense of power transfer 
leading to two distinct sets of friction parameters. 

This paper presents a new method to identify 
automatically the dry friction model where CF  is a linear 

function of the applied force, with an asymmetrical behavior. 

 
 

An experimental validation is carried out on a ball screw 
drive prismatic joint. 

II.  EXPERIMENTAL SETUP AND DYNAMIC MODEL 

The EMPS is a high-precision linear Electro-Mechanical 
Positioning System. Its main components are a Maxon DC 
motor which is current controlled by a four quadrant PWM 
amplifier, a Star high-precision low-friction ball screw drive 
positioning unit, and an incremental encoder. The backlash 
free ball screw drive is the gear converting the rotary motion 
of the motor to the linear carriage joint displacement. The 
EMPS is a standard configuration of a drive system for 
prismatic joint of robots, machine tools, haptic device… It is 
connected to a dSPACE digital control system for easy 
control and data acquisition using Matlab and Simulink 
software [20], [21]. 

 

 
Fig. 1.  EMPS prototype to be identified. 

 
In order to make easy variation of the gravity load, the 

EMPS can be fixed in vertical position alternatively with the 
z joint positive linear displacement in the gravity direction or 
in its opposite. 

The inverse dynamic model is given by: 

 
( ) ( )

( )
a C V off

out C V off

I m q mg F sign q F q

F sign q F q

τ τ
τ τ

= + − + + +

= + + +

ɺɺ ɺ ɺ

ɺ ɺ
   (1) 

where: 
• q , qɺ  and qɺɺ  are respectively the generalized joint 

position, velocity and acceleration, 
• τ is the drive force, 
• outτ  is the output force (the load force) of the drive chain, 

• Ia is the inertia moment of all rotary elements in the drive 
chain (rotor of motor and encoder, ball, coupling units), 

• m is the mass of all translation moving elements (screw, 
carriage, payload), 

• FV  is the viscous friction coefficient, 
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• FC  is the Coulomb friction force, 
• offτ  takes into account the amplifier offset and a 

dissymmetric Coulomb friction force, 
• g is the projection of the gravity acceleration on the z 

prismatic joint axis. 
• g = 9.81, when z axis stays in vertical position, oriented 

positive to the earth, 
• g = -9.81, when z axis stays in vertical position, oriented 

positive to the sky. 
All variables and parameters are given in SI units on the 

joint linear displacement side (carriage side). 

III.  USUAL IDENTIFICATION MODEL AND IDENTIFICATION 

METHOD 

A. Modeling 

The choice of the modified Denavit and Hartenberg frame 
attached to the link allows to obtain a dynamic model linear 
in relation to a set of standard dynamic parameters χ  [6], 

[11]. Most of the methods to identify the joint dynamic 
parameters use an identification model linear in relation to 
the parameters, and solve the system using least squares 
techniques (LS) [1]-[13]. With the usual friction model, FC is 
a constant (Fig. 2.a) and the inverse dynamic model (1) is 
linear in relation to the dynamic parameters: 

[ ]( ) ( )

a

C

V

off

I m

m

Fq g sign q q 1 q,q

F

τ

τ

+ 
 
 
 = − =
 
 
 
 

D χɺɺ ɺ ɺ ɺ  (2) 

where [ ]( ) ( )q,q q g sign q q 1= −D ɺ ɺɺ ɺ ɺ  is the regressor of 

the linear relation, and 
T

a C V offI m m F F τ = + χ  is 

the ( x )b 1  vector of the b  base dynamic parameters. 

B. Identification 

We consider off-line identification of the dynamic 
parameters χ, given measured or estimated off-line data for τ, 

  q, q, qɺ ɺɺ , collected while the mechanism is tracking some 

planned trajectories: the inverse dynamic model (2) is 
sampled to get an over-determined linear system such that 
(3). The velocities and accelerations are calculated using 
well tuned band pass filtering of the joint position [6]. 

( ) ( )q,q,qτ = +Y W χ ρɺ ɺɺ  (3) 

with ( )τY  the measurements vector, W  the observation 

matrix and ρ  the vector of errors. 

The LS solution ̂χ  minimizes the 2-norm of the vector of 
errors ρ . W  is a ( x )r b  full rank and well conditioned 
matrix where x er N n= , with eN  the number of samples on 
the trajectories. The LS solution χ̂  is given by: 

( )-1T Tˆ += =χ W W W Y W Y  (4) 

It is calculated using the QR factorization of W . Standard 
deviations 

iχ̂σ  are estimated using classical and simple 

results from statistics. The matrix W  is supposed to be 
deterministic, and ρ , a zero-mean additive independent 

noise, with a standard deviation such as: 

E( )T 2
ρσ= =

ρρ rC ρρ I  (5) 

where E is the expectation operator and rI , the ( x )r r  

identity matrix. An unbiased estimation of ρσ  is: 

( )
22 ˆˆ r bρσ = − −Y Wχ  (6) 

The covariance matrix of the standard deviation is 
calculated as follows: 

T T -1E ( )( ) ( )2
ˆ ˆ ˆ ˆ ˆ ρσ = − − = χχ

C χ χ χ χ W W  (7) 

i

2
ˆ ˆ ˆ iiχσ =

χχ
C  is the ith diagonal coefficient of ˆ ˆχχC . The 

relative standard deviation 
riˆ% χσ is given by: 

ri iˆ ˆ i
ˆ% 100χ χσ σ χ=  (8) 

However, experimental data are corrupted by noise and 
error modeling and W  is not deterministic. This problem 
can be solved by filtering the measurement vector Y  and the 
columns of the observation matrix W  as in [7], [8]. 

IV.  NEW FRICTION MODELING AND IDENTIFICATION 

In this section, we introduce a friction model dependent on 
the load and the sign of the power.  

A. Load-Dependent Friction Model 

The Coulomb friction is still written ( )CF sign qɺ  but CF  

depends linearly on the absolute value of the load (Fig. 2.b), 
[15]-[19]. 

Then the inverse dynamic model becomes: 

( ) ( )out out V offsign q F qτ τ α τ β τ= + + + +ɺ ɺ  (9) 

where the parameters α  and β  are constants to be 

identified. These new parameters depend on the mechanical 
structure of the reducers used to actuate the joint. 

The inverse dynamic model can be written as follows: 

( ) ( )out out V offsign q sign q F qτ τ α τ β τ= + + + +ɺ ɺ ɺ  (10) 

And with ( )out out outsignτ τ τ= , one obtains: 

( ) ( ) ( )out out out V offsign sign q sign q F qτ τ ατ τ β τ= + + + +ɺ ɺ ɺ  (11) 

Thus, the IDM depends on the signs of outτ  and qɺ . With 



  

( ) ( ) ( )out outsign sign q sign qτ τ=ɺ ɺ , one defines 4 quadrants 

which can be grouped two by two (Fig. 3.a), depending on 
the sign of the output power denoted out outP qτ= ɺ . In the 

quadrants 1 and 3, outP  is positive and the actuator has a 

motor behavior. In the quadrants 2 and 4, outP  is negative 

and the actuator has a generator behavior which may save the 
power to the power supply, assuming a 4 quadrants 
amplifier. 

This model is valid for symmetrical friction. Generally, 
the friction is asymmetrical and α  and β  can take different 

values depending on the quadrant where the joint runs. 

 
Fig. 2. a) Usual friction model with constant FC. 
 b) Parametric effect of the load on friction model. 

B. Power Sign-Dependent Friction Model 

We present here 3 ways of modeling. 

• 4 models (4x1Q) for 4 different quadrants 
In the general case, the friction parameters α , β , and 

offτ  depend on the signs of outτ  and qɺ  in the frame (qɺ , outτ ), 

Fig. 3.a. That means that there are four different values for 
α , β  and offτ  (one for each quadrant): 1α , 1β , 2α , 2β , 

3α , 3β , and 4α , 4β  (the offsets offτ  regroup with the 

parameters β ), which defines four different models named 

(4x1Q). 
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τ τ α τ β
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 > < ⇒ = − + −
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ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

 (12) 

• 2 models (2x2Q) for quadrants identical two by two 
In some cases, the friction is symmetrical with respect to 

the velocity and the 4 models can be simplified to 2 models. 
The parameters α , β  and offτ  have only two different 

values, mα , mβ , off mτ  for the motor quadrants 1 and 3 and 

gα , gβ , off gτ for the generator quadrants 2 and 4. 

( ) ( )

( ) ( )

out m out V m off m

out g out V g off g

P 0 1 F q sign q

P 0 1 F q sign q

τ α τ β τ
τ α τ β τ

> ⇒ = + + + +
 < ⇒ = − + + +

ɺ ɺ

ɺ ɺ
 (13) 

• 1 model (1x4Q) for 4 identical quadrants 
In the case of symmetrical friction with respect to outτ  and 

qɺ , the models simplify to 1 model for 4 quadrants. 

( ) ( )out V out out offF q sign P sign qτ τ ατ β τ= + + + +ɺ ɺ  (14) 

Each modeling takes the load-dependency of friction into 
account. Starting from the (4x1Q) models, a simplification 
procedure based on the identification results leads to the 
simplest model. 

 
However, when the joint torque amplitude is low, the 

friction model should be more complex because of Coulomb 
friction resulting from internal preload and hysteresis. Then, 
one cannot use the quadrants. To simplify and connect the 
quadrants models, a relevant approximation consists in 
extending them in this area which can be considered as 
uncertain for the experimental identification. This 
simplification is illustrated in a (τ , outτ ) graph (Fig. 3.b). It 

should be noticed that within this area, the mechanism is no 
longer transmitting power which is totally dissipated in 
friction losses. 

 
Fig. 3.  a) Four quadrants frame (qɺ , outτ ) for motor or generator behavior.  

b) Asymmetrical friction for a given velocity 0qɺ  and definition of the 

uncertain area. 

C. Friction identification method 

The friction models depend on the sign of outτ  which is 

unknown. To overcome this problem, the samples of τ  
measurements are selected outside of the uncertain area (Fig. 
3.b) in order to get the same sign for outτ  and τ . This allows 

to get the sign of outP  with: 

( ) ( ) ( ) ( )out outsign P sign q sign q sign Pτ τ= = =ɺ ɺ  (15) 

The (1x4Q) modeling can be written: 

( ) ( )out V out offF q sign P sign qτ τ ατ β τ= + + + +ɺ ɺ  (16) 

For the (2x2Q) modeling, 2 variables are introduced, P+  

and P−  defined by: 

( )1 sign P
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Then (13) can be written in one model: 

( ) ( )

      ( ( ) ) ( ( ) )

m out g out

m off m g off g V

P 1 P 1 ...

... P sign q P sign q F q

τ α τ α τ

β τ β τ

+ −

+ −

= + + − +

+ + + +ɺ ɺ ɺ

 (19) 

For the (4x1Q) modeling, 4 similar variables have to be 
defined to obtain one model only. 

 
As outτ  is linear in relation to parameters, so is τ . Thus, 

for each friction model, one can write the IDM linear in 
relation to parameters and use the LS technique. 

V. EXPERIMENTAL IDENTIFICATION 

The identification process has been performed for the four 
different cases: first with the usual model where CF  is 

constant, then with the 3 friction models depending on the 
load. We have observed that the modeling with four identical 
quadrants (1x4Q) was insufficient because the friction is 
asymmetrical here. Moreover, the modeling with four 
different quadrants (4x1Q) was not indispensable as the 
parameters are very close for the two motor quadrants on one 
hand and for the two generator quadrants on the other hand. 
That is the reason why only the modeling with quadrants 
identical two by two (2x2Q) is detailed here and compared 
with the usual model. The methods for the others are very 
similar. 

A. Data Acquisition 

The identification of dynamic parameters is carried out 
with and without payloads: five different additional masses 
can be fixed on the carriage. To excite properly the friction 
parameters to be identified, trapezoidal velocities  
trajectories were used. The sample acquisition frequency for 
joint position and current reference (drive force) is 5 KHz. 

The estimation of qɺ  and qɺɺ  are carried out with pass band 

filtering of q  consisting of a low pass Butterworth filter and 

a central derivative algorithm. The Matlab function filtfilt  
can be used. This is a zero-phase forward and reverse digital 
filtering. We calculate the drive force using the relation: 

G vτ ττ =  (20) 

where vτ  is the current reference of the amplifier current 

loop, and Gτ  is the gain of the joint drive chain, which is 

taken as a constant in the frequency range of the robot 
because of the large bandwidth (700 Hz) of the current loop 
[14]. 

 
In order to cancel high frequency ripple in vτ  (and τ ) , 

the vector Y  and the columns of the observation matrix W  
are both low pass filtered and decimated. This parallel 
filtering procedure is carried out with the Matlab decimate 
function [2], [10]. 

B. Identification 

To identify the load-dependent friction, measurements 
with known payloads must be used and one needs the 
relation: 

   0 am m m= +  (21) 

where: 
• 0m  is the unknown mass of the translational elements, 

with the carriage free of additional mass, 
• am  is one of the 6 additional masses, fixed on the 

carriage, with accurate weighed values: 0 kg, 1.05 kg, 
3.0266 kg, 4.7882 kg, 9.9162 kg, and 14.704 kg. 

 
Hence for the samples ( )kτ  with the additional mass ( )a km , 

(1) becomes: 

( )( ) ( ) ( )( k ) a 0 0 a k C V offI m q m g m q g F sign q F qτ τ= + − + − + + +ɺɺ ɺɺ ɺ ɺ   (22) 

At a first step, we proceed separately for each (k) 
experiment to get 6 different usual identifications. Keeping 
only the samples at average constant velocities without 
acceleration, the load corresponds to the gravity effect. One 
uses usual LS method as described in III.B. The variation of 

CF  as a function of the 6 payload values is given in Fig. 6 

(see the asterisk*), in order to show the linear dependency on 
load. 

At a second step, to identify the usual model with all 
samples, one distinguishes the weighed mass awm  and the 

mass aem  estimated by the identification. Thus, the usual 

model is written: 

( )
( ) ( )

( )

( ) ( )

                                          ( )

ae k
k a 0 0 aw k

aw k

C V off

m
I m q m g m q g ...

m

... F sign q F q

τ

τ

= + − + − +

+ +

ɺɺ ɺɺ

ɺ ɺ

 (23) 

Then, the sampled measurements, for k from 1 to 6, are 
concatenated using the maw(k) corresponding to each 
experiment (k), to get the linear system: 

usual usual usual usual = +Y W χ ρ  (24) 

with the measurements vector, the observation matrix, and 
the vector of base parameters below: 

TT T
usual (1) (6)... = =  Y τ τ τ  (25) 

usual ( ) ( )aw sign= − −  W q g m q g q q 1ɺɺ ɺɺ ɺ ɺ  (26) 

T

usual
ae

a 0 0 C V off
aw

m
I m m F F

m
τ

 
= + 
 

χ  (27) 

At a third step, the proposed model is identified with: 

new new new new = +Y W χ ρ  (28) 



  

with the measurements vector, the observation matrix, and 
the vector of base parameters defined as follows: 

new usual= =Y Y τ  (29) 

new ( ) ( )

            ( ) ( )

aw

aw

sign

sign

+ + + + +

− − − − −

= − −

− − 

W P q P g P m q g P q P ...

P q P g P m q g P q P q

ɺɺ ɺɺ ɺ

ɺɺ ɺɺ ɺ ɺ

 (30) 

( )( ) ( ) ( )

( )( ) ( ) ( )
new

T

            

m a 0 m 0 m m off m

g a 0 g 0 g g off g V

1 I m 1 m 1 ...

1 I m 1 m 1 F

α α α β τ

α α α β τ

= + + + +

− + − −


χ

 (31) 

Here +P  and −P  are diagonal matrices, with: 

( ) ( )i i
i ,i i ,i

1 sign 1 sign
,

2 2
+ −+ −

= =
P P

P P  (32) 

The two models are compared using exactly the same 
identification method with the same measurements. 

C. Results 

The values identified with usual IDM and OLS regressions 
are given in Table I and those with the new IDM in Table II. 
For each model, Fig. 4 and Fig. 5 present a direct validation 
comparing the actual τ  with its predicted value ˆWχ . In Fig. 

6, it can be seen that the variation of the usual CF  is the 

mean between motor and generator values, except for the 2 
first masses because the load is to low and the joint works 
only in motor mode (see the uncertain area Fig. 3.b). That 
explains also why the parameter ( )g 01 mα−  is not excited 

enough and not well identified. 
 

TABLE I 
IDENTIFIED VALUES WITH USUAL IDM 

Parameters 
Identified 

Values 
Standard 

deviation * 2 
Relative 
deviation 

Ia + m0 64.799 0.477 0.4 % 
m0 1.047 0.012 0.6 % 

mae/maw 1.025 0.002 0.1 % 
FC 38.277 0.237 0.3 % 
FV 396.550 2.894 0.4 % 
τoff -7.935 0.078 0.5 % 

 
TABLE II 

IDENTIFIED VALUES WITH NEW IDM 

Parameters 
Identified 

Values 
Standard 

deviation * 2 
Relative 
deviation 

(1+αm)(Ia+m0) 65.850 0.375 0.3 % 
(1+αm)m0 0.821 0.008 0.5 % 

(1+αm) 1.174 0.001 0.1 % 
βm 31.337 0.171 0.3 % 
τoffm -8.415 0.059 0.4 % 

(1–αg)(Ia+m0) 68.339 0.692 0.5 % 
(1–αg)m0 0.711 0.182 12.8 % 

(1–αg) 0.831 0.004 0.2 % 
βg 21.780 1.803 4.1 % 
τoffg -7.070 0.122 0.9 % 
FV 409.285 1.983 0.2 % 

 
In direct validation, it is shown that the predicted torque is 

improved with the new IDM. It can be seen that, for the 

EMPS, mα  and gα  are very close whereas mβ  and gβ  are 

significantly different. 
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Fig. 4.  Direct validation performed with usual IDM 
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Fig. 5.  Direct validation performed with new IDM. 
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Fig. 6.  Evolution of Coulomb friction and comparison between the models. 

 
Moreover, Table III presents the relative norm of errors 

ρ Y  for the two models and for two sets of experiments. 



  

TABLE III 
RELATIVE NORM OF ERRORS WITH BOTH MODELS 

Measurements used for the 
identification 

Relative norm 
of errors with 

the usual model 

Relative norm 
of errors with 
the new model 

Samples without additional mass 
and samples with the additional 
masses of 1.05 kg and 3.0266 kg 

0.0916 0.0908 

All samples (without and with 
each additional mass) 

0.09996 0.0679 

 
Table III shows that the new model does not improve the 

residual if the load variation is too small. Indeed, in this case 
(additional mass less than 3 kg), the joint runs mostly in 
motor behaviour, and the usual model is then sufficient. For 
additional mass greater than 5 kg, the load variation is large 
enough to justify the use of the proposed model: one 
observes a decrease of 30% in the relative norm of errors. 

VI.  DISCUSSION 

The new IDM with a load-dependent joint friction model 
brings a substantial improvement for joint whose load can 
vary significantly. Robots carrying important masses or with 
large variation of inertial and gravity forces are considered. 
Moreover, the identification process is the same for both 
usual and new models, because the new model remains linear 
in relation to the parameters. 

The main difficulty is to distinguish the different 
behaviours, motor and generator, but a solution has been 
proposed along this paper. However, the measurements have 
to be more exciting than usual. Each test has to be done with 
different loads to highlight the effect on the friction 
variations. So, this identification protocol is more time-
consuming and the setting up must be adapted for the 
measurements with additional masses. Moreover, for robots 
with small load variation, the joint actuates only in one 
quadrant: the parameters mα  and gα  of the new model are 

not excited enough and the results are not better than with 
the usual. Then, this one will be accurate enough for low 
load variation. 

One has to consider the load variation rate and the type of 
the transmission to choose the appropriate model, before 
starting modeling and identification. 

VII.  CONCLUSION 

This paper has presented a new model of friction 
depending on load and the process to automatically identify 
the parameters. This technique was successfully applied on a 
1 degree of freedom (dof) prismatic joint robot. From these 
experiments, it comes that the proposed model is accurate 
and useful for robots with large load variation. 

Future works concern the use of this IDM to find friction 
parameters for a multi dof robot. The application of the 
model for different types of transmissions will be also 
studied to determine the minimum load variation rate where 
the new IDM is needed. The 3 load-dependent models will 

be examined as well. A comparison of the method with non-
linear identification will be considered. Once a load-
dependent model will be identified for multi-DOF robots, it 
will be used for torques monitoring and collision detection. 
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