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Abstract—Usually, the joint transmission friction model for 

robots is composed of a viscous friction force and of a constant 
dry friction force. However, according to the Coulomb law, the 
dry friction force depends linearly on the load driven by the 
transmission. It follows that this effect must be taken into account 
for robots working with large variation of the payload or inertial 
and gravity forces, and actuated with transmissions as speed 
reducer, screw-nut or worm gear. This paper proposes a new 
inverse dynamic identification model for n degrees of freedom 
(dof) serial robot, where the dry friction force is a linear function 
of both the dynamic and the external forces. A new identification 
procedure groups all the joint data collected while the robot is 
tracking planned trajectories with different payloads to get a 
global least squares estimation, in one step, of inertial and new 
friction parameters. An experimental validation is carried out 
with a 1 dof prismatic joint composed of a Star high precision 
ball screw drive positioning unit, which allows large and easy 
variations of the inertial and gravity forces. 

Keywords—robot, modeling, identification, friction  

I.  INTRODUCTION 

The usual off-line dynamic identification of robots uses the 
inverse dynamic identification model (IDIM) which is linear in 
relation to the dynamic parameters, and uses least squares (LS) 
technique. This procedure has been successfully applied to 
identify inertial and friction parameters of a lot of prototypes 
and industrial robots [1]-[10]. An approximation of the 
kinematic Coulomb friction, ( )CF sign qɺ , is widely used to 
model friction force at non zero velocity qɺ , assuming that the 

friction force CF  is a constant parameter. It is identified by 
moving the robot without load (or external force) or with 
constant given payloads [9].  

However, the Coulomb law suggests that CF  depends on 
the transmission force driven in the mechanism. It depends on 
the dynamic and on the external forces applied through the 
joint drive chain. Consequently for robots with varying load, 
the identified IDIM is no more accurate when the transmission 
uses industrial speed reducer, screw-nut or worm gear because 
their efficiency significantly varies with the transmitted force. 
The significant dependence on load has been often observed for 
transmission elements [15]-[21] through direct measurement 
procedures. Moreover, the mechanism efficiency depends on 
the sense of power transfer leading to two distinct sets of 
friction parameters. 

This paper presents a new inverse dynamic identification 
model for n degrees of freedom (dof) serial robot, where the 
dry friction force CF  is a linear function of both the dynamic 
and the external forces, and with asymmetrical behavior 
depending on the signs of the joint force and velocity. A new 
identification procedure is proposed. All the joint position and 
joint force data collected in several experiments, while the 
robot is tracking planned trajectories with different payloads, 
are concatenated to calculate a global least squares estimation 
in one step of both the inertial and the new friction parameters. 

An experimental validation is carried out on a ball screw 
drive prismatic joint. This simple study case allows large and 
easy variations of the gravity and inertial forces. It is very 
suitable to study the effect of large variation of the load driven 
by the transmission on the friction force. The results obtained 
with the usual and the new friction model are compared.  

II. USUAL INVERSE DYNAMIC MODELING AND 

IDENTIFICATION 

A. Modeling 

In the following, all mechanical variables are given in SI 
units in the joint space. All forces, positions, velocities and 
accelerations have a conventional positive sign in the same 
direction. That defines a motor convention for the mechanical 
behavior. 

The dynamic model of a rigid robot composed of n moving 
links is written as follows [11]: 

 dyn in f ext= + +τ τ τ τ  (1) 

where: 
• dynτ  is the (nx1) vector of dynamic forces due to the 

inertial, centrifugal, Coriolis, and gravitational effects: 

 ( ) ( ) ( )dyn ,= + +τ M q q C q q q Q qɺɺ ɺ ɺ  (2) 

where q, qɺ  and qɺɺ  are respectively the (nx1) vectors of 
generalized joint positions, velocities and accelerations, M(q) is 
the (nxn) robot inertia matrix, ( , )C q qɺ  is the (nxn) matrix of 
centrifugal and Coriolis effects, Q(q) is the (nx1) vector of 
gravitational forces. 



         

• inτ  is the (nx1) input torque vector of the drive chain: 

 ( )
0in f f f= −τ g v v  (3) 

where vf is the (nx1) vector of current references of the current 
amplifiers, 

0f
v is a (nx1) vector of amplifiers offsets, gf is the 

(nxn) matrix of the drive gains, 

 f i t=g NG K  (4) 

N is the (nxn) gear ratios matrix of the joint drive chains 
( m =q Nqɺ ɺ  with mqɺ  the (nx1) velocities vector on  the motor 
side), Gi is the (nxn) static gains diagonal matrix of the current 
amplifiers, Kt is the (nxn) diagonal matrix of the 
electromagnetic motor torque constants. 

• fτ  is the (nx1) vector of the loss force due to frictions. 

Usually, it is approximated with a viscous friction and 
a dry friction: 

 ( )f V C Coff= − − −τ F q F sign q Fɺ ɺ  (5) 

where FV is the (nxn) diagonal matrix of viscous parameters, 
FC is the (nxn) diagonal matrix of dry friction parameters, and 
sign(.) denotes the sign function, FCoff is a (nx1) vector of 
asymmetrical Coulomb friction force between positive and 
negative velocities. This friction model is linear in relation to 
FV and FC (Fig. 1.a). 

• extτ  is the (nx1) external forces vector in the joint 
space. 

Thus (1) becomes (6): 

 
( ) ( )

( )
0dyn ext f f V C Coff f f

out V C off

− = − − − +

⇔ = − − −

τ τ g v F q F sign q F g v

τ τ F q F sign q τ

ɺ ɺ

ɺ ɺ
 (6) 

where out dyn ext= −τ τ τ  is the output force (load force) of the 

drive chain, 
0off Coff f f= +τ F g v  is an offset force that regroups 

the amplifier offset and the asymmetrical Coulomb friction 
coefficient, and f f=τ g v  is the motor force without offset. 

Then (1) can be rewritten as the inverse dynamic model 
(IDM) which calculates the motor torque vector τ as a function 
of the generalized coordinates: 

 
( ) ( ) ( ) ( )

( )

C V off ext

out C V off

,= + + + + + −

= + + +

τ M q q C q q q Q q F sign q F q τ τ

τ F sign q F q τ

ɺɺ ɺ ɺ ɺ ɺ

ɺ ɺ
 (7) 

B. Identification 

The choice of the modified Denavit and Hartenberg frames 
attached to each link allows to obtain a dynamic model linear 
in relation to a set of standard dynamic parameters Stχ  [6], 
[11]: 

 ( )St St, ,=τ D q q q χɺ ɺɺ  (8) 

where ( )St , ,D q q qɺ ɺɺ  is the regressor and Stχ  is the vector of the 
standard parameters which are the coefficients XXj, XYj, XZj, 
YYj, YZj, ZZj of the inertia tensor of link j denoted jJj, the mass 
of the link j called mj, the first moments vector of link j around 
the origin of frame j denoted jM j = [MXj MYj MZj]

T, the friction 
coefficients FVj, FCj, the actuator inertia called Iaj, and the 
offset τoffj. The velocities and accelerations are calculated using 
well tuned band pass filtering of the joint position [6]. 

The base parameters are the minimum number of 
parameters from which the dynamic model can be calculated. 
They are obtained by eliminating and by regrouping some 
standard inertial parameters [12], [13]. The minimal inverse 
dynamic model can be written as: 

 ( ), ,=τ D q q q χɺ ɺɺ  (9) 

where ( ), ,D q q qɺ ɺɺ  is the minimal regressor and χ is the vector of 
the base parameters. 

The inverse dynamic model (7) is sampled while the robot 
is tracking a trajectory to get an over-determined linear system 
such that [6]: 

 ( ) ( ), ,= +Y τ W q q q χ ρɺ ɺɺ  (10) 

with Y(τ) the measurements vector, W the observation matrix 
and ρ the vector of errors. 

The LS solution ̂χ  minimizes the 2-norm of the vector of 

errors ρ. W is a (r×b) full rank and well conditioned matrix 
where er N x n= , with Ne the number of samples on the 

trajectories. The LS solution̂χ is given by: 

 ( ) 1T Tˆ
− += =χ W W W Y W Y (11) 

It is calculated using the QR factorization of W. Standard 
deviations 

iχ̂
σ  are estimated using classical and simple results 

from statistics. The matrix W is supposed to be deterministic, 
and ρ, a zero-mean additive independent noise, with a standard 
deviation such as: 

 ( )TE 2
rρρ ρσ= =C ρρ I  (12) 

where E is the expectation operator and I r, the (r×r) identity 
matrix. An unbiased estimation of σρ is: 

 ( )
22 ˆˆ r bρσ = − −Y Wχ  (13) 

The covariance matrix of the standard deviation is 
calculated as follows: 



         

 T 2 T 1
χχ ρE ( )( ) σ ( )ˆ ˆ ˆ ˆ − = − − = C χ χ χ χ W W  (14) 

i

2
ˆ ˆ ˆ iiCχ χχσ =  is the ith diagonal coefficient of ˆ ˆχχC . The 

relative standard deviation 
riˆ% χσ is given by: 

 
ri iˆ ˆ i

ˆ% 100χ χσ σ χ=  (15) 

However, experimental data are corrupted by noise and 
error modeling and W is not deterministic. This problem can be 
solved by filtering the measurement vector Y and the columns 
of the observation matrix W as described in [7], [8]. 

III.  NEW FRICTION MODELING AND IDENTIFICATION 

In this section, we introduce a friction model dependent on 
the load, that is outτ . 

A. Load-Dependent Friction Model 

The Coulomb friction is still written ( )CsignF qɺ , with FC a 

(nxn) diagonal matrix. But here, for each link j, ( )C j , jF  (the 

(j,j)th element of the matrix CF ) depends linearly on the 

absolute value of the load of joint j which is out jτ  (Fig. 1.b), 

[15]-[21]. As one can see in II.B, out jτ  is a function of , , q q qɺ ɺɺ  

and is linear in relation to base parameters. 

Then the inverse dynamic model for each link j becomes: 

 ( ) ( )( )j out j j out j j j V j , j j off jsign q qτ τ α τ β τ= + + + +Fɺ ɺ  (16) 

where the parameters jα  and jβ  are constants to be identified. 

These new parameters depend on the mechanical structure of 
the reducers used to actuate the robot. 

For ease of understanding, the subscript j is omitted for all 
variables in the following to simplify the notation. 

 
Figure 1.   a) Usual friction model with constant FC. 

b) Parametric effect of the load on friction model. 

The inverse dynamic model can be written as follows: 

 ( ) ( )out out V offsign q sign q F qτ τ α τ β τ= + + + +ɺ ɺ ɺ  (17) 

And with ( )out out outsignτ τ τ= , one obtains: 

 ( ) ( ) ( )out out out V offsign sign q sign q F qτ τ ατ τ β τ= + + + +ɺ ɺ ɺ  (18) 

Thus, the IDM depends on the signs of out τ  and qɺ . With 

( ) ( ) ( )out outsign sign q sign qτ τ=ɺ ɺ , one defines 4 quadrants which 
can be grouped two by two (Fig. 2.a), depending on the sign of 
the output power denoted out outP qτ= ɺ . In the quadrants 1 and 
3, Pout is positive and the actuator has a motor behavior. In the 
quadrants 2 and 4, Pout is negative and the actuator has a 
generator behavior which may save the power to the power 
supply, assuming a 4 quadrants amplifier. 

This model is valid for symmetrical friction. Generally, the 
friction is asymmetrical and α  and β  can take different 
values depending on the quadrant where the joint runs. 

 

Figure 2.  a) Four quadrants frame ( )
out

q, τɺ  for motor / generator behavior. 

b) Asymmetrical friction for velocity 
0

qɺ  and definition of the uncertain area. 

B. Power Sign-Dependent Friction Model 

We present here 3 ways of modeling. 

• 4 models (4x1Q) for 4 different quadrants 

In the general case, the friction parameters α , β , and off τ  

depend on the signs of τload and qɺ  in the frame (qɺ , load τ ), Fig. 
2.a. That means that there are four different values for α , β , 

and off τ  (one for each quadrant): 1α , 1β , 2α , 2β , 3α , 3β , 

and 4α , 4β  (the offsets regroup with the parameters β ), 
which defines four different models named (4x1Q). 

 

  ( )

  ( )

  ( )

  ( )

load 1 out 1 V

load 2 out 2 V

load 3 out 3 V

load 4 out 4 V

0 & q 0 1 F q

0 & q 0 1 F q

0 & q 0 1 F q

0 & q 0 1 F q

τ τ α τ β
τ τ α τ β
τ τ α τ β
τ τ α τ β

> > ⇒ = + + +
 > < ⇒ = − − +
 < < ⇒ = + − +
 < > ⇒ = − + +

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

 (19) 

• 2 models (2x2Q) for quadrants identical two by two 

In some cases, the friction is symmetrical with respect to 
the velocity and the 4 models can be simplified to 2 models. 
The parameters α , β , and off τ  have only two different 

values, mα , mβ , off m τ  for the motor quadrants 1 and 3 and 

gα , gβ , off g τ  for the generator quadrants 2 and 4. 

 
( ) ( )

( ) ( )

out m out m V off m

out g out g V off g

P 0 1 sign q F q

P 0 1 sign q F q

τ α τ β τ
τ α τ β τ

> ⇒ = + + + +
 < ⇒ = − + + +

ɺ ɺ

ɺ ɺ
 (20) 
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• 1 model (1x4Q) for 4 identical quadrants 

In the case of symmetrical friction with respect to out τ  and 
qɺ , the models simplify to 1 model for 4 quadrants. 

 ( ) ( )out out out V offsign P sign q F qτ τ ατ β τ= + + + +ɺ ɺ  (21) 

Each modeling takes the load-dependency of friction into 
account. Starting from the (4x1Q) models, a simplification 
procedure based on the identification results leads to the 
simplest model. 

However, when the joint torque is low, the friction model 
should be more complex because of Coulomb friction resulting 
from internal preload and hysteresis. Then, one cannot use the 
quadrants. To simplify and connect the quadrants models, a 
relevant approximation consists in extending them in this area 
which can be considered as uncertain for the experimental 
identification. This simplification is illustrated in a ( τ , out τ ) 
graph (Fig. 2.b). It should be noticed that within this area, the 
mechanism is no longer transmitting power which is totally 
dissipated in friction losses. 

C. Friction Identification Method 

The friction models depend on the sign of out τ  which is 
unknown. To overcome this problem, the samples of  τ  
measurements are selected outside of the uncertain area (Fig. 
2.b) in order to get the same sign for out τ  and  τ . This allows 
to get the sign of Pout with: 

 ( ) ( ) ( ) ( )out outsign P sign q sign q sign Pτ τ= = =ɺ ɺ  (22) 

The (1x4Q) modeling can be written: 

 ( ) ( )out out V offsign P sign q F qτ τ ατ β τ= + + + +ɺ ɺ  (23) 

For the (2x2Q) modeling, 2 variables are introduced, P+  
and P− , defined by: 

 ( )1 sign P
P

2
+ += , 0 1P P+> ⇔ = , 0 0P P+< ⇔ =  (24) 

 ( )1 sign P
P P

2
− +−= =   (25) 

Then (20) can be written in one model: 

 
( ) ( )

      ( ( ) ) ( ( ) )

m out g out

m off m g off g V

P 1 P 1 ...

... P sign q P sign q F q

τ α τ α τ

β τ β τ

+ −

+ −

= + + − +

+ + + +ɺ ɺ ɺ

 (26) 

For the (4x1Q) modeling, 4 similar operators have to be 
defined to obtain one model only. 

As outτ  is linear in relation to parameters, so is τ . 
However, the dynamic parameters used for the usual model are 

here weighted with ( )m1 α+  and ( )g1 α−  (for the (2x2Q) 

modeling for example), and each one regroups with these two 
terms to form the new base parameters. There are also mβ , 

gβ , off m τ , and off g τ  instead of FC and off τ . Thus, for each 

friction modeling, one can write the IDM linear in relation to 
parameters and use the LS technique. This is applicable for a 
multi degree of freedom robot. 

IV.  PROTOTYPE TO BE IDENTIFIED 

The EMPS is a high-precision linear Electro-Mechanical 
Positioning System. Its main components are a Maxon DC 
motor which is current controlled by a four quadrant PWM 
amplifier, a Star high-precision low-friction ball screw drive 
positioning unit, and an incremental encoder. The backlash free 
ball screw drive is the gear converting the rotary motion of the 
motor to the linear carriage joint displacement. The EMPS is a 
standard configuration of a drive system for prismatic joint of 
robots, machine tools, haptic device… It is connected to a 
dSPACE digital control system for easy control and data 
acquisition using Matlab and Simulink software [22], [23]. 

 
Figure 3.  EMPS prototype to be identified. 

In order to make easy variation of the gravity load, the 
EMPS can be fixed in vertical position alternatively with the z 
joint positive linear displacement in the gravity direction or in 
its opposite. 

 

The inverse dynamic model is given by: 

 
( ) ( ) ( )

( ) ( )
C V off

a C V off

M q q Q q F sign q F q

I mq mg F sign q F q

τ τ
τ

= + + + +

= + − + + +

ɺɺ ɺ ɺ

ɺɺ ɺ ɺ
  (27) 

where: 

• Ia is the inertia moment of all rotary elements in the 
drive chain (rotor of motor and encoder, ball, coupling 
units), 

• m is the mass of all translation moving elements 
(screw, carriage, payload), 

• g is the projection of the gravity acceleration on the z 
prismatic joint axis. 

• g = 9.81, when z axis stays in vertical position, oriented 
positive to the earth, 

• g = -9.81, when z axis stays in vertical position, 
oriented positive to the sky. 

All variables and parameters are given in SI units on the 
joint linear displacement side (carriage side). 



         

The identification process has been performed for the four 
different cases: first with the usual model where FC is constant, 
then with the 3 friction models depending on the load. We have 
observed that the modeling with four identical quadrants 
(1x4Q) was insufficient because the friction is asymmetrical 
here. Moreover, the modeling with four different quadrants 
(4x1Q) was not indispensable as the parameters are very close 
for the two motor quadrants on one hand and for the two 
generator quadrants on the other hand. That is the reason why 
only the modeling with quadrants identical two by two (2x2Q) 
is detailed here and compared with the usual model. The 
method for the others is very similar. 

V. EXPERIMENTAL IDENTIFICATION 

A. Data Acquisition 

The identification of dynamic parameters is carried out with 
and without payloads: five different additional masses can be 
fixed on the carriage. To excite properly the friction parameters 
to be identified, triangular trajectories were used. The sample 
acquisition frequency for joint position and current reference 
(drive force) is 5 KHz. 

The estimation of qɺ  and qɺɺ  are carried out with pass band 
filtering of q consisting of a low pass Butterworth filter and a 
central derivative algorithm. The Matlab function filtfilt  is used. 
This is a zero-phase forward and reverse digital filtering. We 
calculate the drive force using the relation: 

 f fg vτ =  (28) 

where vf is the current reference of the amplifier current 
loop, and gf is the gain of the joint drive chain, which is taken 
as a constant in the frequency range of the robot because of the 
large bandwidth (700 Hz) of the current loop [14]. 

In order to cancel high frequency ripple in vf (and  τ ) , the 
vector Y and the columns of the observation matrix W are both 
low pass filtered and decimated. This parallel filtering 
procedure can be carried out with the Matlab decimate function 
[2], [10]. 

B. Identification 

To identify the load-dependant friction, measurements with 
known payloads must be used and one needs the relation: 

 0 am m m= +  (29) 

where: 

• m0 is the unknown mass of the translational elements, 
with the carriage free of additional mass, 

• ma is one of the 6 additional masses, fixed on the 
carriage, with accurate weighted values: 0 kg, 1.05 kg, 
3.0266 kg, 4.7882 kg, 9.9162 kg, and 14.704 kg. 

Hence for the samples ( )k τ  with the additional mass ma(k), 

(24) becomes: 

 ( ) ( )( ) ( ) ( )k a 0 0 a k C V offI m q m g m q g F sign q F qτ τ= + − + − + + +ɺɺ ɺɺ ɺ ɺ (30) 

At a first step, we proceed separately for each (k) 
experiment to get 6 different usual identifications. Keeping 
only the samples at average constant velocities without 
acceleration, the load corresponds to the gravity effect. One 
uses usual LS method as described in II.B. The variation of FC 
as a function of the 6 payload values is given in Fig. 6 (see the 
asterisk*), in order to show the linear dependency on load. 

At a second step, to identify the usual model with all 
samples, one distinguishes the weighed mass maw and the mass 
mae estimated by the identification. Thus, the usual model is 
written: 

 
( )

( ) ( )
( )

( ) ( )

                                          ( )

ae k
k a 0 0 aw k

aw k

C V off

m
I m q m g m q g ...

m

... F sign q F q

τ

τ

= + − + − +

+ +

ɺɺ ɺɺ

ɺ ɺ

 (31) 

Then, the sampled measurements, for k from 1 to 6, are 
concatenated using the maw(k) weighed value corresponding to 
each experiment (k), to get the linear system: 

 usual usual usual usual = +Y W χ ρ  (32) 

with the measurements vector, the observation matrix, and the 
vector of base parameters below: 

 
TT T

usual (1) (6)... = =  Y τ τ τ  (33) 

 usual aw( ) ( )= − −  W q g m q g sign q q 1ɺɺ ɺɺ ɺ ɺ  (34) 

 
T

ae
usual a 0 0 C V off

aw

m
I m m F F

m
τ

 
= + 
 

χ  (35) 

 

At a third step, the proposed model is identified with: 

 new new new new = +Y W χ ρ  (36) 

with the measurements vector, the observation matrix, and the 
vector of base parameters defined as follows: 

 new usual= =Y Y τ  (37) 

 
new aw

aw

( ) ( )

 ( ) ( )

+ + + + +

− − − − −

= − −

− − 

W P q P g P m q g P sign q P   ...

             P q P g P m q g P sign q P q

ɺɺ ɺɺ ɺ

ɺɺ ɺɺ ɺ ɺ

 (38) 

 
T

( )( ) ( ) ( )   

            ( )( ) ( ) ( )

new m a 0 m 0 m m off m

g a 0 g 0 g g off g V

1 I m 1 m 1 ...

1 I m 1 m 1 F

α α α β τ

α α α β τ

= + + + +

− + − − 

χ

 (39) 

Here +P  and −P  are diagonal matrices, with: 



         

 
( ) ( )i i

i ,i i ,i

1 sign 1 sign
,

2 2
+ −+ −

= =
P P

P P  (40) 

The two models are compared using exactly the same 
identification method with the same measurements. 

C. Results 

The values identified with usual IDM and OLS regressions 
are given in Table I and those with the new IDM in Table II. 
For each model, Fig. 4 and Fig. 5 present a direct validation 
comparing the actual τ with its predicted value ˆWχ .  

TABLE I.  IDENTIFIED VALUES WITH USUAL IDM 

Parameters Identified 
Values 

Standard 
deviation * 2 

Relative 
deviation 

Ia + m0 64.799 0.477 0.4 % 
m0 1.047 0.012 0.6 % 

mae/maw 1.025 0.002 0.1 % 
FC 38.277 0.237 0.3 % 
FV 396.550 2.894 0.4 % 
τoff -7.935 0.078 0.5 % 

TABLE II.  IDENTIFIED VALUES WITH NEW IDM 

Parameters Identified 
Values 

Standard 
deviation * 2 

Relative 
deviation 

(1+αm)(Ia+m0) 65.850 0.375 0.3 % 
(1+αm)m0 0.821 0.008 0.5 % 

(1+αm) 1.174 0.001 0.1 % 
βm 31.337 0.171 0.3 % 
τoffm -8.415 0.059 0.4 % 

(1–αg)(Ia+m0) 68.339 0.692 0.5 % 
(1–αg)m0 0.711 0.182 12.8 % 
(1–αg) 0.831 0.004 0.2 % 
βg 21.780 1.803 4.1 % 
τoffg -7.070 0.122 0.9 % 
FV 409.285 1.983 0.2 % 
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Figure 4.  Direct validation performed with usual IDM 

In Fig. 6, it can be seen that the variation of the usual FC is 
the mean between motor and generator values, except for the 2 
first masses because the load is to low and the joint works only 
in motor mode (see the uncertain area Fig. 2.b). That explains 

also why the parameter ( )g 01 mα−  is not excited enough and 

not well identified. 
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Figure 5.  Direct validation performed with new IDM. 

In direct validation, it is shown that the predicted torque is 
improved with the new IDM. It can be seen that, for the EMPS, 

mα and gα  are very close whereas mβ  and gβ  are 

significantly different. 

Moreover, Table III presents the relative norm of errors 
ρ Y  for the two models and for two sets of experiments. 
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Figure 6.  Evolution of Coulomb friction FC and comparison between the two 

models. 

TABLE III.  RELATIVE NORM OF ERRORS WITH BOTH MODELS 

Measurements used for the 
identification 

Relative norm 
of errors with 

the usual model 

Relative norm 
of errors with 
the new model 

Samples without additional mass 
and samples with the additional 
masses of 1,05 kg and 3,0266 kg 

0,0916 0,0908 

All samples (without and with each 
additional mass) 

0,09996 0,0679 

 



         

Table III shows that the new model does not improve the 
residual if the load variation is too small. Indeed, in this case 
(additional mass less than 3 kg), the joint runs mostly in motor 
behaviour and the usual model is then sufficient. For additional 
mass greater than 5 kg, the load variation is large enough to 
justify the use of the proposed model: one observes a decrease 
of 30% in the relative norm of errors. 

VI.  DISCUSSION 

The new IDM with a load-dependent joint friction model 
brings a substantial improvement for joint whose load can vary 
significantly. Robots carrying important masses or with large 
variation of inertial and gravity forces are considered. 
Moreover, the identification process is the same for both usual 
and new models, because the new model remains linear in 
relation to the parameters. 

The main difficulty is to distinguish the different 
behaviours, motor and generator, but a solution has been 
proposed along this paper. However, the measurements have to 
be more exciting than usual. Each test has to be done with 
different loads to highlight the effect on the friction variations. 
So, this identification protocol is more time-consuming and the 
setting up must be adapted for the measurements with 
additional masses. Moreover, for robots with small load 
variation, the joint actuates only in one quadrant: the 
parameters mα and gα  of the new model are not excited 

enough and the results are not better than with the usual. Then, 
this one will be accurate enough for low load variation. 

One has to consider the load variation rate and the type of 
the transmission to choose the appropriate model, before 
starting modeling and identification. 

VII.  CONCLUSION 

In this paper, a new model of friction with a load-
dependence has been presented. The identification process has 
been adapted to the new inverse dynamic identification model. 
This method was validated experimentally on a 1 dof prismatic 
joint robot. In addition, we have established that this technique 
can be applied to multi dof robots because we get a linear 
system with respect to friction and dynamic parameters. The 
proposed model is accurate and required for robots with large 
load variation. 

Future works concern the application of this IDIM to 
identify the parameters of a multi dof robot. Several types of 
transmission will be studied, as well as a possible velocity-
dependence of dry friction. Once an accurate model will be 
identified for multi dof robots, it will be used for torques 
monitoring and collision detection. 
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