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Dependent Joint Friction Model
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F-92265, France.
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Abstract—Usually, the joint transmission friction model for
robots is composed of a viscous friction force andf a constant
dry friction force. However, according to the Coulanb law, the
dry friction force depends linearly on the load drven by the
transmission. It follows that this effect must be aken into account
for robots working with large variation of the payload or inertial
and gravity forces, and actuated with transmissionsas speed
reducer, screw-nut or worm gear. This paper propose a new
inverse dynamic identification model for n degreesf freedom
(dof) serial robot, where the dry friction force isa linear function
of both the dynamic and the external forces. A newdentification
procedure groups all the joint data collected whilethe robot is
tracking planned trajectories with different payloads to get a
global least squares estimation, in one step, ofartial and new
friction parameters. An experimental validation is carried out
with a 1 dof prismatic joint composed of a Star hig precision
ball screw drive positioning unit, which allows lage and easy
variations of the inertial and gravity forces.

Keywords—robot, modeling, identification, friction

l. INTRODUCTION

The usual off-line dynamic identification of robatses the
inverse dynamic identification model (IDIM) which linear in
relation to the dynamic parameters, and uses $egsires (LS)
technique. This procedure has been successfulljiedpo
identify inertial and friction parameters of a loft prototypes
and industrial robots [1]-[10]. An approximation dhe
kinematic Coulomb friction,F.sign(¢ , is widely used to

model friction force at non zero velocity, assuming that the

friction force F. is a constant parameter. It is identified by

moving the robot without load (or external force) with
constant given payloads [9].

However, the Coulomb law suggests tlfat depends on

the transmission force driven in the mechanisndefiends on
the dynamic and on the external forces appliedutinothe

joint drive chain. Consequently for robots with yiag load,

the identified IDIM is no more accurate when thengmission
uses industrial speed reducer, screw-nut or woran gecause
their efficiency significantly varies with the tremitted force.
The significant dependence on load has been ofisereed for
transmission elements [15]-[21] through direct nueasent
procedures. Moreover, the mechanism efficiency aépeon

the sense of power transfer leading to two distsets of
friction parameters.
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This paper presents a new inverse dynamic ideatiifio
model for n degrees of freedom (dof) serial rolvdiere the
dry friction force K is a linear function of both the dynamic

and the external forces, and with asymmetrical Wieha
depending on the signs of the joint force and viglo& new
identification procedure is proposed. All the jopdsition and
joint force data collected in several experimenthjle the
robot is tracking planned trajectories with differgpayloads,
are concatenated to calculate a global least ssjtamation
in one step of both the inertial and the new foictparameters.

An experimental validation is carried out on a tstew
drive prismatic joint. This simple study case alolarge and
easy variations of the gravity and inertial forcétsis very
suitable to study the effect of large variatiorttu# load driven
by the transmission on the friction force. The hssabtained
with the usual and the new friction model are coraga

II.  USUAL INVERSEDYNAMIC MODELING AND
IDENTIFICATION

A. Modeling

In the following, all mechanical variables are givie Sl
units in the joint space. All forces, positionslogities and
accelerations have a conventional positive sigrthin same
direction. That defines a motor convention for thechanical
behavior.

The dynamic model of a rigid robot composed of rvimg
links is written as follows [11]:

Tdyn:Tin+Tf+Text (1)
where:
* 174, is the (nx1) vector of dynamic forces due to the
inertial, centrifugal, Coriolis, and gravitatioreffects:

Tayn =M@d4+C(a. 9o+ A g @)
where g, ¢ and § are respectively the (nx1) vectors of
generalized joint positions, velocities and acedlens,M(q) is
the (nxn) robot inertia matrixC(q, §) is the (nxn) matrix of

centrifugal and Coriolis effect€Q(q) is the (nx1) vector of
gravitational forces.
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et isthe (nx1) input torque vector of the drive chai

n

©)

Ty = 0; (Vs = V)

wherey; is the (nx1) vector of current references of therent
amplifiers, v; is a (nx1) vector of amplifiers offsets; is the

(nxn) matrix of the drive gains,

9: =NG K 4

N is the (nxn) gear ratios matrix of the joint drighains
(9, = Ng with g, the (nx1) velocities vector on the motor
side),G; is the (nxn) static gains diagonal matrix of tlerent
amplifiers, K; is the (nxn) diagonal matrix of the
electromagnetic motor torque constants.

* 1, isthe (nx1) vector of the loss force due to ivics.

Usually, it is approximated with a viscous frictiand
a dry friction:

t, =—F,q-F.sign(d) — Feoq 5)

7 = Dg(0,0, 81 5 (®)

where Dg,(0,4,0) is the regressor ang,, is the vector of the
standard parameters which are the coefficietXs XY;, XZ,
YY, YZ, ZZ of the inertia tensor of linkdenotedJ;, the mass
of the linkj calledmy, the first moments vector of lirjkaround
the origin of framg denotedM; = [MX; MY, MZ]", the friction
coefficients Fy;, Fj, the actuator inertia calleth;, and the
offsetzy. The velocities and accelerations are calculasiugu
well tuned band pass filtering of the joint positi@].

The base parameters are the minimum number of
parameters from which the dynamic model can beutaied.
They are obtained by eliminating and by regroupgume
standard inertial parameters [12], [13]. The midinmverse
dynamic model can be written as:

7 =D(q,0,9x 9

where D(q,q,9 is the minimal regressor apds the vector of

the base parameters.

The inverse dynamic model (7) is sampled whilertiteot
is tracking a trajectory to get an over-determitiedar system

whereFy is the (nxn) diagonal matrix of viscous parameterssuch that [6]:

F¢ is the (nxn) diagonal matrix of dry friction paraters, and
sign(.) denotes the sign functioc.y is a (nx1) vector of
asymmetrical Coulomb friction force between positiand
negative velocities. This friction model is lingarrelation to
FyvandF¢ (Fig. 1.a).

.
Text

space.
Thus (1) becomes (6):

Tdyn_Text: g fvf_ F\/q_ FCSIQr(O)_( FCoff+ g fvof)

_ . o (6)
Touwt =T~ qu - FCS|gn(q) T Toff

=3

wherez,, =7,,-7,is the output force (load force) of the
drive chain,z; =Fcq 9,V is an offset force that regroups

the amplifier offset and the asymmetrical Coulonnigtibn
coefficient, andr = g, v, is the motor force without offset.

Then (1) can be rewritten as the inverse dynamidaho
(IDM) which calculates the motor torque vectass a function
of the generalized coordinates:

t=M@)G4+C(q g o+ g+ B Sigh U+ Farry —Te @
:TOUI + FCS|gn(q)+ qu+roff
B. Identification

The choice of the modified Denavit and Hartenbeagnes
attached to each link allows to obtain a dynamiacehdinear
in relation to a set of standard dynamic paramejg(g6],

[11]:

is the (nx1) external forces vector in the joint

Y(r)=W(a,0.9x +p (10)
with Y(z) the measurements vectd¥, the observation matrix
andp the vector of errors.

The LS solutiony minimizes the 2-norm of the vector of

errorsp. W is a (xb) full rank and well conditioned matrix
where r =N_xn, with N, the number of samples on the

trajectories. The LS solutignis given by:

Z=(Ww) T wiy=wy (11)
It is calculated using the QR factorization\wf Standard

deviationse; are estimated using classical and simple results

from statistics. The matri¥V is supposed to be deterministic,
andp, a zero-mean additive independent noise, wittaadstrd
deviation such as:

— 2
—Uplr

Cp= E(ppT) (12)

where E is the expectation operator dpdthe (xr) identity
matrix. An unbiased estimation @fis:

52 =|Y ~Wa /(r -b) (13)

The covariance matrix of the standard deviation is

calculated as follows:



Cy =E[ - -2)" |=a2WW)™"  (19)

2
5 = Cyi

relative standard deviatiotbo;, is given by:

is the 1" diagonal coefficient ofC;; . The

%0;, =1000; /X (15)

However, experimental data are corrupted by noisg a

Thus, the IDM depends on the signsmjf, andq. With
sign(z,,,) sigr{ 9 = sigfr,,, N, one defines 4 quadrants which

can be grouped two by two (Fig. 2.a), dependinghensign of
the output power denotel, =7,.,4. In the quadrants 1 and
3, Pou is positive and the actuator has a motor behainothe
quadrants 2 and 4., is negative and the actuator has a
generator behavior which may save the power toptheer
supply, assuming a 4 quadrants amplifier.

This model is valid for symmetrical friction. Geady, the

error modeling andV is not deterministic. This problem can be friction is asymmetrical andr and S can take different

solved by filtering the measurement vectoand the columns
of the observation matriw/ as described in [7], [8].

In this section, we introduce a friction model degent on
the load, that iz, .

NEW FRICTION MODELING AND IDENTIFICATION

A. Load-Dependent Friction Model

The Coulomb friction is still writterF_sign(d) , with Fc a
(nxn) diagonal matrix. But here, for each linkF ;) (the
(.)" element of the matrix=. ) depends linearly on the
absolute value of the load of joiptwhich is7_ . (Fig. 1.b),
[15]-[21]. As one can see in Il.B, . is a function ofg, q, g

out j
and is linear in relation to base parameters.

out j

Then the inverse dynamic model for each jitlecomes:

+(a,

where the parameters; and S, are constants to be identified.

These new parameters depend on the mechanicatuseruaf
the reducers used to actuate the robot.

T. =T,

j out j

+B,)sign() +Fy ) § +70, (16)

Toulj

For ease of understanding, the subsgriptomitted for all
variables in the following to simplify the notation

a) Frictiog b)

Fc/

>

Frictign

Tout
increases

>q

B

—" =

Figure 1. a) Usual friction model with constaRg.
b) Parametric effect of the load on friction model.

-F. +

The inverse dynamic model can be written as follows
T =1y *tar,|sign@ + Bsigt o+ Earry  (17)

And with |7, = 7,,sign(7,,,) . One obtains:

T=r,,+ar,,signr,)sigtq+8 sigh' i+ F a7 (18)

values depending on the quadrant where the joirgt. ru

a) b) Tof 1
i o
out} . . v
Simplified /s
@ @ and uncertain 1 +1
Om
Pouwt <0 Pout> 0 area\____ %70 <
Generator | Motor .0 v T Ao
> i ,: >
Pou>0 | Pou<0 Zhoa T
Motor | Generator
B|® Lo
Friction
Q
7
o

Figure 2. a) Four quadrants fram,r,, ) for motor / generator behavior.

b) Asymmetrical friction for velocityy and definition of the uncertain area.

B. Power Sign-Dependent Friction Model
We present here 3 ways of modeling.

e 4 modelq4x1Q)for 4 different quadrants

In the general case, the friction parameiers 5, and 7
depend on the signs af,q and g in the frame q, 7,,.4). Fig.
2.a. That means that there are four different \&foea , S,
andry (one for each quadrantyt,, B,, a,, 5,, a,, B,,

and a, , B, (the offsets regroup with the parametgfs),
which defines four different models named (4x1Q).

Toaa >0 & 4>0=7=(1+a))7,, + B, + R4
Toaa >0 & 4<0=7=(1-a,)1,,~B,+ R,Q
Toa <0 & 4<0=7=(1+a5)7,,~ B+ RQ
Toaa <0 & 4>0=7=(1-a,)7,,+ B, + R4

(19)

* 2 modelq2x2Q)for quadrants identical two by two

In some cases, the friction is symmetrical withpezs to
the velocity and the 4 models can be simplifiedtmodels.
The parametersr , f, and 7, have only two different

values,a,,, B, . T, for the motor quadrants 1 and 3 and
ay, B, Ty, for the generator quadrants 2 and 4.
(1+am)rout+:8m3igr(.q+ I:\/.qi-roffm

(20)

P .>0=>r1r=
(1_ag)rout+ﬁgSigr(.q+ I%/.Cﬂ-rof'fg

out
P.,<0=r1=

out



« 1 modek1x4Q)for 4 identical quadrants

In the case of symmetrical friction with respectrig, and
g, the models simplify to 1 model for 4 quadrants.

r= Z-out +O’T0utSig|”( F?:)ut) +ﬁ Slgm 'q+ E/q- Z-off (21)

Each modeling takes the load-dependency of frictiaa
account. Starting from the (4x1Q) models, a singaifon
procedure based on the identification results letasthe
simplest model.

However, when the joint torque is low, the frictiomodel
should be more complex because of Coulomb friatesulting
from internal preload and hysteresis. Then, onexa@nse the
quadrants. To simplify and connect the quadrantsietso a
relevant approximation consists in extending thanthis area
which can be considered as uncertain for the exmarial
identification. This simplification is illustrateth a (7, 7,,,)
graph (Fig. 2.b). It should be noticed that witkiis area, the
mechanism is no longer transmitting power whichatally
dissipated in friction losses.

C. Friction Identification Method

The friction models depend on the sign f, which is

unknown. To overcome this problem, the samples rof
measurements are selected outside of the uncentain (Fig.
2.b) in order to get the same sign fQy, and r . This allows

to get the sign o, with:

sign(R,) = sigir,, 9= siglr ‘o= sidnk  (22)
The (1x4Q) modeling can be written:
T =Ty tat,,Sign(P) +Bsigl g+ Gary, (23

For the (2x2Q) modeling, 2 variables are introdyded
and P, defined by:

p* =M, P>0 - P'=1, P<0 « P'=0(24)

2
p-=128101D _ 5 (25)
2
Then (20) can be written in one model:
T=P'(1+a, )T, * P (I-a )1+ -
‘ oo (26)

P+ wm Slgr‘(0)+ Toff m)+ P (Bg Slglﬁ QT‘L Toff g)+ E

For the (4x1Q) modeling, 4 similar operators hawebé
defined to obtain one model only.

As 1., is linear in relation to parameters, so 7s.

However, the dynamic parameters used for the usodkl are

here weighted with(1+a,) and (1-a,) (for the (2x2Q)

modeling for example), and each one regroups \kigse two
terms to form the new base parameters. There ae/l,

By Toem» and 7 instead ofFc and 7,4 . Thus, for each

friction modeling, one can write the IDM linear iialation to
parameters and use the LS technique. This is adicfor a
multi degree of freedom robot.

IV. PROTOTYPE TO BE IDENTIFIED

The EMPS is a high-precision linear Electro-Mechahi
Positioning System. Its main components are a MaR@h
motor which is current controlled by a four quadr&wMm
amplifier, a Star high-precision low-friction badcrew drive
positioning unit, and an incremental encoder. Taektash free
ball screw drive is the gear converting the rotaugtion of the
motor to the linear carriage joint displacemente HMPS is a
standard configuration of a drive system for prismpint of
robots, machine tools, haptic device... It is coneécto a
dSPACE digital control system for easy control ashata
acquisition using Matlab and Simulink software [22[3].

Figure 3. EMPS prototype to be identified.

In order to make easy variation of the gravity lo#te
EMPS can be fixed in vertical position alternatvelith the z
joint positive linear displacement in the gravifyedtion or in
its opposite.

The inverse dynamic model is given by:

T=M(@)g+ Q9+ F sigif g+ F a7,y

" L . (27)
=(I, +md) - mg+ F sigh g+ F e 7

where:

e |, is the inertia moment of all rotary elements ie th
drive chain (rotor of motor and encoder, ball, dowp
units),

e m is the mass of all translation moving elements
(screw, carriage, payload),

e g is the projection of the gravity acceleration be 2
prismatic joint axis.

e g=9.81, wherz axis stays in vertical position, oriented
positive to the earth,

e g = -9.81, whenz axis stays in vertical position,
oriented positive to the sky.

All variables and parameters are given in Sl unitsthe
joint linear displacement side (carriage side).



The identification process has been performedHerfour
different cases: first with the usual model whEgds constant,
then with the 3 friction models depending on thedloWe have
observed that the modeling with four identical caats
(1x4Q) was insufficient because the friction is ragyetrical
here. Moreover, the modeling with four differentaguants
(4x1Q) was not indispensable as the parametergesyeclose
for the two motor quadrants on one hand and for tthe
generator quadrants on the other hand. That iseth&on why
only the modeling with quadrants identical two b t(2x2Q)
is detailed here and compared with the usual motieé
method for the others is very similar.

V. EXPERIMENTAL IDENTIFICATION

A. Data Acquisition

The identification of dynamic parameters is caroed with
and without payloads: five different additional as can be
fixed on the carriage. To excite properly the faotparameters
to be identified, triangular trajectories were us€te sample
acquisition frequency for joint position and cutreaference
(drive force) is 5 KHz.

The estimation ofj and ¢ are carried out with pass band
filtering of g consisting of a low pass Butterworth filter and a

central derivative algorithm. The Matlab functifilifilt is used.
This is a zero-phase forward and reverse digitadriing. We
calculate the drive force using the relation:

T=0,V (28)

where v; is the current reference of the amplifier current

loop, andg; is the gain of the joint drive chain, which is ¢ak
as a constant in the frequency range of the robcduse of the
large bandwidth (700 Hz) of the current loop [14].

In order to cancel high frequency ripplevn(and ) , the
vectorY and the columns of the observation mattbare both
low pass filtered and decimated. This parallel efilig
procedure can be carried out with the Matigsimatefunction
(2], [10].

B. Identification

To identify the load-dependant friction, measuretsavith
known payloads must be used and one needs thionelat

m=m+m (29)

where:

« mis the unknown mass of the translational elements, WneW:|:P+q -Pg Pm(a § Psigig P

with the carriage free of additional mass,

* m, is one of the 6 additional masses, fixed on the

carriage, with accurate weighted values: 0 kg, k@5
3.0266 kg, 4.7882 kg, 9.9162 kg, and 14.704 kg.

Hence for the sampleg,, with the additional massy,
(24) becomes:

Ty =, +m)a-myg+ m, (g g+ E sighi)r 67 ,,(30)

At a first step, we proceed separately for ea&h (
experiment to get 6 different usual identificatio&eeping
only the samples at average constant velocitieshowit
acceleration, the load corresponds to the graviigce One
uses usual LS method as described in II.B. Theatran of F¢
as a function of the 6 payload values is givenin B (see the
asterisk*), in order to show the linear dependestyjoad.

At a second step, to identify the usual model wath
samples, one distinguishes the weighed magsand the mass
m,e estimated by the identification. Thus, the usualdet is
written:

Maay
w(k)

o FoSigN Q6 G 7,

Tgy = (I +mp)4-m, g+ My (O 9+ ..

(31)

Then, the sampled measurements, for k from 1 taré,
concatenated using the,s, weighed value corresponding to
each experiment (k), to get the linear system:

Yusual = WLISLJaK usuaﬂ- p usu (32)

with the measurements vector, the observation matnd the
vector of base parameters below:

To] (33)

sighy g

— — T
Yusual -T-= |:T )

Wusualz[q -9 maw('q_ g (34)

T
Xusual = |:I a+m0 mO rnae FC l:V r off:| (35)

At a third step, the proposed model is identifigthw

Ynew = Wnewx FIBW+ p nev (36)

with the measurements vector, the observation ratrd the
vector of base parameters defined as follows:

Yoew =Y

new

usual =7 (37)

(39
Pg-Pg Pm(e ) Psigig P ]

Tew= @Fa )1 MY (Ba)my (Ba) BT g
- (39)

o, ,*m) a0 (ka,) B, Ty, K

Here P* and P~ are diagonal matrices, with:



b = 1 SigR)

_ _ 1- sigR)
ii 2 i

> (40)

The two models are compared using exactly the same

identification method with the same measurements.

C. Results

The values identified with usual IDM and OLS regiess
are given in Table | and those with the new IDMTible 1.
For each model, Fig. 4 and Fig. 5 present a divatitlation
comparing the actualwith its predicted valus\Vy .

TABLE 1. IDENTIFIED VALUES WITH USUAL IDM

Parameters Identified St_an_dard Rel_ati_ve
Values deviation * 2 deviation

la+ My 64.799 0.477 0.4 %
mp 1.047 0.012 0.6 %

Mad Maw 1.025 0.002 0.1 %
Fc 38.277 0.237 0.3 %

R 396.550 2.894 0.4 %

Toff -7.935 0.078 0.5 %

TABLE Il. IDENTIFIED VALUES WITH NEW IDM

Parameters Identified St_an_dard Rel_ati_ve
Values deviation * 2 deviation

(1+0m) (la+mo) 65.850 0.375 0.3%
(1+om)mg 0.821 0.008 0.5 %
(L+om) 1.174 0.001 0.1 %
Bm 31.337 0.171 0.3 %

Tofim -8.415 0.059 0.4 %
(1-0g)(Istmo) 68.339 0.692 0.5 %
(1-ag)mg 0.711 0.182 12.8 %
(1-0g) 0.831 0.004 0.2 %

By 21.780 1.803 4.1 %

Toffg -7.070 0.122 0.9 %

Y 409.285 1.983 0.2 %

Input T (N)

—— Measurement

| | | Estimation
| | | | Error
-400 1 1 1 1 T T T
0 02 04 06 08 1 12 14 16 18 2
Samples x 10°

Figure 4. Direct validation performed with usual IDM

In Fig. 6, it can be seen that the variation ofukealF¢ is
the mean between motor and generator values, efaethie 2
first masses because the load is to low and tin yaarks only
in motor mode (see the uncertain area Fig. 2.bat Ekplains

also why the parametdl—a,)m, is not excited enough and

not well identified.

Input T (N)

In direct validation, it is shown that the preditterque is
improved with the new IDM. It can be seen that,tfe EMPS,

a, and a, are very close whereags,

400

——— Measurement
- 38 k - - H
Estimation
! Error
1 T T T
0.2 0.4 0.6 0.8 1 1.2 14 16 18 2
Samples X 104

Figure 5. Direct validation performed with new IDM.

significantly different.

and B, are

Moreover, Table Ill presents the relative norm ofoes
le|/|Y|| for the two models and for two sets of experiments

Friction (N)

Figure 6. Evolution of Coulomb frictiorFc and comparison between the two

TABLE lIl.

60

Ewolution of Friction

[m]
55l — — - — —— - — — _ Lo Lo oo
| |
| |
| | *
50F - --------- i el
I 0
| | o
45— ————————— ‘r*********;‘r ***********
op oo oh---mmoes RRREEEE
<&
o | |
B/ -——— - —— T
% * \ |
i} | |
Of--------- Rl el ity
o | *  Fc (usual model)
|
1] Fommm————— o o mg+By, H
<& |
| O agmg+By
20 1 T
0 50 100 150

Grawity - m.g (N)

models.

RELATIVE NORM OF ERRORS WITH BOTH MODELS

Measurements used for the

identification

Relative norm
of errors with
the usual model

Relative norm
of errors with
the new model

Samples without additional mass

additional mass)

and samples with the additiona 0,0916 0,0908
masses of 1,05 kg and 3,0266 kg
All samples (without and with eagh 0,09996 0,0679




Table 1ll shows that the new model does not imprthee  [3]
residual if the load variation is too small. Inde@dthis case
(additional mass less than 3 kg), the joint runstigan motor
behaviour and the usual model is then sufficieat. delditional
mass greater than 5 kg, the load variation is langeugh to

justify the use of the proposed model: one obseavedscrease

N

]

of 30% in the relative norm of errors. 5]
VI. DISCUSSION

The new IDM with a load-dependent joint friction ded (6l
brings a substantial improvement for joint whosadl@an vary
significantly. Robots carrying important massesaith large [7]
variation of inertial and gravity forces are comsid.
Moreover, the identification process is the sanrebfuth usual (g
and new models, because the new model remainsr linea
relation to the parameters.

The main difficulty is to distinguish the different &
behaviours, motor and generator, but a solution basn
proposed along this paper. However, the measurerhene to  [10]
be more exciting than usual. Each test has to be dath
different loads to highlight the effect on the fion variations.

So, this identification protocol is more time-comsng and the  [11]

setting up must be adapted for the measurementh wit
additional masses. Moreover, for robots with smathd 12
variation, the joint actuates only in one quadrattie
parametersa,, and a, of the new model are not excited |13

enough and the results are not better than witlusial. Then,

this one will be accurate enough for low load vioia (14]

One has to consider the load variation rate andythe of
the transmission to choose the appropriate modeforé
starting modeling and identification.

VII.

In this paper, a new model of friction with a load-
dependence has been presented. The identificatomess has
been adapted to the new inverse dynamic ideniificahodel.
This method was validated experimentally on a 1psmatic
joint robot. In addition, we have established tidg technique
can be applied to multi dof robots because we géhear
system with respect to friction and dynamic paramsetThe
proposed model is accurate and required for rowits large
load variation.

[15]

CONCLUSION
[16]

(17]

(18]

Future works concern the application of this IDIM t [
identify the parameters of a multi dof robot. Seveypes of
transmission will be studied, as well as a possidtocity-
dependence of dry friction. Once an accurate medélbe
identified for multi dof robots, it will be used rfaorques

19]

monitoring and collision detection. [20]
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