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Models, simulators and control strategies are required tools for the conception of secure and comfortable vehicles. The aim of this paper is to present a systematic approach to develop models for dynamic vehicle, focusing on a two wheeled vehicles whose body involves six degrees of freedom. The resulting model is sufficiently generic to perform simulation of realistic cornering and accelerating behaviour in various situations. It may be used in the context of motorcycle modeling, but also in various situations (e.g. for control application) as simplified model for 3 or 4 wheeled (tilting) cars. The approach is based on considering the vehicle as a multi-body poly-articulated system and the modeling is carried out using the robotics formalism based on the modified Denavit-Hartenberg geometric description. In that way, the dynamic model is easy to implement and the system can be used for control applications.

INTRODUCTION

Modeling and simulating vehicle dynamics are fundamental tools for vehicles research and development. They allow understanding the dynamics of vehicles and improving the design in order to ensure the major challenge of having safe, comfortable and economic vehicles. Hence, the goal is to build a mathematical model that illustrates significant aspects of the physical dynamics and then facilitate performance analysis and assess design tradeoffs. In the literature, most of the models proposed are developed for control applications (Sharp, 1971). They are centred on motorcycle behaviours, and neglect some essential aspects such as gyroscopic effect on the steering handle bar or pitch motion due to the suspension system (Weir 1978), (Katayama et al, 1985). Lately, some advanced models have been developed using multi body systems. R.S Sharp provided his model by using Autosim software with a description lack on the applied method (Sharp et al, 2001). Later, Cossalter et al developed a model based on Lagrange Formalism that consist on interconnected rigid bodies together with suspensions and other flexible components, supplemented by sophisticated tire and engine models (Cossalter et al, 2002). This formulation uses absolute coordinates that do not depend on the topological structure of the system. However, this technique leads to a complicated model, hard to implement and requires complex numerical algorithm to solve the DAE's (Shabana, 1994). Therefore to model a complex system (Rajamani, 2006), (Kiencke et al, 2000) in 3D motion, we claim that it is preferable to proceed in a systematic geometrical description, based on the modified Denavit Hartenberg parameterization (Khalil et al 1986). This description allows to automatically calculate the symbolic expression of the geometric, kinematic and dynamic models by using a symbolic software package as SYMORO+ (Symbolic Modeling of Robots) (Khalil et al, 1997). This formulation leads to a minimum set of differential equations from where the constraint equations for the mechanical system are automatically eliminated. This paper concentrates on developing a dynamical model for a two wheeled vehicle (called bicycle) by applying recursive methods used in robotics. The approach elaborates systematically the symbolic equations of motion and makes the implementation of the dynamic model easier. This work can be extended for various complex vehicles, such as narrow electric tilting car, specifically Smera Car from Lumeneo (Lumeneo) and (Maakaroun, 2010a, b). The paper is organized as follows: the global method is described in section 2.1 and applied to the bicycle system in section 2.2. A dynamic model is then elaborated using a recursive Newton-Euler based Algorithm (Khalil et al, 1987) in section 3. Finally, Simulations results are illustrated and commented and conclusions are done. The paper ends with a summarize conclusion.

GEOMETRICAL DESCRIPTION OF THE CAR

Robotic representation of a multi body system

The bicycle is considered as a mobile robot which is a treestructured multi body system composed of n bodies (links) where the chassis is the mobile base and the wheels are the terminal links. The links are numbered consecutively from the base to the terminal links. Each body C j is connected to its antecedent C i (i=a(j)) with a joint that represents a translational or rotational degree of freedom and can be elastic or rigid. a(j) denotes the link antecedent to link j, and consequently a(j) < j .A body can be virtual or real; the virtual bodies are introduced to describe joints with multiple degrees of freedom like ball joint or intermediate fixed frames. The frame R i (O i , xi , y i, z i) which is attached to the body Ci is defined as following:

The z i axis is along the axis of joint i, the u j axis is defined as the common normal between z i and z j . The x i axis is along the common normal between z i and one of the succeeding z axis, where link i is the antecedent of link j and the origin O i is the intersection of z i and x i . The homogeneous transformation matrix i T j between two consecutive frames R i and R j is expressed as a function of the following six parameters (Fig. 1): • γ j : angle between x i and u j about z i • b j : distance between x i and u j along z i • α j : angle between z i and z j about u j • d j : distance between z i and z j along u j • θ j : angle between u j and x j about z j • r j : distance between u j and x j along z j

Fig. 1. Geometric parameters

The generalized coordinate of joint j is denoted by q j , it is equal to r j if j is translational and θ j if j is rotational. In (Fig. 1), since x i is taken along u k, the parameters γ k and b k are equal to zero. We define the parameter σ j = 1 if joint j is translational and σ j = 0 if joint j is rotational. If there is no degree of freedom between two frames that are fixed with respect to each other, we take σ j =2. In this case, the time derivative of q j is zero. The description of the bicycle considered as a multi body poly articulated system uses the Denavit and Hartenberg (MDH) notations that are commonly used in robotics (Fig. 4). The chassis motion is described with Euler coordinates while all the other links are described with the generalized Lagrangien coordinates. According to MDH description and SYMORO+, C 0 is the base attached to the ground. The structure is defined as a robot with a mobile base by considering C 1 attached to C 0 via a blocked joint. The inertial parameters of this base are those of C 1 and the speed and the acceleration are then the ones of the chassis described in his own frame. Let R f be a fixed reference frame attached to the ground. The body C 1 with a location ζ (i.e. position & orientation) gives the system posture in the frame R f . The movement of the chassis in this mixed Euler-Lagrangien model is given by:

Application for the model
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Where V x1 , V y1 and V z1 are respectively the longitudinal, lateral and vertical translational speed of the chassis. Where 1 ω and 1 ω & are the angular velocity and accelerations of the chassis. According to this description, the geometric parameters of the tree structure are shown in table 1 and the bicycle motion is completely described by the vector q of the 11 generalized coordinates:

[ ] T q 1 ξ ξ = ; [ ] 4 11 6 9 3 1 q q q r r = ξ -ξ [1x6]
is the posture of the chassis (position & orientation) -r 3 and r 9 are the length of the suspensions, -q 6 and q 11 are the angular positions of the two wheels with respect to their revolute axis, -q 4 is the steering angle.

Table 1. Geometric Parameters of the modal

DYNAMIC MODEL

Dynamic parameters

For each link there are 14 standard dynamic parameters (Gautier et al, 1990) composed of 10 standard inertial parameters (Table 2): -J j = [XX j XY j XZ j YY j YZ j ZZ j ]: the six coefficients of the inertia matrix of link j given in the frame R j , -MS j = [MX j MY j MZ j ]: the three components of first moment of link j around the origin of the frame j, -M j : the mass of link j

Table 2. Dynamic parameters of the modal

For each actuated joint j, we introduce:

-I aj as the total inertia of the rotor of motor and the drive transmission. -F vj , F sj as the viscous and coulomb friction parameters. For a flexible joint, we define: -K j as the stiffness of the joint j For joint 3 and 9 we add K 3, K 9, F v3 and F v9 to the parameters listed in Table 2. These parameters represent respectively the stiffness of the springs and the dampers of the suspensions.

External Forces

The external forces applied to the bicycle, which have the most significant impact on vehicle dynamics, are the contact forces between the ground and the tires. These external forces can be modeled (Pacejka, 2002), estimated (Canudas, 2003) or measured at the center of the wheels by using dynamometric wheels. Aerodynamic forces also have an effect on the vehicle behavior, particularly at high speed (> 90 Km/h).

Euler-Lagrange Dynamic model

The mixed Euler-Lagrange model is obtained from two recurrences of the algorithm of Newton-Euler in the following way (Khalil, 2002):

The forward recursive equations can be summarized as follows: for j= 1 to n, we calculate the total forces and moments on each link ] [
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The backward recursive equations can be summarized as follows: for j= n to 1, we calculate the forces and moments exerted on body B j by its antecedent B i .
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Where:

j ω and j ω & are respectively the angular velocity and the angular acceleration of body j. -F j and M j are respectively the total forces and moments applied on the body j with respect to O j.

j j j j (4) The inverse dynamic model gives the joint torques as a function of the joint coordinates, speeds and accelerations. The joint forces or torques are obtained by projecting f j or m j on the joint axis z j and by taking into account the effects of friction and elasticity as follows:
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For the body C 1 there is no projection on the joint axis, so the equations of the chassis will be represented by the total forces f 1 and moments m 1 exerted by link 0 on link 1. Thus the NE equations of the chassis are expressed in terms of Euler variables [ ] The inverse Dynamic mod mobile base can be written as: 11x1) is the vector of centrifugal, Cori terms.
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-J (11xp) generalized efforts representing the projection of the external forces and torques on the joint axes.
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are the angular position, ve of joints including the variables of the chassis such as:
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our of the bicycle, by using the dynamic model obtained from the equation of Newton-Euler. The simulator architecture is described in figure 5: ,,,,, (
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As we said in Section 3.3, the torques related to the variables of the chassis are zero and the torques of passive joints are zero, we can conclude:
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Moreover, by adding the stiffness and the friction coefficient to the suspensions joint as in section 3.1, the torque of joint 3 and 9 will be equal also to zero. Hence the global vector of torques will be written as follows:
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The matrix A can be calculated by the algorithm of Newton-Euler, by noting from the relation (8) that the ith column is equal to Γ:
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he unit (11 x 1) vector, whose elements are zero except an be obtained with the the ith element which is equal to 1. The calculation of the vector H c Newton-Euler method, by noting that
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The Matrix J can be calculated (12) e is the unit (p x 1) vector, wh the well known and widely used one is Pacejka Magic formula. This model captures in steady-state motion, the tire/road forces and moments, in algebraic equations form with respect to load, longitudinal slip and lateral slip. Among a six components of the tire/road contact wrench, we have considered the principal ones: longitudinal and lateral forces.

-To keep the tires in contact with the ground, we must add two constraints to the dynamical model. Therefore, the vertical velocity and acceleration of the contact tire/road with respect to the reference frame must be equal to zero.
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quation (8) becomes:

Where:

x resents the vector of the efforts transmitted by

And the direct dynamical model for simulation will be:

(15)

First Scenario: longitudinal behaviour

In this scenario, the bicycle is subject to traction torque
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applied at the rear wheel. The shape of this torque stimulates an accelerated phase then a decelerated one as shown in Fig 6 . The trajectory is a straight line with an initial velocity equal to 10 m/s. When the bicycle accelerates, a transfer load will occur from the front to the rear part of the vehicle. Consequently, the length of the front suspension will increase, and the one of the rear suspension will decrease (Fig 7 .). Hence, a negative pitch angle will appear with respect to its revolute axis which is taken to the left as in 

Second Scenario: lateral behaviour

In this scenario, the system is subject to a desired steering torque applied on the steering column to follow the trajectory imposed by a steering desired angle (Fig 10). We consider in this case that the longitudinal velocity is constant and equals to 3 m/s. However, to maintain the stability, the bicycle must tilt into the corner such that the resultant force of the lateral acceleration and the weight of the vehicle is along the vertical axe of the vehicle. The desired tilt angle will be the roll of the bicycle and it will be equal to: 

  Our model is composed of 12 bodies (Fig.2& Fig.3) connected by 11 joints: -C 1 is the chassis -C 3 and C 9 are the front and rear suspensions. Their movement is represented by prismatic flexible joints.-C 6 is the rear driving wheel and C 11 is the front steering wheel.-C 4 is the steering column -C 2, C 5, C 7, C 8, C 10, C 12 are virtual bodies fixed to other links by blocked joints.

Fig. 2 .

 2 Fig. 2. Multi body description of the bicycle

Fig. 4 .

 4 Fig. 4. Geometric description of the bicycle

  i j P are respectively the orientation 3x3 matrix and the position vector of the origin

  j) indicates the bodies whose antecedent is body -f ej and m ej are the external forces and moments appl body C j on the environment. When σ j is equal to 2 (a bloc by σ j or j σ are eliminated.

  ) f 1 and m 1 are equal to zero because there is no body el (IDM) of a tree structure with a (8) -A (11x11) is the inertial matrix of the system olis and gravity is the Jacobian matrix and Jf e is the vector

Fig. 5 .

 5 Fig. 5. Simulator architecture

  test scenarios are considered. The following assumptions are used: -The aero dynamical forces are neglec -The behaviour of the ground vehicles depe on the nature of the interaction between the tire and the road. As said in section 3.2, this interaction has been modeled and

Fig. 9 .

 9 Fig. 7. Front and rear suspension elongation

  Fig. 6. Rear Torque
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