Some continuation properties via minimax arguments

Louis Jeanjean

To cite this version:

Louis Jeanjean. Some continuation properties via minimax arguments. 2011. hal-00583150v1

HAL Id: hal-00583150 https://hal.science/hal-00583150v1
 Preprint submitted on 5 Apr 2011 (v1), last revised 6 Sep 2021 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SOME CONTINUATION PROPERTIES VIA MINIMAX ARGUMENTS

LOUIS JEANJEAN

Abstract

This note is devotes to some remarks regarding the use of variational methods, of minimax type, to establish continuity type results.

1. Introduction

The aim of this note is to present some situations where continuity type results can be obtained through the use of minimax type arguments.

To give an idea of the type of results we obtain let us first consider the equation

$$
\begin{equation*}
-\Delta u+\lambda u=V(x) g(u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.1}
\end{equation*}
$$

Here $\lambda>0, V$ is radially symmetric and g is assumed to be a nonlinear term, superlinear at the origin and subcritical under which (1.1) has a non trivial positive solution. Then assuming that, for any fixed $\lambda>0$ equation (1.1) has at most one positive solution we prove that the map $\lambda \rightarrow u_{\lambda} \in H^{1}\left(\mathbb{R}^{N}\right)$ is continuous. Namely we establish the existence of a global branch of solutions.

As a second example consider the equation

$$
\begin{equation*}
-\Delta u=|u|^{p-1} u+f(x), \quad u \in H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is an open regular bounded domain, $1<p<\frac{N+2}{N-2}$ and $f \in L^{q}(\Omega)$ for some $q>\frac{N}{2}$. We show that there exists a $\alpha>0$ such that if $\|f\|_{q} \leq \alpha$ then (1.2) admits a positive solution on Ω. When $\|f\|_{q}$ is small enough it is standard to show that there exists a solution. If $f \geq 0$, using the maximum principle, it follows that it is positive. Here we prove, without assumption on the sign of f, but possibly decreasing the value of $\|f\|_{q}$, that this is still true.

Key words and phrases. continuation properties, elliptic problem, minimax methods.

The note is organized as follows. In Section 2 we present some abstract considerations. In Section 3 we apply them to a problem of the type of (1.1). Section 4 deals with the nonhomogeneous problem (1.2).

2. Some abstract considerations

Let X be a reflexive Banach space whose norm is denoted $\|\cdot\|$. Consider for some $\varepsilon>0$ and $\lambda \in] 1-\varepsilon, 1+\varepsilon\left[\right.$ a familly $\left(I_{\lambda}\right)$ of C^{1} functionals on X of the form

$$
\left.I_{\lambda}(u)=A(u)-\lambda B(u), \quad \lambda \in\right] 1-\varepsilon, 1+\varepsilon[.
$$

We assume that
(A1) Both $B \in C^{1}(X, \mathbb{R})$ and its derivative $B^{\prime} \in C(X, \mathbb{R})$ take bounded sets to bounded sets.
(A2) For any $\lambda \in] 1-\varepsilon, 1+\varepsilon\left[\backslash\{1\} I_{\lambda}\right.$ has a critical point u_{λ} at a level denoted c_{λ}. Moreover there exists a bounded interval $S \subset \mathbb{R}$ such that $c_{\lambda} \in S$ if $\left.\lambda \in\right] 1-\varepsilon, 1+\varepsilon[\backslash\{1\}$.
(A3) For any sequence $\left.\left(\lambda_{n}\right) \subset\right\rfloor 1-\varepsilon, 1+\varepsilon\left\lfloor\backslash\{1\}\right.$ with $\lambda_{n} \rightarrow 1$ the sequence $\left(u_{\lambda_{n}}\right) \subset X$ is bounded.
(A4) Any bounded Palais-Smale sequence $\left(v_{n}\right)$ for $I:=I_{1}$ such that $\left(I\left(v_{n}\right)\right) \subset S$ admits a converging subsequence.
Under these assumptions we have :
Theorem 2.1. Assume that (A1)-(A4) hold. Then
(i) There exists a critical point u of I such that $I(u) \in S$.
(ii) Any sequence $\left(u_{\lambda_{n}}\right)$ with $\left.\lambda_{n} \in\right] 1-\varepsilon, 1+\varepsilon\left[\backslash\{1\}\right.$ and $\lambda_{n} \rightarrow 1$ converges, up to a subsequence, toward a critical point of I, associated to a level in S.

Proof. First we prove (i). Let $\left.\left(\lambda_{n}\right) \subset\right] 1-\varepsilon, 1+\varepsilon\left[\backslash\{1\}\right.$ satisfies $\lambda_{n} \rightarrow 1$. By (A3) the sequence $\left(u_{n}\right):=\left(u_{\lambda_{n}}\right)$ is bounded. Now we have

$$
\begin{aligned}
I\left(u_{n}\right) & =I_{\lambda_{n}}\left(u_{n}\right)+\left(\lambda_{n}-1\right) B\left(u_{n}\right) \\
I^{\prime}\left(u_{n}\right) & =I_{\lambda_{n}}^{\prime}\left(u_{n}\right)+\left(\lambda_{n}-1\right) B^{\prime}\left(u_{n}\right)
\end{aligned}
$$

By (A1) it follows that

$$
\left(\lambda_{n}-1\right) B\left(u_{n}\right) \rightarrow 0 \quad \text { and } \quad\left(\lambda_{n}-1\right) B^{\prime}\left(u_{n}\right) \rightarrow 0
$$

Thus

$$
I\left(u_{n}\right)=c_{\lambda_{n}}+o(1) \quad \text { and } \quad I^{\prime}\left(u_{n}\right)=o(1) .
$$

Since, by (A2), the sequence $\left(c_{\lambda_{n}}\right) \subset S$ is bounded, it follows that $\left(u_{\lambda_{n}}\right)$ is a (bounded) Palais-Smale sequence for I. By (A4) we then know that, passing to a subsequence, $u_{n} \rightarrow u$ with $u \in X$ a critical point of I associated to a value in S. This proves (i). Now (ii) follows from the proof of (i).

Corollary 2.2. Assume that (A1)-(A4) hold and that for $\lambda=1$ there exists at most a critical point $u \in X$ corresponding to a value in S. Then as $\lambda \rightarrow 1$ we have $u_{\lambda} \rightarrow u$. In particular $c_{\lambda} \rightarrow c$, where $c=I(u)$.

Proof. If we assume by contradiction that u_{λ} do not converge toward u if $\lambda \rightarrow 1$ then on one hand there exists a sequence $\left.\left(\lambda_{n}\right) \subset\right] 1-\varepsilon, 1+\varepsilon[\backslash\{1\}$ with $\lambda_{n} \rightarrow 1$ and a $\delta>0$ such that $\left\|u_{\lambda_{n}}-u\right\| \geq \delta>0$. On the other hand repeating the proof of Theorem 2.1 on the sequence ($u_{\lambda_{n}}$) we arrive at the conclusion that, up to a subsequence, $u_{\lambda_{n}} \rightarrow u$. This is a contradiction.

Remark 2.3. Using the results of [8] it can be shown, under very general assumptions on the family I_{λ}, that for almost any $\left.\lambda \in\right] 1-$ $\varepsilon, 1+\varepsilon\left[, I_{\lambda}\right.$ admit a bounded Palais-Smale sequence whose value stays within a compact. So if for any $\lambda \in] 1-\varepsilon, 1+\varepsilon[$ any bounded PalaisSmale sequence for I_{λ} admit a converging subsequence we see that assumption (A2) holds.

3. Problems on \mathbb{R}^{N}

3.1. Autonomous cases. We consider the equation

$$
\begin{equation*}
-\Delta u+\lambda u=g(u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right), \quad N \geq 3 \tag{3.1}
\end{equation*}
$$

where we assume that $g \in C(\mathbb{R}, \mathbb{R})$ satisfies
(H1) $g(s) / s \rightarrow 0$ as $s \rightarrow 0$.
(H2) For some $p \in] 1, \frac{N+2}{N-2}[$

$$
g(s) /|s|^{p} \rightarrow 0 \quad \text { as } s \rightarrow \infty
$$

(H3) There exists $s_{0}>0$ such that $G\left(s_{0}\right)>0$ with $G(s):=\int_{0}^{s} g(t) d t$.

The natural functional associated to (3.1) is defined on $H:=H^{1}\left(\mathbb{R}^{N}\right)$ by

$$
I_{\lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda|u|^{2} d x-\int_{\mathbb{R}^{N}} G(u) d x
$$

It is standard that under $(\mathrm{H} 1)-(\mathrm{H} 2) I_{\lambda}$ is well defined and of class C^{1}. We define the least energy level

$$
\begin{equation*}
m_{\lambda}=\inf \left\{I_{\lambda}(u), u \in H \backslash\{0\}, I_{\lambda}^{\prime}(u)=0\right\} \tag{3.2}
\end{equation*}
$$

and the set of least energy solution

$$
G_{\lambda}=\left\{u \in H \backslash\{0\}, I_{\lambda}^{\prime}(u)=0, I_{\lambda}(u)=m_{\lambda}\right\} .
$$

Also let $\lambda^{*}=\sup \left\{\lambda>0: \exists \nu>0\right.$ such that $\left.G(\nu)-\lambda / 2 \nu^{2}>0\right\}$.
From [3] it is known that, under (H1)-(H3) and for any $0<\lambda<\lambda^{*}$, $m_{\lambda}>0$ and $G_{\lambda} \neq \emptyset$ contains a positive element. In addition it is shown in [9] that m_{λ} admits a mountain pass characterization. Namely that

$$
\begin{equation*}
m_{\lambda}:=\inf _{g \in \Gamma_{\lambda}} \max _{t \in[0,1]} I_{\lambda}(g(t)) \tag{3.3}
\end{equation*}
$$

where

$$
\Gamma_{\lambda}:=\left\{g \in C([0,1], H), g(0)=0, I_{\lambda}(g(1))<0\right\}
$$

This characterization implies that $\lambda \rightarrow m_{\lambda}$ is nondecreasing. Lastly we known from [4] that any element of G_{λ} is radially symmetric and have a given sign. We prove the following result.

Theorem 3.1. Assume that (H1)-(H3) hold. Let $\left.\lambda_{0} \in\right] 0, \lambda^{*}[$ and $\left.\left\{\left(\lambda_{n}, u_{n}\right)\right\} \subset\right] 0, \lambda^{*}[\times H$ be a sequence such that

$$
u_{n} \in G_{\lambda_{n}} \text { and } \lambda_{n} \rightarrow \lambda_{0} \text { as } n \rightarrow \infty .
$$

Then there exist a $u_{0} \in G_{\lambda_{0}}$ and a subsequence $\left(u_{n_{k}}\right)$ of $\left(u_{n}\right)$ such that

$$
u_{n_{k}} \rightarrow u_{0} \text { as } k \rightarrow \infty .
$$

In particular $\lambda \rightarrow m_{\lambda}$ is continuous.
The proof of Theorem 3.1 will follow from three lemmas. Since any G_{λ} only contains radially symmetric functions we can, without restriction, work in the subspace

$$
H_{r}^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right), u(x)=u(|x|)\right\} .
$$

We also recall that any critical point of I_{λ} in $H_{r}^{1}\left(\mathbb{R}^{N}\right)$ is, by the principle of symmetric criticality of Palais, also a critical point on all $H^{1}\left(\mathbb{R}^{N}\right)$. We set $H_{r}:=H_{r}^{1}\left(\mathbb{R}^{N}\right)$.

Lemma 3.2. Under the assumptions of Theorem 3.1 the sequence $\left(u_{n}\right) \subset H_{r}$ is bounded.

Proof. Since $u_{n}, n \in \mathbb{N}$ is a critical point of $I_{\lambda_{n}}$ we know from [3] that it satisfies the Pohozaev identity

$$
(N-2)\left\|\nabla u_{n}\right\|_{2}^{2}=2 N\left[-\frac{\lambda_{n}}{2}\left\|u_{n}\right\|_{2}^{2}+\int_{\mathbb{R}^{N}} G\left(u_{n}\right) d x\right]
$$

and thus we have

$$
\begin{equation*}
I_{\lambda_{n}}\left(u_{n}\right)=\frac{1}{N}\left\|\nabla u_{n}\right\|_{2}^{2} . \tag{3.4}
\end{equation*}
$$

By the mountain pass characterization (3.3) the function $\lambda \rightarrow m_{\lambda}$ is non decreasing and since $I_{\lambda_{n}}\left(u_{n}\right)=m_{\lambda_{n}}$ we deduce from (3.4) that $\left(\left\|\nabla u_{n}\right\|_{2}^{2}\right) \subset \mathbb{R}$ is bounded. Now since $I_{\lambda_{n}}^{\prime}\left(u_{n}\right) u_{n}=0$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2}+\lambda_{n}\left|u_{n}\right|^{2} d x=\int_{\mathbb{R}^{N}} g\left(u_{n}\right) u_{n} d x \tag{3.5}
\end{equation*}
$$

By (H1)-(H2) for any $\delta>0$ there exists $C_{\delta}>0$ such that

$$
|g(s)| \leq \delta|s|+C_{\delta}|s|^{\frac{N+2}{N-2}} \quad \text { for all } s \in \mathbb{R}
$$

Thus using the Sobolev embeddings, it follows from (3.5) that, for a $C>0$,

$$
\lambda_{n} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2} d x \leq \delta \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2} d x+C_{\delta} C\left\|\nabla u_{n}\right\|_{2}^{\frac{2 N}{N-2}} .
$$

Since $\lambda_{n} \rightarrow \lambda_{0}>0$, choosing $\delta>0$ sufficiently small and using the fact that $\left(\left\|\nabla u_{n}\right\|_{2}\right) \subset \mathbb{R}$ is bounded we see that $\left(\left\|u_{n}\right\|_{2}\right) \subset \mathbb{R}$ is also bounded.

Lemma 3.3. Under the assumptions of Theorem 3.1 any bounded Palais-Smale sequence for $I_{\lambda_{0}}$ admits a converging subsequence.

Proof. Let $\left(u_{n}\right) \subset H_{r}$ be a bounded Palais-Smale sequence for $I_{\lambda_{0}}$. Since $\left(u_{n}\right) \subset H_{r}$ is bounded we have that $u_{n} \rightharpoonup u$ in H and $u_{n} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$ for $\left.p \in\right] 2, \frac{2 N}{N-2}\left[\right.$ (see [15]). Now since $\left(u_{n}\right) \subset H_{r}$ is a PalaisSmale sequence we have, in the dual H_{r}^{-1},

$$
-\Delta u_{n}+\lambda_{n} u_{n}-g\left(u_{n}\right) \rightarrow 0
$$

Using the strong convergence of (u_{n}) we readily deduce from (H1)-(H2) that $g\left(u_{n}\right) \rightarrow g(u)$ in H_{r}^{-1}. Thus

$$
\begin{equation*}
-\Delta u_{n}+\lambda u_{n} \rightarrow g(u) \text { in } H_{r}^{-1} \tag{3.6}
\end{equation*}
$$

Now let $L: H_{r} \rightarrow H_{r}^{-1}$ be defined by

$$
(L u) v=\int_{\Omega} \nabla u \nabla v+\lambda u v d x
$$

This operator is invertible and so we deduce from (3.6) that

$$
u_{n} \rightarrow L^{-1}(G(u)) \text { in } H_{r} .
$$

Consequently by the uniqueness of the limit $u_{n} \rightarrow u$ in H_{r}.
Lemma 3.4. The sequence $\left(u_{n}\right) \subset H_{r}$ is a, bounded, Palais-Smale sequence for $I_{\lambda_{0}}$ at the level $m_{\lambda_{0}}$.

Proof. We already know that the sequence $\left(m_{\lambda_{n}}\right) \subset \mathbb{R}$ is bounded. Now we have

$$
\begin{gathered}
I_{\lambda_{0}}\left(u_{n}\right)=I_{\lambda_{n}}\left(u_{n}\right)+\left(\lambda_{n}-\lambda_{0}\right)\left\|u_{n}\right\|_{2}^{2} \\
I_{\lambda_{0}}^{\prime}\left(u_{n}\right)=I_{\lambda_{n}}^{\prime}\left(u_{n}\right)+\left(\lambda_{n}-\lambda_{0}\right) u_{n} .
\end{gathered}
$$

Thus, since $I_{\lambda_{n}}^{\prime}\left(u_{n}\right)=0$ and $\left(u_{n}\right) \subset H_{r}$ is bounded we have $I_{\lambda_{0}}^{\prime}\left(u_{n}\right) \rightarrow$ 0 . Also $\left(\lambda_{n}-\lambda_{0}\right)\left\|u_{n}\right\|_{2}^{2} \rightarrow 0$ and we deduce that $\left(I_{\lambda_{0}}\left(u_{n}\right)\right) \subset \mathbb{R}$ is bounded. This proves that $\left(u_{n}\right) \subset H_{r}$ is a bounded Palais-Smale sequence for $I_{\lambda_{0}}$. From Lemma 3.3 we deduce that $u_{n} \rightarrow u_{0}$ with $u_{0} \in H_{r}$ a critical point of $I_{\lambda_{0}}$. To conclude we just need to prove that $m_{\lambda_{n}} \rightarrow m_{\lambda_{0}}$. But, by the convergence $u_{n} \rightarrow u_{0}$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m_{\lambda_{n}}=\lim _{n \rightarrow \infty} I_{\lambda_{n}}\left(u_{n}\right)=I_{\lambda_{0}}\left(u_{0}\right) \geq m_{\lambda_{0}} . \tag{3.7}
\end{equation*}
$$

Now considering a sequence $\left(\lambda_{n}\right)$ increasing to λ_{0}, and using the fact that $\lambda \rightarrow m_{\lambda}$ is non decreasing, we deduce from (3.7) that $m_{\lambda_{n}} \rightarrow$ $m_{\lambda_{0}}$.

Proof of Theorem 3.1. Gathering Lemmas 3.2, 3.3 and 3.4 we immediately conclude.

From Theorem 3.1 we deduce
Corollary 3.5. Assume that (H1)-(H3) hold and that, for any $\lambda \in$ $] 0, \lambda^{*}\left[\right.$ the set G_{λ} contains only one positive element u_{λ}. Then the map $\lambda \rightarrow u_{\lambda}$ is continuous from $] 0, \lambda^{*}\left[\right.$ to H_{r}.

Proof. Let $\lambda_{0}>0$ be fixed and assume, by contradiction, that there exist a sequence $\left.\left(\lambda_{n}\right) \subset\right] 0, \lambda^{*}\left[\right.$ with $\lambda_{n} \rightarrow \lambda_{0}$ and a $\delta>0$ such that $\left\|u_{\lambda_{n}}-u_{\lambda_{0}}\right\| \geq \delta$. Then we deduce from Theorem 3.1 that $u_{\lambda_{n}} \rightarrow u_{0} \in$ $G_{\lambda_{0}}$. Since the nonnegative property is preserved by the convergence using the maximum principle we obtain that u_{0} is positive and thus by uniqueness $u_{0}=u_{\lambda_{0}}$.

Remark 3.6. The problem of deriving conditions on g which insure that (3.1) has a unique positive solution (and thus an unique positive ground state) has been extensively studied. The uniqueness is known to hold for a large class of nonlinearities. See for example [11] and the references therein in that direction.

Remark 3.7. A result essentially the same as Corollary 3.5 was previously obtained in [14] (see also [13]). Let us also point out that another proof of Theorem 3.1 follows from Proposition 5.5 of [10]. The proofs that we give here, are different and we believe somehow simpler.
3.2. Non-autonomous cases. We consider now the equation

$$
\begin{equation*}
-\Delta u+\lambda u=V(x) g(u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{3.8}
\end{equation*}
$$

where we assume that $g \in C(\mathbb{R}, \mathbb{R})$ satisfies in addition to (H1)-(H2)
(H4) There exists $\mu>2$ such that

$$
0<\mu G(s) \leq g(s) s, \quad \forall s \in \mathbb{R} \text { with } G(s):=\int_{0}^{S} g(t) d t
$$

On the potential $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ we assume
(V) $V \geq 0, V \neq 0$ and either V is radial or $\lim _{|x| \rightarrow \infty} V(x)=0$.

Under (H1),(H2),(H4) and (V) it is standard to show that (3.8) admit, for any $\lambda>0$, a non trivial solution as a critical point of the C^{1} functional

$$
I_{\lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda|u|^{2} d x-\int_{\mathbb{R}^{N}} V(x) G(u) d x .
$$

Indeed, one just need to use the mountain pass theorem (see [2]). The boundedness of Palais-Smale sequence follows from (H4) and because of (V) any bounded Palais-Smale sequence admits a converging subsequence. Thus one obtain a critical point at the mountain pass level that we denote $c_{\lambda}>0$. We now assume
(U) For any $\lambda>0$, (3.8) admits at most one positive solution that we denote $u_{\lambda} \in H^{1}\left(\mathbb{R}^{N}\right)$.

Without restriction (by a suitable modification of g for $s<0$) we can assume that the mountain pass solution is positive and thus that it coincide with u_{λ}.

Our result is the following

Theorem 3.8. Assume that (H1),(H2),(H4) and (V), (U) hold. Then the map $\lambda \rightarrow u_{\lambda}$ from $] 0,+\infty\left[\right.$ to $H^{1}\left(\mathbb{R}^{N}\right)$ is continuous.

Proof. The proof follows closely the one of Theorem 3.1 in the autonomous case. Our working space H is $H^{1}\left(\mathbb{R}^{N}\right)$ if $\lim _{|x| \rightarrow \infty} V(x)=0$ and $H_{r}^{1}\left(\mathbb{R}^{N}\right)$ if V is radial. We assume, by contradiction, that there exists a $\lambda_{0}>0$, a sequence $\left.\left(\lambda_{n}\right) \subset\right] 0,+\infty\left[\right.$ with $\lambda_{n} \rightarrow \lambda_{0}$ and a $\delta>0$ such that $\left\|u_{\lambda_{n}}-u_{\lambda_{0}}\right\| \geq \delta$. First we show that the sequence $\left(u_{n}\right) \subset H$ is bounded. We have

$$
\begin{aligned}
& I_{\lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda|u|^{2} d x-\int_{\mathbb{R}^{N}} V(x) G(u) d x=c_{\lambda} . \\
& I_{\lambda}^{\prime}(u) u=\int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda|u|^{2} d x-\int_{\mathbb{R}^{N}} V(x) g(u) u d x=0 .
\end{aligned}
$$

Thus, using (H4),

$$
\begin{aligned}
\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda|u|^{2} d x & =c_{\lambda}+\int_{\mathbb{R}^{N}} V(x) G(u) d x \\
& \leq c_{\lambda}+\frac{1}{\mu} \int_{\mathbb{R}^{N}} V(x) g(u) u d x \\
& \leq c_{\lambda}+\frac{1}{\mu} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda|u|^{2} d x .
\end{aligned}
$$

Hence

$$
\left(\frac{1}{2}-\frac{1}{\mu}\right) \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda|u|^{2} d x \leq c_{\lambda}
$$

and $\left(u_{n}\right) \subset H$ is indeed bounded. Now reasoning as in Lemma 3.4 we deduce that the sequence $\left(u_{n}\right) \subset H$ is a, bounded, Palais-Smale sequence for $I_{\lambda_{0}}$. Finally, following the proof of Lemma 3.3 we can show that any bounded Palais-Smale sequence for $I_{\lambda_{0}}$ admit a converging subsequence. At this point, using the uniqueness, we deduce that $u_{\lambda_{n}} \rightarrow u_{\lambda_{0}}$ and this contradiction concludes the proof.

Remark 3.9. The key feature that guarantee that the results presented in this Section hold is the fact that the mountain pass level coincides with the least energy level. In Theorem 3.1 it follows from the result of [9] and in Theorem 3.8 by the uniqueness of positive solutions.

Remark 3.10. In [6], see Proposition 1, the analog of Theorem 3.1 is establish for (3.8) in the case where $g(u)=|u|^{p-1} u$ for $\left.p \in\right] 1, \frac{N+2}{N-2}[$. In addition when the uniqueness of u_{λ} is assumed Theorem 3.8 holds
true. The proofs given in [6] use strongly the existence of a well defined Nehari manifold for I_{λ}. Using this manifold is possible when the function $s \rightarrow g(s) / s$ is stricly increasing. Under this condition it is now standard, see for example Lemma 1.2 in [5] or Proposition 3.11 in [12], that the mountain pass level c_{λ} coincides with the least energy level. Thus we can recover and extend to the results of [6] using the approach developped in Theorem 3.1.

Remark 3.11. In equation (3.1) we have restricted ourselves to $N \geq$ 3. The case $N=2$ can also be treated under the assumption that $p \in] 1,+\infty[$. Some additional work however is necessary at the level of Lemma 3.2 to show the boundedness of the sequence $\left(u_{n}\right) \subset H$. See [10] in that direction.

Remark 3.12. The only purpose of condition (H4) is to insure the boundedness of Palais-Smale sequence for I_{λ} (or of sequences of critical points of $I_{\lambda_{n}}$). Alternative conditions are possible.

4. On a Non-homogeneous problem

We consider here

$$
\begin{equation*}
-\Delta u=|u|^{p-1} u+f(x), \quad u \in H_{0}^{1}(\Omega) \tag{4.1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 3$ is an open bounded regular domain, $1<p<$ $\frac{N+2}{N-2}$ and $f \in L^{q}(\Omega)$ for some $q>\frac{N}{2}$. We prove the following result

Theorem 4.1. Under the assumptions above there exists a $\alpha>0$ such that when $\|f\|_{q} \leq \alpha$ the equation (4.1) admits a positive solution on Ω.

We set $g(s)=s^{p}$ if $s \geq 0, g(s)=0$ if $s \leq 0$ and $G(s)=\int_{0}^{s} g(t) d t$. The functional associated to (4.1) is defined on $H:=H_{0}^{1}(\Omega)$ by

$$
I_{f}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} G(u) d x-\int_{\Omega} f u d x
$$

Under our assumptions it is standard to show that $I \in C^{1}(H, \mathbb{R})$. We shall work with the norm $\|u\|:=\|\nabla u\|$ on H.

Remark 4.2. The point of Theorem 4.1 is the existence of a positive solution on Ω without assuming a sign on f. If $f \geq 0$ the result follows directly from the existence of a critical point for I_{f}.

Lemma 4.3. Under the assumptions of Theorem 4.1 there exists a $\beta>0$ and $a \gamma>0$ such that for any f satisfying $\|f\|_{q} \leq \beta$ the functional I_{f} has a critical point u_{f} at a value $c_{f} \geq \gamma>0$.

Proof. Let $\|f\|_{q} \leq \beta$ with $\beta>0$ to be determined later. First we show that the functional I_{f} has a mountain pass geometry in the sense that $I_{f}(0)=0$ and
(i) There exist $a>0, b>0$ such that if $\|u\|=a$ then $I_{f}(u) \geq b$.
(ii) There exists a $v \in H$ with $\|v\|>a$ such that $I_{f}(v) \leq 0$.

To prove (i) observe that, by Holder and Sobolev embeddings, for $1 / q+$ $1 / q^{\prime}=1$ and a $C>0$,

$$
\begin{align*}
I_{f}(u) & =\frac{1}{2}\|u\|^{2}-\frac{1}{p+1}\left\|u^{+}\right\|_{p+1}^{p+1}-\|f\|_{q}\|u\|_{q^{\prime}} \tag{4.2}\\
& \geq \frac{1}{2}\|u\|^{2}-C\|u\|^{p+1}-C\|f\|_{q}\|u\| .
\end{align*}
$$

We first fix $a>0$ sufficiently small so that

$$
\frac{1}{2}\|u\|^{2}-C\|u\|^{p+1} \geq \frac{1}{4}\|u\|^{2} \quad \text { if } \quad\|u\|=a .
$$

Then we choose $\beta>0$ sufficiently small so that $C\|f\|_{q} a \leq \frac{1}{8} a^{2}$. At this point (i) hold. To show (ii) it suffices to observe that taking a $u \in H$ with $u>0$ on Ω one has $I_{f}(t u) \rightarrow-\infty$ as $t \rightarrow+\infty$.

Next we show that the Palais-Smale condition holds, namely that any Palais-Smale sequence admits a convergent subsequence. Let $\left(u_{n}\right) \subset H$ be a Palais-Smale sequence for I_{f} at a level $c_{f} \in \mathbb{R}$. We have, for $n \in \mathbb{N}$ large enough,

$$
\begin{align*}
c_{f}+1+\left\|u_{n}\right\| & \geq I_{f}\left(u_{n}\right)-\frac{1}{p+1} I_{f}^{\prime}\left(u_{n}\right) u_{n} \tag{4.3}\\
& =\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{2}-\left(1-\frac{1}{p+1}\right) \int_{\Omega} f u_{n} d x \\
& \geq\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{2}-\frac{p}{p+1}\|f\|_{H^{-1}}\left\|u_{n}\right\|
\end{align*}
$$

and thus $\left(u_{n}\right) \subset H$ is indeed bounded. The fact that $\left(u_{n}\right) \subset H$ admit a convergent subsequence is now standard since we work on a bounded domain. At this point the assumption of the mountain pass theorem, see [2], are satisfied and the lemma follows.

Proof of Theorem 4.1. In view of Lemma 4.3 it just remains to show, by possibly decreasing the value of $\beta>0$, that the solution $u_{f} \in H$ is positive on Ω. For this we consider the limit problem

$$
\begin{equation*}
-\Delta u=g(u) \tag{4.4}
\end{equation*}
$$

The functional associated to (4.4) is

$$
I(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} G(u) d x .
$$

Clearly, by construction of g, any critical point of I is nonnegative. Moreover if $u \in H$ is a non trivial critical point of I, by the Hoft maximum principle we obtain that $u>0$ on Ω and also that its normal derivatives are strictly positive on $\partial \Omega$.

Now we assume, by contradiction, that there exists a sequence $\left(f_{n}\right) \subset$ $L^{q}(\Omega)$ such that $f_{n} \rightarrow 0$ in $L^{q}(\Omega)$ for which the corresponding sequence $u_{n}:=u_{f_{n}}$ remains non positive for any $n \in \mathbb{N}$. Clearly we shall reach a contradiction if we manage to show that, up to a subsequence $u_{n} \rightarrow u$ where $u \in H$ is a non trivial solution for the problem (4.4). Indeed starting from $u_{n} \rightarrow u$ in H, by standard elliptic regularity estimates, it follows that $u_{n} \rightarrow u$ in $C^{1}(\bar{\Omega})$.

To show this we first observe that $\left(u_{n}\right) \subset H$ is bounded. Indeed, from (4.3) where f is replaced by f_{n} it is the case if $\left(c_{f_{n}}\right) \subset \mathbb{R}^{+}$remains bounded. But taking any fixed $u \in H$ with $u>0$ we have, for a $C>0$,

$$
\begin{align*}
c_{f_{n}} & \leq \max _{t>0} I_{f_{n}}(t u) \tag{4.5}\\
& \leq \frac{1}{2} t^{2}\|u\|^{2}-\frac{t^{p}}{p+1}\|u\|_{p+1}^{p+1}+t \int_{\Omega}\left|f_{n}\right| u d x
\end{align*}
$$

and the bound on $\left(c_{f_{n}}\right) \subset \mathbb{R}^{+}$follows. Now when $n \rightarrow+\infty$,

$$
I\left(u_{n}\right)=I_{f_{n}}\left(u_{n}\right)+\int_{\Omega} f_{n} u_{n} d x
$$

remains bounded since $\left(c_{f_{n}}\right) \subset \mathbb{R}^{+}$is bounded and $\int_{\Omega} f_{n} u_{n} d x \rightarrow 0$ (because $\left(u_{n}\right) \subset H$ is bounded). Also

$$
I^{\prime}\left(u_{n}\right)=I_{f_{n}}^{\prime}\left(u_{n}\right)+f_{n} \rightarrow 0 \quad \text { in } H^{-1} .
$$

Thus $\left(u_{n}\right) \subset H$ is a bounded Palais-Smale sequence for I. To conclude we observe that since $\left(u_{n}\right) \subset H$ is a bounded Palais-Smale sequence for I it converges strongly, up to a subsequence, in H towards a non
trivial critical point of I. The fact that it is non trivial follows from the estimate $c_{f_{n}} \geq \gamma>0$. This ends the proof.
Remark 4.4. Clearly under the assumptions of Theorem 4.1, equation (4.1) admits a second solution as a local minimum of I_{f}. But when $f \rightarrow 0$ this solution converges to 0 and there is no reason for it to be positive.
Remark 4.5. A numerous literature (see for example $[1,7]$) is devoted to the problem of finding two solutions or more, for equations of the form

$$
\begin{equation*}
-\Delta u+u=a(x)|u|^{p-1} u+f(x), \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{4.6}
\end{equation*}
$$

So far, up to our knowledge, multiple solutions are obtained only under the assumption that $f \geq 0$ on \mathbb{R}^{N} (and $\|f\|_{H^{-1}}$ small enough). An interesting question would be to study if for problems of the type of (4.6) a multiplicity result can be obtained without requiring f to be non negative. In that direction we suspect that the approach followed in Theorem 4.1 could proved useful.

Acknowledgements: The author would like to thanks Professors M. Ohta, C.A. Stuart, K. Tanaka and Doctor F. Genoud for useful remarks on a preliminary version of this work.

References

[1] S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $-\Delta u+u=a(x) u^{p}+f(x) \in \mathbb{R}^{N}$, Calc. Var. Partial Differential Equations, 11, (2000), 63-95.
[2] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14, (1973), 349-381.
[3] H. Berestycki, P.L. Lions, Nonlinear scalar field equations I, Arch. Rat. Mech. Anal. 82 (1983), 313-346.
[4] J. Byeon, L. Jeanjean, M. Maris, Symmetry and monotonicity of least energy solutions, Calc. Var. Partial Differential Equations, 36, (2009), 481492.
[5] M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calculus of Variations and PDE, 4, (1996), 121-137.
[6] F. Genoud, A smooth global branch of solutions for a semilinear elliptic equation on \mathbb{R}^{N}, Calc. Var. Partial Differential Equations, 38, (2010), 207232.
[7] L. Jeanjean, Two positive solutions for a class of nonhomogeneous elliptic equations, Diff. Int. Equations, 10, (1997), 609-624.
[8] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^{N}, Proc. Roy. Soc. Edinburgh, 129A, (1999), 787-809.
[9] L. Jeanjean and K. Tanaka, A remark on least energy solutions in \mathbb{R}^{N}, Proc Amer. Math. Soc. 131, (2003), 2399-2408.
[10] L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear and asymptotically linear linearities, Calculus of Variations and PDE, 21, (2004), 287-318.
[11] P. Pucci and J. Serrin, Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J., 47, (1998), 501-528.
[12] P.H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys., 43, (1992), 270-291.
[13] J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys., 91, (1983), 313-327.
[14] J. Shatah and W.A. Strauss Instability of nonlinear bound states, Comm. Math. Phys., 100, (1985), 173-190.
[15] W.A. Strauss, Existence of solitary waves in higher dimensions Comm. Math. Phys., 55, (1977), 149-162.

Laboratoire de Mathématiques (UMR 6623)
Université de Franche-Comté
16, Route de Gray 25030 Besançon Cedex, France
E-mail address: louis.jeanjean@univ-fcomte.fr

