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SOME CONTINUATION PROPERTIES VIA MINIMAX

ARGUMENTS

LOUIS JEANJEAN

Abstract. This note is devotes to some remarks regarding the

use of variational methods, of minimax type, to establish continuity

type results.

1. Introduction

The aim of this note is to present some situations where continuity

type results can be obtained through the use of minimax type argu-

ments.

To give an idea of the type of results we obtain let us first consider

the equation

(1.1) −∆u+ λu = V (x)g(u), u ∈ H1(RN).

Here λ > 0, V is radially symmetric and g is assumed to be a nonlinear

term, superlinear at the origin and subcritical under which (1.1) has a

non trivial positive solution. Then assuming that, for any fixed λ > 0

equation (1.1) has at most one positive solution we prove that the map

λ → uλ ∈ H1(RN) is continuous. Namely we establish the existence of

a global branch of solutions.

As a second example consider the equation

(1.2) −∆u = |u|p−1u+ f(x), u ∈ H1
0 (Ω)

where Ω ⊂ R
N is an open regular bounded domain, 1 < p < N+2

N−2
and

f ∈ Lq(Ω) for some q > N
2
. We show that there exists a α > 0 such that

if ||f ||q ≤ α then (1.2) admits a positive solution on Ω. When ||f ||q
is small enough it is standard to show that there exists a solution. If

f ≥ 0, using the maximum principle, it follows that it is positive. Here

we prove, without assumption on the sign of f , but possibly decreasing

the value of ||f ||q, that this is still true.

Key words and phrases. continuation properties, elliptic problem, minimax

methods.
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The note is organized as follows. In Section 2 we present some ab-

stract considerations. In Section 3 we apply them to a problem of the

type of (1.1). Section 4 deals with the nonhomogeneous problem (1.2).

2. Some abstract considerations

Let X be a reflexive Banach space whose norm is denoted || · ||.
Consider for some ε > 0 and λ ∈]1 − ε, 1 + ε[ a familly (Iλ) of C1

functionals on X of the form

Iλ(u) = A(u)− λB(u), λ ∈]1 − ε, 1 + ε[.

We assume that

(A1) Both B ∈ C1(X,R) and its derivative B′ ∈ C(X,R) take

bounded sets to bounded sets.

(A2) For any λ ∈]1−ε, 1+ ε[\{1} Iλ has a critical point uλ at a level

denoted cλ. Moreover there exists a bounded interval S ⊂ R

such that cλ ∈ S if λ ∈]1− ε, 1 + ε[\{1}.

(A3) For any sequence (λn) ⊂]1 − ε, 1 + ε[\{1} with λn → 1 the

sequence (uλn
) ⊂ X is bounded.

(A4) Any bounded Palais-Smale sequence (vn) for I := I1 such that

(I(vn)) ⊂ S admits a converging subsequence.

Under these assumptions we have :

Theorem 2.1. Assume that (A1)-(A4) hold. Then

(i) There exists a critical point u of I such that I(u) ∈ S.

(ii) Any sequence (uλn
) with λn ∈]1 − ε, 1 + ε[\{1} and λn → 1

converges, up to a subsequence, toward a critical point of I,

associated to a level in S.

Proof. First we prove (i). Let (λn) ⊂]1− ε, 1+ ε[\{1} satisfies λn → 1.

By (A3) the sequence (un) := (uλn
) is bounded. Now we have

I(un) = Iλn
(un) + (λn − 1)B(un)

I ′(un) = I ′λn
(un) + (λn − 1)B′(un).

By (A1) it follows that

(λn − 1)B(un) → 0 and (λn − 1)B′(un) → 0.

Thus

I(un) = cλn
+ o(1) and I ′(un) = o(1).
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Since, by (A2), the sequence (cλn
) ⊂ S is bounded, it follows that

(uλn
) is a (bounded) Palais-Smale sequence for I. By (A4) we then

know that, passing to a subsequence, un → u with u ∈ X a critical

point of I associated to a value in S. This proves (i). Now (ii) follows

from the proof of (i). �

Corollary 2.2. Assume that (A1)-(A4) hold and that for λ = 1 there

exists at most a critical point u ∈ X corresponding to a value in S.

Then as λ → 1 we have uλ → u. In particular cλ → c, where c = I(u).

Proof. If we assume by contradiction that uλ do not converge toward u

if λ → 1 then on one hand there exists a sequence (λn) ⊂]1−ε, 1+ε[\{1}
with λn → 1 and a δ > 0 such that ||uλn

− u|| ≥ δ > 0. On the other

hand repeating the proof of Theorem 2.1 on the sequence (uλn
) we

arrive at the conclusion that, up to a subsequence, uλn
→ u. This is a

contradiction. �

Remark 2.3. Using the results of [8] it can be shown, under very

general assumptions on the family Iλ, that for almost any λ ∈]1 −
ε, 1 + ε[, Iλ admit a bounded Palais-Smale sequence whose value stays

within a compact. So if for any λ ∈]1 − ε, 1 + ε[ any bounded Palais-

Smale sequence for Iλ admit a converging subsequence we see that

assumption (A2) holds.

3. Problems on R
N

3.1. Autonomous cases. We consider the equation

(3.1) −∆u+ λu = g(u), u ∈ H1(RN), N ≥ 3

where we assume that g ∈ C(R,R) satisfies

(H1) g(s)/s → 0 as s → 0.

(H2) For some p ∈]1, N+2
N−2

[

g(s)/|s|p → 0 as s → ∞.

(H3) There exists s0 > 0 such that G(s0) > 0 with G(s) :=
∫ s

0
g(t)dt.

The natural functional associated to (3.1) is defined on H := H1(RN)

by

Iλ(u) =
1

2

∫

RN

|∇u|2 + λ|u|2dx−

∫

RN

G(u) dx.
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It is standard that under (H1)-(H2) Iλ is well defined and of class C1.

We define the least energy level

(3.2) mλ = inf{Iλ(u), u ∈ H\{0}, I ′λ(u) = 0}

and the set of least energy solution

Gλ = {u ∈ H\{0}, I ′λ(u) = 0, Iλ(u) = mλ}.

Also let λ∗ = sup{λ > 0 : ∃ν > 0 such that G(ν)− λ/2ν2 > 0}.

From [3] it is known that, under (H1)-(H3) and for any 0 < λ < λ∗,

mλ > 0 and Gλ 6= ∅ contains a positive element. In addition it is shown

in [9] that mλ admits a mountain pass characterization. Namely that

(3.3) mλ := inf
g∈Γλ

max
t∈[0,1]

Iλ(g(t))

where

Γλ := {g ∈ C([0, 1], H), g(0) = 0, Iλ(g(1)) < 0}.

This characterization implies that λ → mλ is nondecreasing. Lastly we

known from [4] that any element of Gλ is radially symmetric and have

a given sign. We prove the following result.

Theorem 3.1. Assume that (H1)-(H3) hold. Let λ0 ∈]0, λ
∗[ and

{(λn, un)} ⊂]0, λ∗[×H be a sequence such that

un ∈ Gλn
and λn → λ0 as n → ∞.

Then there exist a u0 ∈ Gλ0
and a subsequence (unk

) of (un) such that

unk
→ u0 as k → ∞.

In particular λ → mλ is continuous.

The proof of Theorem 3.1 will follow from three lemmas. Since

any Gλ only contains radially symmetric functions we can, without

restriction, work in the subspace

H1
r (R

N) := {u ∈ H1(RN), u(x) = u(|x|)}.

We also recall that any critical point of Iλ inH1
r (R

N) is, by the principle

of symmetric criticality of Palais, also a critical point on all H1(RN).

We set Hr := H1
r (R

N).

Lemma 3.2. Under the assumptions of Theorem 3.1 the sequence

(un) ⊂ Hr is bounded.
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Proof. Since un, n ∈ N is a critical point of Iλn
we know from [3] that

it satisfies the Pohozaev identity

(N − 2)||∇un||
2
2 = 2N

[

−
λn

2
||un||

2
2 +

∫

RN

G(un)dx
]

and thus we have

(3.4) Iλn
(un) =

1

N
||∇un||

2
2.

By the mountain pass characterization (3.3) the function λ → mλ is

non decreasing and since Iλn
(un) = mλn

we deduce from (3.4) that

(||∇un||
2
2) ⊂ R is bounded. Now since I ′λn

(un)un = 0 we have

(3.5)

∫

RN

|∇un|
2 + λn|un|

2 dx =

∫

RN

g(un)un dx.

By (H1)-(H2) for any δ > 0 there exists Cδ > 0 such that

|g(s)| ≤ δ|s|+ Cδ|s|
N+2

N−2 for all s ∈ R.

Thus using the Sobolev embeddings, it follows from (3.5) that, for a

C > 0,

λn

∫

RN

|un|
2 dx ≤ δ

∫

RN

|un|
2 dx+ CδC||∇un||

2N

N−2

2 .

Since λn → λ0 > 0, choosing δ > 0 sufficiently small and using the

fact that (||∇un||2) ⊂ R is bounded we see that (||un||2) ⊂ R is also

bounded. �

Lemma 3.3. Under the assumptions of Theorem 3.1 any bounded

Palais-Smale sequence for Iλ0
admits a converging subsequence.

Proof. Let (un) ⊂ Hr be a bounded Palais-Smale sequence for Iλ0
.

Since (un) ⊂ Hr is bounded we have that un ⇀ u in H and un → u

in Lp(RN) for p ∈]2, 2N
N−2

[ (see [15]). Now since (un) ⊂ Hr is a Palais-

Smale sequence we have, in the dual H−1
r ,

−∆un + λnun − g(un) → 0.

Using the strong convergence of (un) we readily deduce from (H1)-(H2)

that g(un) → g(u) in H−1
r . Thus

(3.6) −∆un + λun → g(u) in H−1
r .

Now let L : Hr → H−1
r be defined by

(Lu)v =

∫

Ω

∇u∇v + λuv dx.
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This operator is invertible and so we deduce from (3.6) that

un → L−1(G(u)) in Hr.

Consequently by the uniqueness of the limit un → u in Hr. �

Lemma 3.4. The sequence (un) ⊂ Hr is a, bounded, Palais-Smale

sequence for Iλ0
at the level mλ0

.

Proof. We already know that the sequence (mλn
) ⊂ R is bounded. Now

we have

Iλ0
(un) = Iλn

(un) + (λn − λ0)||un||
2
2

I ′λ0
(un) = I ′λn

(un) + (λn − λ0)un.

Thus, since I ′λn
(un) = 0 and (un) ⊂ Hr is bounded we have I ′λ0

(un) →
0. Also (λn − λ0)||un||

2
2 → 0 and we deduce that (Iλ0

(un)) ⊂ R is

bounded. This proves that (un) ⊂ Hr is a bounded Palais-Smale

sequence for Iλ0
. From Lemma 3.3 we deduce that un → u0 with

u0 ∈ Hr a critical point of Iλ0
. To conclude we just need to prove that

mλn
→ mλ0

. But, by the convergence un → u0, we have that

(3.7) lim
n→∞

mλn
= lim

n→∞
Iλn

(un) = Iλ0
(u0) ≥ mλ0

.

Now considering a sequence (λn) increasing to λ0, and using the fact

that λ → mλ is non decreasing, we deduce from (3.7) that mλn
→

mλ0
. �

Proof of Theorem 3.1. Gathering Lemmas 3.2, 3.3 and 3.4 we immedi-

ately conclude. �

From Theorem 3.1 we deduce

Corollary 3.5. Assume that (H1)-(H3) hold and that, for any λ ∈
]0, λ∗[ the set Gλ contains only one positive element uλ. Then the map

λ → uλ is continuous from ]0, λ∗[ to Hr.

Proof. Let λ0 > 0 be fixed and assume, by contradiction, that there

exist a sequence (λn) ⊂]0, λ∗[ with λn → λ0 and a δ > 0 such that

||uλn
− uλ0

|| ≥ δ. Then we deduce from Theorem 3.1 that uλn
→ u0 ∈

Gλ0
. Since the nonnegative property is preserved by the convergence

using the maximum principle we obtain that u0 is positive and thus by

uniqueness u0 = uλ0
. �
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Remark 3.6. The problem of deriving conditions on g which insure

that (3.1) has a unique positive solution (and thus an unique positive

ground state) has been extensively studied. The uniqueness is known

to hold for a large class of nonlinearities. See for example [11] and the

references therein in that direction.

Remark 3.7. A result essentially the same as Corollary 3.5 was previ-

ously obtained in [14] (see also [13]). Let us also point out that another

proof of Theorem 3.1 follows from Proposition 5.5 of [10]. The proofs

that we give here, are different and we believe somehow simpler.

3.2. Non-autonomous cases. We consider now the equation

(3.8) −∆u+ λu = V (x)g(u), u ∈ H1(RN)

where we assume that g ∈ C(R,R) satisfies in addition to (H1)-(H2)

(H4) There exists µ > 2 such that

0 < µG(s) ≤ g(s)s, ∀s ∈ R with G(s) :=

∫ S

0

g(t)dt.

On the potential V ∈ C(RN ,R) we assume

(V) V ≥ 0, V 6= 0 and either V is radial or lim|x|→∞ V (x) = 0.

Under (H1),(H2),(H4) and (V) it is standard to show that (3.8) ad-

mit, for any λ > 0, a non trivial solution as a critical point of the C1

functional

Iλ(u) =
1

2

∫

RN

|∇u|2 + λ|u|2 dx−

∫

RN

V (x)G(u) dx.

Indeed, one just need to use the mountain pass theorem (see [2]). The

boundedness of Palais-Smale sequence follows from (H4) and because

of (V) any bounded Palais-Smale sequence admits a converging sub-

sequence. Thus one obtain a critical point at the mountain pass level

that we denote cλ > 0. We now assume

(U) For any λ > 0, (3.8) admits at most one positive solution that

we denote uλ ∈ H1(RN).

Without restriction (by a suitable modification of g for s < 0) we

can assume that the mountain pass solution is positive and thus that

it coincide with uλ.

Our result is the following
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Theorem 3.8. Assume that (H1),(H2),(H4) and (V), (U) hold. Then

the map λ → uλ from ]0,+∞[ to H1(RN) is continuous.

Proof. The proof follows closely the one of Theorem 3.1 in the au-

tonomous case. Our working space H is H1(RN) if lim|x|→∞ V (x) = 0

and H1
r (R

N) if V is radial. We assume, by contradiction, that there

exists a λ0 > 0, a sequence (λn) ⊂]0,+∞[ with λn → λ0 and a δ > 0

such that ||uλn
− uλ0

|| ≥ δ. First we show that the sequence (un) ⊂ H

is bounded. We have

Iλ(u) =
1

2

∫

RN

|∇u|2 + λ|u|2dx−

∫

RN

V (x)G(u) dx = cλ.

I ′λ(u)u =

∫

RN

|∇u|2 + λ|u|2dx−

∫

RN

V (x)g(u)u dx = 0.

Thus, using (H4),

1

2

∫

RN

|∇u|2 + λ|u|2 dx = cλ +

∫

RN

V (x)G(u) dx

≤ cλ +
1

µ

∫

RN

V (x)g(u)u dx

≤ cλ +
1

µ

∫

RN

|∇u|2 + λ|u|2dx.

Hence
(

1

2
−

1

µ

)
∫

RN

|∇u|2 + λ|u|2dx ≤ cλ

and (un) ⊂ H is indeed bounded. Now reasoning as in Lemma 3.4

we deduce that the sequence (un) ⊂ H is a, bounded, Palais-Smale

sequence for Iλ0
. Finally, following the proof of Lemma 3.3 we can

show that any bounded Palais-Smale sequence for Iλ0
admit a converg-

ing subsequence. At this point, using the uniqueness, we deduce that

uλn
→ uλ0

and this contradiction concludes the proof. �

Remark 3.9. The key feature that guarantee that the results pre-

sented in this Section hold is the fact that the mountain pass level

coincides with the least energy level. In Theorem 3.1 it follows from

the result of [9] and in Theorem 3.8 by the uniqueness of positive so-

lutions.

Remark 3.10. In [6], see Proposition 1, the analog of Theorem 3.1

is establish for (3.8) in the case where g(u) = |u|p−1u for p ∈]1, N+2
N−2

[.

In addition when the uniqueness of uλ is assumed Theorem 3.8 holds
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true. The proofs given in [6] use strongly the existence of a well de-

fined Nehari manifold for Iλ. Using this manifold is possible when the

function s → g(s)/s is stricly increasing. Under this condition it is

now standard, see for example Lemma 1.2 in [5] or Proposition 3.11

in [12], that the mountain pass level cλ coincides with the least energy

level. Thus we can recover and extend to the results of [6] using the

approach developped in Theorem 3.1.

Remark 3.11. In equation (3.1) we have restricted ourselves to N ≥
3. The case N = 2 can also be treated under the assumption that

p ∈]1,+∞[. Some additional work however is necessary at the level of

Lemma 3.2 to show the boundedness of the sequence (un) ⊂ H . See

[10] in that direction.

Remark 3.12. The only purpose of condition (H4) is to insure the

boundedness of Palais-Smale sequence for Iλ (or of sequences of critical

points of Iλn
). Alternative conditions are possible.

4. On a non-homogeneous problem

We consider here

(4.1) −∆u = |u|p−1u+ f(x), u ∈ H1
0 (Ω)

where Ω ⊂ R
N , N ≥ 3 is an open bounded regular domain, 1 < p <

N+2
N−2

and f ∈ Lq(Ω) for some q > N
2
. We prove the following result

Theorem 4.1. Under the assumptions above there exists a α > 0 such

that when ||f ||q ≤ α the equation (4.1) admits a positive solution on

Ω.

We set g(s) = sp if s ≥ 0, g(s) = 0 if s ≤ 0 and G(s) =
∫ s

0
g(t) dt.

The functional associated to (4.1) is defined on H := H1
0 (Ω) by

If (u) =
1

2

∫

Ω

|∇u|2dx−

∫

Ω

G(u)dx−

∫

Ω

fu dx.

Under our assumptions it is standard to show that I ∈ C1(H,R). We

shall work with the norm ||u|| := ||∇u|| on H .

Remark 4.2. The point of Theorem 4.1 is the existence of a positive

solution on Ω without assuming a sign on f . If f ≥ 0 the result follows

directly from the existence of a critical point for If .
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Lemma 4.3. Under the assumptions of Theorem 4.1 there exists a

β > 0 and a γ > 0 such that for any f satisfying ||f ||q ≤ β the

functional If has a critical point uf at a value cf ≥ γ > 0.

Proof. Let ||f ||q ≤ β with β > 0 to be determined later. First we show

that the functional If has a mountain pass geometry in the sense that

If(0) = 0 and

(i) There exist a > 0, b > 0 such that if ||u|| = a then If(u) ≥ b.

(ii) There exists a v ∈ H with ||v|| > a such that If (v) ≤ 0.

To prove (i) observe that, by Holder and Sobolev embeddings, for 1/q+

1/q′ = 1 and a C > 0,

If(u) =
1

2
||u||2 −

1

p+ 1
||u+||p+1

p+1 − ||f ||q||u||q′(4.2)

≥
1

2
||u||2 − C||u||p+1 − C||f ||q||u||.

We first fix a > 0 sufficiently small so that

1

2
||u||2 − C||u||p+1 ≥

1

4
||u||2 if ||u|| = a.

Then we choose β > 0 sufficiently small so that C ||f ||q a ≤ 1
8
a2. At

this point (i) hold. To show (ii) it suffices to observe that taking a

u ∈ H with u > 0 on Ω one has If (tu) → −∞ as t → +∞.

Next we show that the Palais-Smale condition holds, namely that any

Palais-Smale sequence admits a convergent subsequence. Let (un) ⊂ H

be a Palais-Smale sequence for If at a level cf ∈ R. We have, for n ∈ N

large enough,

cf + 1 + ||un|| ≥ If(un)−
1

p + 1
I ′f (un)un(4.3)

=
(1

2
−

1

p+ 1

)

||un||
2 −

(

1−
1

p+ 1

)

∫

Ω

fun dx

≥
(1

2
−

1

p+ 1

)

||un||
2 −

p

p+ 1
||f ||H−1||un||

and thus (un) ⊂ H is indeed bounded. The fact that (un) ⊂ H admit

a convergent subsequence is now standard since we work on a bounded

domain. At this point the assumption of the mountain pass theorem,

see [2], are satisfied and the lemma follows. �
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Proof of Theorem 4.1. In view of Lemma 4.3 it just remains to show,

by possibly decreasing the value of β > 0, that the solution uf ∈ H is

positive on Ω. For this we consider the limit problem

(4.4) −∆u = g(u).

The functional associated to (4.4) is

I(u) =
1

2

∫

Ω

|∇u|2dx−

∫

Ω

G(u)dx.

Clearly, by construction of g, any critical point of I is nonnegative.

Moreover if u ∈ H is a non trivial critical point of I, by the Hoft

maximum principle we obtain that u > 0 on Ω and also that its normal

derivatives are strictly positive on ∂Ω.

Now we assume, by contradiction, that there exists a sequence (fn) ⊂
Lq(Ω) such that fn → 0 in Lq(Ω) for which the corresponding sequence

un := ufn remains non positive for any n ∈ N. Clearly we shall reach a

contradiction if we manage to show that, up to a subsequence un → u

where u ∈ H is a non trivial solution for the problem (4.4). Indeed

starting from un → u in H , by standard elliptic regularity estimates,

it follows that un → u in C1(Ω̄).

To show this we first observe that (un) ⊂ H is bounded. Indeed,

from (4.3) where f is replaced by fn it is the case if (cfn) ⊂ R
+ remains

bounded. But taking any fixed u ∈ H with u > 0 we have, for a C > 0,

cfn ≤ max
t>0

Ifn(tu)(4.5)

≤
1

2
t2||u||2 −

tp

p+ 1
||u||p+1

p+1 + t

∫

Ω

|fn|u dx

and the bound on (cfn) ⊂ R
+ follows. Now when n → +∞,

I(un) = Ifn(un) +

∫

Ω

fnun dx

remains bounded since (cfn) ⊂ R
+ is bounded and

∫

Ω
fnundx → 0

(because (un) ⊂ H is bounded). Also

I ′(un) = I ′fn(un) + fn → 0 in H−1.

Thus (un) ⊂ H is a bounded Palais-Smale sequence for I. To conclude

we observe that since (un) ⊂ H is a bounded Palais-Smale sequence

for I it converges strongly, up to a subsequence, in H towards a non
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trivial critical point of I. The fact that it is non trivial follows from

the estimate cfn ≥ γ > 0. This ends the proof. �

Remark 4.4. Clearly under the assumptions of Theorem 4.1, equation

(4.1) admits a second solution as a local minimum of If . But when

f → 0 this solution converges to 0 and there is no reason for it to be

positive.

Remark 4.5. A numerous literature (see for example [1, 7]) is devoted

to the problem of finding two solutions or more, for equations of the

form

(4.6) −∆u+ u = a(x)|u|p−1u+ f(x), u ∈ H1(RN).

So far, up to our knowledge, multiple solutions are obtained only under

the assumption that f ≥ 0 on R
N (and ||f ||H−1 small enough). An

interesting question would be to study if for problems of the type of

(4.6) a multiplicity result can be obtained without requiring f to be

non negative. In that direction we suspect that the approach followed

in Theorem 4.1 could proved useful.
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