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Abstract

The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). 
Using brain Magnetic Resonance (MR) images, we can investigate the effect of AD on the 
morphology of the hippocampus. Statistical shape models (SSM) are usually used to describe and 
model the hippocampal shape variations among the population. We use the shape variation from 
SSM as features to classify AD from normal control cases (NC). Conventional SSM uses principal 
component analysis (PCA) to compute the modes of variations among the population. Although 
these modes are representative of variations within the training data, they are not necessarily 
discriminant on labelled data. In this study, a Hotelling's T2 test is used to qualify the landmarks 
which can be used for PCA. The resulting variation modes are used as predictors of AD from NC. 
The discrimination ability of these predictors is evaluated in terms of their classification 
performances using support vector machines (SVM). Using only landmarks statistically discriminant 
between AD and NC in SSM showed a better separation between AD and NC.

1. Description of purpose

Early detection and diagnosis of Alzheimer's disease (AD) is a challenging task. Since the 
hippocampus is affected by atrophy in the earliest stage of disease, which may result in the reduction 
of volume and the change in the shape of hippocampus. Hippocampal volume has been previously 
used to classify AD from normal control (NC) subjects, as well as cases with mild cognitive 
impairment (MCI) [1]. Shape information in the form of spherical harmonics (SH) has been used as 
features in the support vector machine (SVM) classification [2,3]. Statistical Shape Models (SSMs) 
have been used to model the variability in the hippocampal shapes among the population (e.g. [4]). 
They usually rely on principal component analysis (PCA) to determine a lower dimensional 
subspace that accounts for the most variations. However, these modes of variations are not 
necessarily discriminant. 
In this study, we aim to improve the discrimination between AD and NC using shape information 
characterized by SSM. We use SSM to search for variations on the surface regions that are 
significantly discriminant between the two groups. The discriminant regions may be due to both 
volume and shape changes. We propose to use the morphological variation on these surface regions 
as variables to distinguish AD from NC cases. These variations are also correlated with the cognitive 
decline in AD.



2. Methods

2.1 Materials

The hippocampus segmentations used in the preparation of this article were obtained from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI), 
which provides the hippocampal volumes segmented semi-automatically by SNT. The hippocampal 
volumes were divided into a training set and a testing set. The training set consists of 60 AD subjects 
with average age 75.2(6.7) years old and 60 NC subjects with average age 77.0(4.8) years old. The 
testing set consists of 117 subjects, 39 AD with average age 77.8(7.3) years old and 78 NC with 
average age 76.3(5.2) years old.

2.2 SSMs on discriminant points

An SSM is built upon a set of shape examples, in which each shape is represented by its nP landmark 
points. In this study, the hippocampal volumes in the training set were first registered and aligned via 
rigid transformations, followed by a groupwise optimization and fluid regularization on the shape 
image [6] to establish the correspondence across the training set. Once the correspondence across the 
training set is established, the shapes can be aligned by using Procrustes analysis, either through 
rigid or similarity transformations. The volume information is preserved in rigid transformations. In 
this case, the variation in the training data will be partly driven by the volumetric change of 
hippocampus due to tissue loss. If the shape surfaces are aligned via similarity transformations, the 
shapes are rescaled to normalize the hippocampal volume. This enables the SSM to be more specific 
to the change in the shape per se rather than the variation in the size of hippocampus.
Given a training set {xi:i=1,2, … , nS} of nS shapes, in which the correspondence is established and 
the shapes are aligned rigidly or via similarity transformations, each of its shape containing nP 

landmarks can be represented as a 3nP -vector

where pi
(k)=(xi

(k), yi
(k), zi

(k)) is the position of the kth landmark point on the ith shape surface. For the 
kth landmark {pi

(k):i=1, 2, … , nS} in the SSM, a Hotelling's T2 test can be performed [6] in order to 
assess its statistical significance in discriminating the NC group from the AD group. Selecting only 
the m(<nP) landmarks that are significantly discriminant on the labelled data, i.e. those landmarks 
with p-value below a threshold, the shape is represented by the subset of landmarks 

which is a projection mapping to the regions more relevant to the pathology. A SSM can thus be built 
concerning only the regions identified by the statistical test. For shape vector x, the coefficients of 
variation modes on discriminant regions can be calculated as

where $\widetilde{\mathbf{W}}$ is the matrix of eigenvectors describing the variation modes from 
the PCA performed on only significantly discriminant landmarks.
Thus, we have four choices of building SSM on the given training set with established 
correspondence:

http://www.loni.ucla.edu/ADNI


• MRA using all the hippocampal landmarks, with shapes aligned via rigid transformation,
• MSA  using all the hippocampal landmarks, with shapes aligned via similarity transformation,
• MRD using hippocampal landmarks significant against AD, with shapes aligned via rigid 

transformation,
• MSD using hippocampal landmarks significant against AD, with shapes aligned via similarity 

transformation.

2.3 Representation of the test data

For a given shape not in the training set, the correspondence between the SSM landmarks and the 
shape surface points needs first to be established, so that the given shape can be represented in the 
same vector space as the training data. The SSM is deformed to fit the smoothed target surface, 
minimizing L1 distance metric between the SSM generated surface and the target. Without the 
assumption of correspondences between two shape vectors x and y, the L1 distance dS between their 
surfaces S(x) and S(y) can be defined as the sum of the Euclidean distance from each point in x to its 
closest point on  y and from each point y to x. Thus we can fit the SSM to the target surface S(y) by 
the optimization of parameters using Powell's algorithm

where T is a similarity transformation with 7 degrees of freedom, and b parameterizes the 
deformation of the SSM. For the each landmark generated by SSM, we can find the closest point on 
the target surface as the corresponding landmark point. By aligning the shape vector of 
correspondences to the shapes in the SSM through Procrustes analysis, we have the nP-D shape 
vector representing the surface S(y) in the same space as the shapes in the SSM, ready for further 
analysis. 

2.4 Classification method

The shape descriptors from SSM are evaluated in terms of their performance when being used as 
features in classification algorithms. SVMs are widely used in solving the classification problem. It 
usually maps the feature space to higher dimension via a kernel function, and finds the optimal 
hyperplane with the largest margin separating the classes. We use the classifier trained by the SVM 
to test the discrimination ability of the features. In this study, the radial basis function was used as 
the kernel of SVM. The features of each shape x for classification are the coefficient variation 
modes. In order to avoid modelling noise, less significant components produced by PCA are not 
included in the feature set. A subset of features is selected using random forest by minimizing the 
out-of-bag (OOB) error [7]. 

3. Results

In the experiment, hippocampi on both the right and left sides of 60 NC and 60 AD subjects from 
ADNI data were used as a training set to built the SSM. Hotelling's T2 test was performed on each 
SSM between the AD and NC groups, with the resulting significance maps shown in Fig. 1. 

Table 1. Results of SVM accuracy on a test set of 117 cases (%).
With Volumety



Rigid Similarity Rigid Similarity

All landmarks 77.8 72.6 83.8 85.5

Landmarks with p < 0.05 63.2 77.8 84.6 87.2

Landmarks with p < 0.01 68.4 79.5 84.6 85.5
A PCA was performed on the landmarks with p < 0.05 and p < 0.01. For the purpose of comparison, 
conventional PCA on all the landmarks was also performed.
The first 15 principal components in each of the SSM were used for feature selection. These 
components explained approximately 90% of variations in the training set. In addition to the shape 
variations, the hippocampal volume normalized by TIV was also used as independent features.
 The resulting SSMs were evaluated on a testing set of 117 subjects (39 AD and 78 NC), also from 
ADNI. The results of the accuracy on the testing set are shown in Table 1.
When using all the points to perform the PCA, the features extracted from the SSM built using a 
rigid transform reflect largely the volume differences between the hippocampi, whereas the ones 
extracted from the SSM built using a similarity transform are a better reflection of local shape 
variations. This is effect results in the MRA yielding better classification results than MSA (77.8% vs 
72.6%) as volume alone is a good discriminant (83.8%). Adding volume to the features extracted 
using MRA and MSA increased both of their accuracy, but to a much less extent for MRA (+6.0%) 
compared to MSA (+12.8%).
Restricting the PCA to discriminant points on shapes aligned via similarity transformation produced 
better discrimination between NC and AD than using all the points. Using the shape variation on 
discriminant points extracted from MSD yielded better accuracy than the global variation 
incorporating both shape and volume characterised by MRA. The best classification results were 
obtained when volume was added as an additional feature to the shape features obtained using the 
SSM built using a similarity transform on the discriminant points (MSD).

4. New and breakthrough work to be presented

• Model the shape variation between the AD and NC population of hippocampus on the 
regions affected by atrophy identified by statistical tests;

• Improving the disease classification performance by using the shape descriptors extracted 
from atrophy affected areas on the hippocampal surface. 

5. Conclusions

The shape of the hippocampus can provide valuable information for the diagnosis of AD. The 
variation modes of the hippocampus among the population as modelled by the SSM can be used to 
classify AD against NC. The conventional PCA in SSM is performed on all the landmark points on 
the shape which is a good representation of the original shape data in a lower dimensional subspace, 
while it might be not discriminant between two groups. By applying a statistical test on the landmark 
points in the SSM, we can identify the regions on the hippocampal surface which are more 
discriminant between AD and NC groups. The PCA performed on this subset produced variation 
modes which were used as features for the classification between these two groups. 
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Fig. 1: Signicance map by Hotelling's T2 test, performed on rigid and 
similarity aligned SSMs. Top: superior view; bottom: inferior view.
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