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Abstract 

Extensive research has been conducted on post-mortem brain tissue in schizophrenia, particularly the 

dorsolateral prefrontal cortex (DLPFC). However, to what extent the reported changes are due to the disorder 

itself and which are the cumulative effects of lifetime medication remains to be determined. In this study, we 

employed label-free liquid chromatography-mass spectrometry (LC-MSE) based proteomic and proton 

nuclear magnetic resonance (1H NMR) based metabonomic profiling approaches to investigate DLPFC tissue 

from two cohorts of schizophrenia patients grouped according to their lifetime antipsychotic dose, together 

with tissue from bipolar disorder subjects, and normal controls (n=10 per group). Both techniques showed 

profound changes in tissue from low-cumulative-medication schizophrenia subjects, but few changes in 

tissue from medium-cumulative-medication subjects. Protein expression changes were validated by Western 

blot and investigated further in a third group of subjects who were subjected to high-cumulative-medication 

over the course of their lifetime. Furthermore, key protein expression and metabolite level changes correlated 

significantly with lifetime antipsychotic dose. This suggests that the detected changes are present prior to 

antipsychotic therapy and moreover, may be normalized with treatment. Overall, our analyses revealed novel 

protein and metabolite changes in low-cumulative-medication subjects associated with synaptogenesis, 

neuritic dynamics, presynaptic vesicle cycling, amino acid and glutamine metabolism, and energy buffering 

systems. Most of these markers were altered specifically in schizophrenia as determined by analysis of the 

same brain region from bipolar disorder patients. 
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Introduction 1 

Schizophrenia (SCZ) is a debilitating psychiatric disorder that affects approximately 1% of the world 2 

population (1). Extensive research has been conducted to investigate brain regions such as the dorsolateral 3 

prefrontal cortex (DLPFC) since this area is thought to represent the primary site of higher cognitive function 4 

impairment (2). For example, cytoarchitectural, neurochemical (3) and structural (4) abnormalities have been 5 

observed in this brain region of SCZ patients, such as decreased neuronal size and dendritic spine density (5-6 

8). Evidence in favour of abnormal neurotransmission, signal transduction (9), neural connectivity, 7 

GABAergic (10) and glutamatergic activity (11) has also been demonstrated in the DLPFC of these patients. 8 

There has been increasing interest in employing global protein profiling methodologies, including mass 9 

spectrometry (MS)-based methods, to examine the DLPFC of SCZ patients (12-20). Converging results from 10 

these studies have supported the case for synaptic, oxidative stress mitochondrial and metabolic dysfunction 11 

in the disorder. In support of this, the recent application of state-of-the-art metabonomic platforms and 12 

informatics tools have identified alterations in markers of energy and neurotransmitter metabolism in sub-13 

regions of the DLPFC of SCZ patients (17, 21), and in animal models of antipsychotic drug treatment (22). 14 

However, most global profiling studies using post-mortem brain tissue have been performed on subjects who 15 

have been treated with varying lifetime antipsychotic medication doses. Although the confounding effects of 16 

factors such as post-mortem interval and tissue pH have been investigated in molecular profiling studies (23-17 

26), those associated with cumulative lifetime antipsychotic doses have not been addressed fully. This is 18 

likely to be an important factor since neuroimaging analyses of SCZ subjects have demonstrated a 19 

correlation between cumulative antipsychotic dose and specific anatomical and cellular alterations (27, 28). 20 

With this in mind, we have attempted to identify the molecular signatures associated with the inherent 21 

pathological processes as well as antipsychotic drug-induced changes in DLPFC tissue from SCZ subjects 22 

who had received different cumulative lifetime antipsychotic doses. We conducted a parallel profiling study 23 

using label-free LC-MSE based proteomic and 1H NMR spectroscopy based metabonomic approaches. We 24 

also included DLPFC tissue from bipolar disorder (BPD) subjects in the analysis, to determine the specificity 25 

of any observed biomarkers for SCZ given that there is an aetiological overlap between SCZ and BPD and, 26 

epidemiological and genetic linkage studies have also identified a number of shared susceptibility loci 27 

between these two disorders (29). 28 
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Materials and methods 29 

Tissue samples 30 

Sixty post-mortem DLPFC Broadmann Area 9 (BA9) gray matter samples were obtained from the Stanley 31 

Medical Research Institute (Bethesda, MD, USA). The average fluphenazine mg equivalent (FME) was used 32 

as an indicator of cumulative lifetime antipsychotic dose (30). SCZ samples were separated into three 33 

demographically-matched groups according to FME: Group 1) low-cumulative-medication [(L-SCZ), FME: 34 

6515±6465, n=10 (including 2 drug-naive with FME=0 and 2 with FME≤600)], Group 2) medium-35 

cumulative-medication [(M-SCZ), FME: 86200±47499, n=10], and Group 3) high-cumulative-medication 36 

[(H-SCZ), FME: 182500±123855, n=10]. The medication groups were chosen, to the best possible, to give 37 

balanced groups with the maximum number of patients in each group with the least overlap in FME dose. 38 

The mean FME dose between the medication groups was significantly different (p=0.0005). In addition, 10 39 

bipolar disorder (BPD) and 10 control (CT) subjects were matched and analysed. An additional batch of 10 40 

controls was matched specifically to H-SCZ subjects as the latter was not matched to the previous control 41 

group with respect to gender. Unless stated otherwise, samples were matched for post-mortem brain interval 42 

(PMI), pH, age of onset, age of death, duration of illness and gender (summary of demographic details and 43 

statistical values are shown in Table 1; additional details are provided in Supplementary Tables S1 and S2). 44 

Samples from H-SCZ patients and matched controls were used for Western blot validation analyses only. 45 

Since the average brain pH of H-SCZ patients was significantly lower than that of the controls, Pearson 46 

correlation analyses were performed using GraphPad PRISM v5 (San Diego California, USA) to confirm 47 

that there were no effects of pH on protein expression (average r of -0.40 and 0.34, p>0.05). Approximately 48 

70 mg of tissues were sectioned (15μm slices) using a Leica Cryostat tissue sectioning device (Milton 49 

Keynes, UK), collected into pre-chilled lysing matrix D tubes (MP Biomedicals, UK) and stored at -80ºC 50 

until use. 51 

 52 

(Table 1 here) 53 

 54 

 55 

 56 
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Experimental design 57 

Fractionation of post-mortem DLPFC tissue (n=60) from all subject groups (Table 1) was performed to 58 

increase proteome coverage of membrane-associated proteins. In the first stage of this study, membrane 59 

protein fractions from L-SCZ, M-SCZ, BPD and controls were analysed by LC-MSE. In the next stage, 60 

differentially expressed proteins were validated by Western Blot analysis using membrane and soluble 61 

fractions, and unfractionated total brain lysate samples across all 5 groups [L-SCZ, M-SCZ, H-SCZ, BPD 62 

and controls]. In the final stage, 1H NMR spectroscopy metabonomic analysis was carried out for L-SCZ, M-63 

SCZ and controls. The same analysis for BPD samples from this brain collection was conducted previously 64 

(31). 65 

 66 

Subcellular proteome fractionation and protein purification/digestion 67 

Brain tissue sections were processed using the Subcellular Proteome Extraction Kit (Merck; Nottingham, 68 

UK) as described previously (32-34). Briefly, tissues were homogenized in 1mL ice cold Extraction Buffer I 69 

containing 5μL Protease Inhibitor Cocktail (PI) at 4°C using the FastPrep FP120 cell disrupter (Qbiogene; 70 

Cambridge, UK) set at speed 4 for 5 seconds. Homogenates were incubated on a rotary shaker for 30 minutes 71 

at 4°C and centrifuged at 11000g for 10 minutes. The supernatants (fraction I, enriched soluble proteins) 72 

were collected and pellets were suspended in 1mL of ice cold Extraction Buffer II containing 5μL PI by first 73 

flicking the tubes and then mixing on a rotary shaker for 60 minutes at 4°C. Following centrifugation at 74 

6000g for 10 minutes, the supernatants (fraction II, enriched membrane proteins) were collected. 75 

Approximately 200μg of proteins from fraction II were precipitated using the ProteoExtract® Protein 76 

Precipitation Kit (Merck), reduced, alkylated and digested using the all-in-one trypsin digestion kit 77 

(MERCK). Trypsin was obtained from Promega (Madison, WI, USA). 78 

 79 

LC-MSE analysis 80 

LC-MSE was carried out and the reproducibility and quantitative reliability was assessed as described 81 

previously (35). To minimize systematic batch effects, sample preparation and MS acquisition were 82 

performed in a randomized order. The PLGS2.3 software was used for ion detection and clustering (36-39) 83 

and the embedded ion accounting algorithm employed for searching the H. Sapiens complete proteome fasta 84 
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sequence Integr8 database (http://www.ebi.ac.uk/integr8/FtpSearch.do?orgProteome Id=25; version 25), 85 

appended with S.cerevisiae enolase sequence (P00924). Data were normalized using the Trackstats software 86 

(Waters; Milford MA, USA) and filtered for replication using R (www.r-project.org) with criteria described 87 

previously (35). To perform quantitation on the protein level, peptide correlation analyses (r>0.5) were 88 

performed for every detected protein (35, 40). To identify significant alterations in protein expression levels 89 

between different experimental groups, 2-tailed Student’s t-tests were performed (p≤0.05) and false 90 

discovery rates (FDR) were calculated using the Benjamini & Hochberg correction approach (41). This 91 

approach calculates the proportion of statistically significant differences that are actually false positives. 92 

Biological process grouping was carried out using the Human Protein Reference Database (HPRD; 93 

http://www.hprd.org/) and the Database for Annotation, Visualization and Integrated Discovery (DAVID; 94 

http://david.abcc.ncifcrf.gov/). 95 

 96 

Western blot analysis  97 

Protein samples (10μg) were resolved on 4–12% NuPAGE Novex Bis-Tris gels (Invitrogen, Paisley, UK) 98 

and transferred electrophoretically onto nitrocellulose membranes. Membranes were washed three times for 99 

5 minutes in phosphate buffered saline containing 0.1% Tween-20 (PBS-T) followed by incubation for 1 100 

hour in Odyssey blocking buffer (LI-COR Biosciences; Cambridge, UK) and then overnight at 4ºC with 101 

primary antibodies diluted in the same buffer containing 0.1% Tween-20 (OBB-T) (details of the primary 102 

antibodies are shown in the legend for Figure 2a and Supplementary Figure S1). Membranes were washed 103 

five times 20 minutes in PBS-T followed by incubation with the appropriate infrared dye-linked secondary 104 

antibodies (800CW goat anti-mouse, 680CW goat anti-rabbit and 800CW goat anti-rat; Licor Biosciences) in 105 

OBB-T in the dark. Images were acquired using the Odyssey Infrared Imaging System and analysed and 106 

quantified using the Odyssey v3.0 Software. Calmodulin was used as internal control for normalizing protein 107 

loading differences as this protein showed no significant differences in abundance between disease and 108 

control by LC-MSE [L-SCZ (p=0.75), M-SCZ (p=0.80), BPD: (p=0.28) and Western blot analysis (Figure 109 

2b). For validation purposes, 2-tailed Student’s t-tests were conducted and significance was regarded as 110 

p<0.05. Fold changes were calculated by dividing the average integrated intensity readings of disease by 111 

control samples. 112 
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1H NMR spectroscopy   113 

Separate tissue slices obtained from the same post-mortem brain specimens used in the above studies were 114 

homogenized while frozen in 1mL of methanol:deionised water (1:1) in 2mL microfuge tubes (Eppendorf; 115 

Loughborough, UK) containing a metal bead (Qiagen; West Sussex, UK), using a tissue grinder (Qiagen) set 116 

at 30 cycles/second for 5minutes. Chloroform (1mL) was added to produce aqueous and lipid phases. 117 

Homogenates were vortexed and centrifuged at 1200g for approximately 7 minutes at 5°C. The upper 118 

aqueous phase containing hydrophilic metabolites was collected and left to dry overnight at room 119 

temperature to remove methanol before freeze drying. Samples were reconstituted in 700μL of deuterium 120 

oxide (D2O) and 600μL was transferred into NMR tubes for analysis. D2O provides deuterium field 121 

frequency lock for the NMR spectrometer. 1H NMR spectra were generated at 600.13 MHz on a Bruker 122 

DRX-600 spectrometer (Bruker Avance, Bruker GmBH; Rheinstetten, Germany) as described previously 123 

(31). Complete spectra (chemical shift range 0-10ppm) were processed using the Topspin v2.0 software 124 

(Bruker). Spectra were phase and baseline corrected and calibrated using the reference resonances of the CH3 125 

lactate doublet (1.33ppm). Any variation effect due to pre-saturation of water was removed by zeroing 126 

intensity values between 4.5 and 4.9ppm. To account for concentration differences between samples, data 127 

were normalized to the total integrated peak area intensity by converting the integral values into a percentage 128 

of the sum of the integral. 129 

 130 

Chemometric modelling and interpretation of the 1H NMR data 131 

To identify metabolites differentiating disease and control groups, partial least squares discriminant analysis 132 

(PLS-DA) was performed on full resolution 1H NMR spectral data using SIMCA P v12 (Umetrics AB; 133 

Umeå, Sweden). To remove confounding variation, orthogonal-projection to latent structures discriminant 134 

analysis (OPLS-DA) was used to model the data using MATLAB v6.5 (The Mathworks Inc, Natick; MA, 135 

USA) scripts proprietary to Imperial College London. This method represents an improvement to the 136 

traditional supervised PLS algorithm and enhances the interpretability of spectral variation between classes 137 

(42, 43). To confirm the differences identified by these multivariate analyses, univariate analyses (Wilcoxon-138 

Mann-Whitney U tests (44)) were performed using GraphPad Prism v5. Significance was regarded as p<0.05 139 

and fold changes were obtained by calculating the ratio between disease and control groups.  140 
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Results 141 

Quality control 142 

Membrane protein enrichment efficiency in fraction II was demonstrated by Western blot analysis of a 143 

DLPFC specimen using subcellular distribution markers. LC-MSE analysis resulted in the identification of 144 

370 proteins in fraction I and 568 proteins in fraction II. Fractionation efficiency, as evaluated by analysis of 145 

cellular distribution of these proteins, was demonstrated by identification of a higher proportion of soluble 146 

and membrane proteins in fractions I and II, respectively (details are provided in Supplementary Figure S1).  147 

 148 

Mass Spectrometry  149 

Quantitative analysis of fraction II resulted in identification of approximately 30 differentially expressed 150 

proteins (p≤0.05) out of the approximate 500 identifiable proteins in L-SCZ and BPD patients, compared to 151 

the control group (Figure 1). None of the differentially expressed proteins overlapped across the diseases. No 152 

significant changes were observed for the M-SCZ patients compared to the same control group. 153 

Differentially expressed proteins were assigned to biological process groups using HPRD and DAVID 154 

(Table 2 for L-SCZ and Supplementary Table S3 for BPD). Table 2 also indicates markers which have been 155 

reported previously in the literature in association with proteomic or transcriptomic analyses of SCZ DLPFC 156 

tissue, thereby providing an additional means of validation as many directions of change reported in the 157 

literature agree with our findings.  158 

 159 

(Figure 1 and Table 2 here) 160 

 161 

Western blot validation  162 

Confirmation of mass spectrometry profiling results: Raw p-values for LC-MSE data were corrected for 163 

multiple hypothesis testing using the Benjamini-Hochberg false discovery rate method (Table 2). As 164 

corrected p-values for differentially expressed proteins were relatively high, Western blot analyses were 165 

conducted to confirm changes in L-SCZ and BPD membrane fraction samples. Calmodulin was used as a 166 

loading control since this protein was not changed in this study, as determined by LC-MSE and Western blot 167 

analyses. Antibodies were selected against 7 proteins to represent different functional networks and 168 
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directional changes in L-SCZ and BPD subjects. These included MAG, MARCKS, NCAM, GAP43 and 169 

NFM. Neuronal nitric oxide synthase (nNOS) was also examined due to its regulatory action on NCAM (45) 170 

and functional relevance in SCZ (46, 47). β-tubulinIII (TUBB) was tested as an example of a protein altered 171 

in BPD patients. Western blot analysis validated the expression changes in these proteins, with the exception 172 

of MAG (Figure 2a and 2b). The predicted change in nNOS was also confirmed in L-SCZ. These results 173 

confirmed the reliability of the label-free LC-MSE based profiling approach. Validation was also conducted 174 

using soluble fractions and unfractionated total brain lysates from the L-SCZ patient samples. Overall, most 175 

of the changes identified in the membrane fractions were confirmed in the corresponding soluble fractions 176 

and total brain lysates (Figure 2b). 177 

 178 

(Figure 2 here) 179 

 180 

Assessment of disease specificity and effects of lifetime antipsychotic medication in schizophrenia: LC-181 

MSE analysis revealed that none of the differentially expressed proteins identified in samples from L-SCZ 182 

subjects were found in those from M-SCZ subjects. This was also confirmed by Western blot analyses of 183 

membrane fractions from L-SCZ, M-SCZ, H-SCZ and CT samples (Figure 2a and 2b). Overall, the results 184 

confirmed that the levels of MARCKS, GAP43 and nNOS were changed in L-SCZ but not in M-SCZ and H-185 

SCZ. This suggested that abnormal expression of these proteins may be a primary disease change and not a 186 

medication effect. However, NFM did not show a clear pattern of expression relating to medication. NCAM 187 

was increased significantly in all SCZ medication groups and in BPD samples. This suggested that NCAM 188 

expression may not be affected by lifetime antipsychotic levels or mood stabilizer treatment and that it is not 189 

specific to SCZ. The LC-MSE results showed no overlap in the differentially expressed protein profiles of 190 

SCZ and BPD subjects (Table 2 and Supplementary Table S3), as confirmed by Western blot analysis 191 

(Figure 2b). Biological process grouping using HPRD and DAVID also showed no overlap (Figure 1). The 192 

most notable changes for SCZ were 15 differentially expressed proteins involved in cell communication and 193 

7 metabolism proteins, whereas BPD was marked by alterations of 8 cell communication proteins and 7 cell 194 

growth proteins (Figure 1). 195 

 196 
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Correlation analysis  197 

The LC-MSE profiling results showed changes in tissues from L-SCZ subjects but not in M-SCZ individuals. 198 

This suggests that these changes are associated with the primary disease state and, moreover, may be 199 

normalized with treatment. For this to be the case, expression changes should not only show a group 200 

difference according to treatment level, but also a direct relationship to lifetime antipsychotic dose within the 201 

group. In order to further investigate this possibility, FME and Western blot expression values from 202 

individual SCZ subjects were tested in correlation analyses. GAP43 (r=-0.77, p=0.025), MARCKS (r=-0.76, 203 

p=0.029) and, nNOS (r=-0.90, p=0.006) expression levels were significantly negatively correlated with 204 

FME, consistent with their identification as differentially expressed proteins in the L-SCZ group and their 205 

lack of change after more extensive drug treatment comprising the M-SCZ group (Supplementary Figure 206 

S2a). NCAM (r=0.64, p=0.085), on the other hand, was not significantly correlated with FME, consistent 207 

with the Western blot finding that this protein was altered in both the L-SCZ and the M-SCZ groups. The 208 

effects of lifetime antipsychotic dose were further confirmed by demonstrating a significant correlation 209 

between FME dose and levels of significantly altered metabolites [e.g. alanine (r=0.64, p=0.003) and 210 

branched amino acids (r=48, p=0.039)]. Similar to the case of NCAM, glutamine levels (r=-0.15, p=0.55) 211 

were also not significantly correlated with FME dose, as it was altered in both medication groups 212 

(Supplementary Figure S2b). We also considered the possibility that the molecular alterations may be 213 

confounded by a shorter duration of illness in patients with low FME. Although this factor was well matched 214 

between the L-SCZ and M-SCZ groups (p=0.27), the mean duration of illness was higher in H-SCZ patients 215 

which were investigated separately. Correlation analyses show that duration of illness did not affect 216 

expression of key validated proteins or levels of significantly altered metabolites (Supplementary Figure S3).  217 

 218 

1H NMR spectroscopy data analysis 219 

PLS-DA of 1H NMR spectroscopy data revealed a separation between the L-SCZ or M-SCZ and CT groups. 220 

O-PLS-DA showed the metabolites that are most influential to these separations (Figure 3a). Specifically, 221 

branched amino acids, alanine, creatine and glutamine were altered in L-SCZ patients. Most of the 222 

metabolites identified using multivariate analyses were confirmed by univariate statistical analysis (Figure 223 

3b). Of the 4 metabolites altered in L-SCZ, 3 (branched chain amino acids, alanine and creatine) were not 224 
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changed in M-SCZ and only glutamine was changed in both groups. In addition, taurine was altered in M-225 

SCZ but not in L-SCZ. 226 

 227 

(Figure 3 here) 228 

 229 

Discussion 230 

This is the first study employing label-free LC-MSE proteomic and 1H NMR metabonomic profiling 231 

platforms to examine molecular effects of cumulative lifetime antipsychotic medication dose in post-mortem 232 

brain tissue (dorsolateral prefrontal cortex, BA9, gray matter) of SCZ patients. To control for non-specific 233 

effects of chronic psychiatric illnesses, the proteomic profile of BPD patients was also investigated to 234 

demonstrate that the changes reported are relatively specific for SCZ. Lifetime antipsychotic medication was 235 

found to have an effect on a number of proteins and metabolites in SCZ patients. The specificity of the 236 

protein expression changes identified in L-SCZ patients was also demonstrated relative to BPD providing 237 

evidence for diverging pathologies between the two disorders. 238 

 239 

Disease signatures of schizophrenia and targets of drug effects 240 

Out of the approximately 500 proteins and 16-20 metabolites identified per dataset, 34 proteins and 4 241 

metabolites were altered in L-SCZ patients and only 1 protein (NCAM) and 2 metabolites (glutamate and 242 

taurine) were altered in M-SCZ patients. This suggested that a higher cumulative lifetime antipsychotic dose 243 

may exert neuroadaptive effects by normalizing some of the inherent molecular changes in SCZ patients, 244 

who were either medication-free or had been subjected to a lower cumulative antipsychotic medication 245 

dosage throughout life. Therefore, at least some of the differentially expressed proteins identified in L-SCZ 246 

patients may represent ‘disease signatures’ of SCZ as well as representing targets of antipsychotic drug 247 

action. These include effects on proteins associated with synaptogenesis, neuritic dynamics, presynaptic 248 

vesicle cycling, amino acid and glutamine metabolism, and energy buffering systems. Previously, we have 249 

identified molecular changes in proteomic (35) and metabonomic (22) studies of rats treated with 250 

antipsychotic medications. Some of these markers are altered in opposite directions to those observed in L-251 

SCZ patients, in the present study, providing further support for our findings. For example, antipsychotics 252 



12 
 

affected components of the rat presynaptic vesicle machinery, neurite outgrowth dynamics and 253 

synaptogenesis. Nine proteins and 2 metabolites found in these antipsychotic-treated rats were shown here to 254 

be altered in L-SCZ patients (SYN2, GLUD1, GAPDH, NCAM1, ATP2B4, MAG, GNB1, GAP-43, NT, Gln 255 

and Cr).  256 

 257 

Synaptogenic alterations during the premorbid stage of illness (gestation, infancy, childhood and 258 

adolescence) have been proposed in the context of the neurodevelopmental hypothesis of SCZ (48). We 259 

identified alterations in key regulators of synaptogenesis (49-51) and synaptic plasticity in L-SCZ patients 260 

including neurofascin1 (NFS) and tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA), 261 

which have not been previously implicated in SCZ. We also identified changes in the expression of NCAM, 262 

which has been reported to be altered in the brain (19, 52, 53), serum (54) and CSF (55-57) of SCZ patients. 263 

Therefore, these findings support the case for synaptogenic and synaptic plasticity alterations in  SCZ 264 

patients (58). These findings are also supported by animal studies showing that an excess of NCAM at the 265 

synapse inhibits synaptogenesis (59). The observation that NCAM was altered in all conditions examined (L-266 

SCZ, M-SCZ, H-SCZ and BPD patients) suggests that it is not affected by either antipsychotic medication or 267 

mood stabilizers and that it is not specific to SCZ. Whether it is a non-specific marker of psychiatric illness 268 

or a key biological change underlying brain dysfunction in both disorders requires further studies. 269 

 270 

Prominent alterations in components involved in synaptic function have been identified by transcriptomic 271 

and proteomic profiling studies of SCZ patients (16, 17, 19). Many of these findings were confirmed in our 272 

study and we also identified novel changes in proteins involved in synaptic vesicle recycling/endocytosis and 273 

exocytosis in the L-SCZ patients, again supporting the case for altered presynaptic vesicle cycling in SCZ. 274 

Alterations in proteins involved in the synaptic endocytosis machinery such as clathrin coat assembly protein 275 

AP180 (SNAP91), Hsc70 interacting protein (Hip) and reticulon1 (RTN1) have not been reported in SCZ 276 

before, although synapsin 2 (SYN2) (60, 61) and another reticulon isoform (RTN4) (13, 62) have been 277 

implicated previously. Though increases in syntaxin1A (STX1A) expression have been reported in SCZ (63-278 

65), we identified novel alterations in other proteins involved in presynaptic exocytosis in L-SCZ patients, 279 

including a group of Gi/o proteins (Galphai2, GNB1, GNB4, GNAO1), which are involved in the auto-280 

inhibitory feedback mechanism of exocytosis (66, 67). To our knowledge, only three recent proteomic 281 
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studies have reported increase in GNB1 expression in the PFC of patients (14, 68, 69). Significant decreases 282 

in neuronal size, number and dendritic spine density of the glutamatergic and GABAergic neurons have been 283 

observed in DLPFC (5-8) and several other brain regions (6, 70, 71) of SCZ patients. We identified 284 

alterations in a number of regulators of growth cone path finding, cell shape, structural integrity, spine 285 

dynamics and neuronal morphology. Therefore, these findings suggest a link between the aberrant levels of 286 

regulators of neuritic dynamics and the macroscopic brain pathology in SCZ. While increased neuromodulin 287 

(GAP-43) expression has been reported in the brain of SCZ patients (65, 72, 73), this is the first report 288 

showing alterations in MARCKS, Ras-related protein Rap-2A (RAP2A) and NF-M at the protein level in the 289 

DLPFC of L-SCZ patients. In addition, altered MARCKS expression in SCZ has been reported only at the 290 

transcript level (73) and NFM was found to be decreased in one study in a different brain region (anterior 291 

temporal lobe) of SCZ patients (74). Whether these changes are primary or secondary to the disease process 292 

remain to be addressed.  293 

 294 

Elevated glutamine (Gln) levels have been reported in the DLPFC (75) and other brain regions of drug-naive 295 

and medicated SCZ patients (76-78). Our findings of increased Gln concentration and glutamate 296 

dehydrogenase expression in L-SCZ and/or M-SCZ patients are consistent with these results. Gln, or Gln-297 

derived ammonia in excessive levels has detrimental effects on mitochondrial function since this results in 298 

excessive production of free radicals, reactive oxygen species (ROS), oxidative stress and increased neuronal 299 

nitric oxide synthase (nNOS) expression (79-81), as confirmed by Western blot analysis in this study. This 300 

suggests a possible link between Gln-induced neurotoxicity and mitochondrial dysfunction in patients (82) 301 

and is consistent with the findings from our colleagues (17) who reported mitochondrial dysfunction, energy 302 

metabolism defects and increased oxygen and ROS metabolism pathways in the DLPFC of SCZ patients. 303 

 304 

Creatine has been found to be decreased in the anterior cingulate cortex and parieto-occipital cortices of 305 

medicated SCZ patients (83) and increased in the DLPFC (BA46) of medicated patients (21). We 306 

demonstrated that Cr was increased in the DLPFC (BA9) of L-SCZ patients and not in M-SCZ patients. 307 

Elevations in Cr concentration may be indicative of a regulatory response to increased energy turnover since 308 

at times of significant energy demand or crisis (e.g. hypoxic damage in SCZ (17)), Phospho-Cr is rapidly 309 

dephosphorylated to enable transfer of the phosphoryl group to ADP to form ATP and Cr (84). Evidence 310 
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demonstrating overexpression of creatine kinase in patients (69, 85) supports this possibility. Increased Cr 311 

levels may also reflect a neuroprotective response mechanism to mitochondrial damage and neurotoxicity 312 

(86) since it also acts as a direct anti-oxidant by scavenging ROS. Cr also regulates glycolysis, prevents 313 

reduced energy stores and improves neuronal function (87).  314 

 315 

By identifying for the first time, that both Ala and branched amino acids (BAA’s) were significantly 316 

decreased, we hypothesize that the uptake process and metabolism of these amino acids may be altered in 317 

SCZ, although future work must be conducted to confirm these findings. Reductions in these amino acids 318 

may have implications in the ammonia transport system (88), neurotransmitter synthesis (89, 90) and energy 319 

metabolism (90) given their indispensable roles in these processes. 320 

 321 

Specificity of the changes in L-SCZ patients relative to BPD 322 

We identified a different panel of differentially expressed membrane associated proteins in L-SCZ and BPD 323 

patients. In contrast to SCZ, BPD showed changes in a group of axon growth/branch promoting signal 324 

transduction proteins and structural proteins. These findings suggest abnormal signalling cascades regulating 325 

axon branching and cytoskeleton reorganization in BPD. This is consistent with previous studies which 326 

identified disruptions of second messenger cascades involving CAMKs and ERK/MAPK (91), abnormal G 327 

protein function and expression in brain and peripheral tissues of BPD patients (92). Increased β-tubulin 328 

expression has been found in a recent proteomic profiling study (16) and reductions in glial fibrillary acidic 329 

protein (GFAP) have also been reported in various brain regions of BPD patients (93, 94). These data 330 

demonstrate specificity of the detected changes in SCZ and BPD and suggest diverging pathological 331 

processes between the two disorders. However, as the BPD subjects were treated with mood stabilisers, 332 

effects of these drugs cannot be ruled out. 333 

 334 

Methodological issues 335 

The quantitative reliability of the label-free LC-MSE proteomic profiling approach for robust identification of 336 

expression differences was demonstrated by Western blot validation of soluble and membrane fractions as 337 

well as total brain lysates. Since the corrected p-values were relatively high for the SCZ and BPD datasets 338 
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(ranging from 0.25 to 0.58), we propose a more relaxed corrected p-value cutoff threshold for brain studies 339 

using this label-free proteomic profiling platform. A microarray study conducted by Kaiser et al., 2004  (95) 340 

supports this view by demonstrating that the rate of confirmation of results by RT-QPCR was 100% for 341 

genes with a corrected p-value<0.1 and 82% for genes with a corrected p-value<0.5. Although careful 342 

matching of the brain tissue samples can increase confidence of the results obtained, the realistic fact is that 343 

there are a number of additional confounders which cannot be controlled for and remain inherent caveats to 344 

these studies. These include factors such as heterogeneity and phenotypic diversity of brain tissue, possible 345 

changes in small subpopulations of brain cells, and subtle differences in the cellular distribution of proteins 346 

across different brain and cellular compartments. Schizophrenia disease subtype may also represent a source 347 

of heterogeneity. Therefore, we propose validation of results using an independent brain series although 348 

obtaining further well-characterized post-mortem samples from low-cumulative-medication SCZ patients 349 

remains difficult. Although we have made some progress towards distinguishing the effects of antipsychotic 350 

medication and SCZ disease signatures, there are several limitations associated with the present study. 351 

Patients were medicated differently up to the time of death and for different periods of time. In addition, 352 

since patients were treated by a mixture of typical and atypical antipsychotic drugs, the differential effects of 353 

these drugs cannot be addressed in the present study. Though we have previously addressed this effect in rat 354 

animal models (96), future studies are warranted to investigate this effect in patients. Although the effects of 355 

medication were demonstrated by comparing L-SCZ and M-SCZ patients, further confirmation of these 356 

effects by direct statistical comparison of L-SCZ and H-SCZ (matched to their own controls) patients was 357 

not possible due to their differences in the mean duration of illness. Duration of illness is an important 358 

confounding factor (97) which challenges post-mortem studies investigating drug naive or low-cumulative-359 

medication patient cohorts, as these patients often have short durations of illness up to the time of death or 360 

may be in an earlier disease stage compared to chronically ill patients which live longer to receive 361 

treatments. Furthermore, patient records assume compliance in taking the prescribed medication and, 362 

compliance is known to be poor in the case of schizophrenia (98). The fluphenazine mg. equivalent is a 363 

proxy measure of drug exposure based on historical records and does not take these factors into account. 364 

Moreover, as antipsychotic medication is the mainstay of treatment for SCZ, patients who have never 365 

received medication may have additional variation distinct from those seen in medicated patients such as 366 

higher social functioning. A limitation associated with the BPD patients was that cumulative drug dosage 367 
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(antidepressants and mood stabilizers or antipsychotic drug) information for these patients is not available 368 

and thus may represent another confounding factor.  369 

 370 

Conclusion 371 

The present study demonstrates the utility of subproteome and metabonome profiling approaches for 372 

providing new insights into the pathophysiology and therapeutic mechanisms in schizophrenia. We found 373 

that the cumulative lifetime antipsychotic medication exerts a considerable effect on a number of proteins 374 

and metabolites in the DLPFC of patients. This suggests careful interpretation of data available to account 375 

for the confounding effects of lifetime medication levels. We identified novel protein and metabolite disease 376 

signatures of schizophrenia and targets of antipsychotic drug effects involved in synaptic connection, neuritic 377 

dynamics, presynaptic vesicle cycling, amino acid metabolism and energy buffering systems. Finally, with 378 

the exception of NCAM, we found no changes in common between SCZ and BPD, indicating the specificity 379 

of the changes and distinct pathologies. Altogether, our results may impact development of new drug 380 

discovery strategies. Furthermore, knowledge that most of the biomarkers identified are released into a 381 

variety of body fluids and peripheral tissues may facilitate translation of these markers to blood-based 382 

assays.  383 
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Tables 730 

Table 1. Summary of patient demographics and procedural features of each study group (mean±SD, 731 

ranges in parenthesis). a) Summary of demographic details for L-SCZ and M-SCZ subjects and, BPD 732 

patients and CT subjects (used for LC-MSE, 1H NMR spectroscopy and Western blot validation). b) 733 

Summary of demographic details for H-SCZ and CT subjects (used for Western blot validation only). 734 

    
p-values obtained by  

T-test or *Fisher’s exact test 

a) L-SCZ 
(n=10) 

M-SCZ 
(n=10) 

BPD 
(n=10) 

CT 
(n=10) 

L-SCZ 
versus  

CT 

M-SCZ 
versus 

CT 

BPD 
versus 

CT 

L-SCZ 
versus  

M-SCZ 

Age of onset 23.60±5.58 
(15-33) 

22.90±5.74 
(16-34) 

28.50±11.38 
(17-48) ― ― ― ― 0.79 

Age of death 38±12.90 
(19-57) 

43.1±6.38 
(31-54) 

44.30±9.68 
(29-59) 

42.4±6.29 
(34-52) 0.35 0.81 0.61 0.28 

Duration of illness 
(years) 

14.42±13.75 
(0.2-37) 

20.20±8.12 
(5-31) 

15.80±6.53 
(9-29) ― ― ― ― 0.27 

PMI (hours) 27.80±10.43 
(13-48) 

39.20±21.19 
(9-80) 

41.90±18.90 
(18-70) 

31.90±14.42 
(11-52) 0.48 0.38 0.2 0.15 

Brain pH 6.54±0.20 
(6.20-6.80) 

6.44±0.23 
(6.20-6.80) 

6.60±0.20 
(6.20-6.90) 

6.42±0.26 
(6.00-6.70) 0.27 0.86 0.10 0.33 

Gender (M/F) 6/4 8/2 6/4 7/3 *1.00 *1.00 *1.00 *0.63 

FME 6515±6465 
(0-15000) 

86200±47499 
(34000-
180000) 

N/A ― ― ― ― 0.0005 

SCZ subtype 
(Undifferentiated/ 
Schizophreniform 
disorder/Paranoid/ 
Disorganized) 

9/1/0/0 6/0/4/0 ― ― N/A N/A N/A *0.30 

 735 

  

p-values obtained by  
T-test or  

*Fisher’s exact test 

b) H-SCZ (n=10) CT (n=10)  H-SCZ versus CT 

Age of onset 20.20±3.85 (14-28) ― ― 

Age of death 47.30±6.40 (35-54) 
46.50±7.63  

(34-59) 
0.80 

Duration of illness (years) 27.10±5.32 (20-37) ― ― 

PMI (hours) 27.00±15.14 (9-47) 29.60±11.27  
(13-47) 

0.67 

Brain pH 6.32±0.24 (5.90-6.70) 
6.71±0.13  
(6.5-6.9) 0.0005 

Gender (M/F) 9/1 9/1 *1.00 

FME 
182500±123855  
(60000-400000) 

― ― 

SCZ subtype 
(Undifferentiated/ Schizophreniform disorder/ 
Paranoid/Disorganized) 

8/0/1/1 N/A ― 

Key: L-SCZ: low-cumulative-medication schizophrenia patients (drug-naive or low cumulative lifetime antipsychotic 736 
medication; FME=0-15000); M-SCZ: medium-cumulative-medication schizophrenia patients (FME=34000-180000); 737 
BPD: bipolar disorder patients who received mood stabilisers and antidepressants, plus brief antipsychotic treatment 738 
(FME not calculated); CT: control or non-psychotic healthy individuals. FME: Fluphenazine mg. equivalents 739 
(cumulative lifetime antipsychotic medication dose). H-SCZ: high-cumulative-medication schizophrenia patients 740 
(FME=60000-400000). 741 
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Table 2. Differentially expressed proteins identified in L-SCZ patients 742 

Gene name UniprotKB 
accession Protein name p-

value 
Corrected  

p-value 

FC 
(fold 

change) 

Described in DLPFC of SCZ 
(*=transcriptomic and 
#=proteomic profiling/assay) 

Cell communication / signal transduction  
▼ST13 P50502 Hsc70-interacting protein (Hip) 0.03 0.58 -1.32 ------------ 
▲Q6B6N3 Q6B6N3 Galphai2 protein 0.05 0.58 1.15 ------------ 
▲NCAM1 P13591 Neural cell adhesion molecule 1 (140 kDa) 0.03 0.58 1.14 ▲#(19), ▲#(52), ▲ #(53) 
▲NFASC O94856 Neurofascin 0.05 0.58 1.16 ------------ 
▲GNB1 P62873 Guanine nucleotide-binding protein subunit beta-1 0.05 0.58 1.17 ▲#(14), ▲#(68), ▲#(69) 
▲RTN1 Q16799 Reticulon-1  0.03 0.58 1.18 ▲*(73) 
▲SIRPA P78324 Tyrosine-protein phosphatase non-receptor type substrate 1 0.02 0.58 1.20 ▼#(13) 
▲SNAP91 O60641 Clathrin coat assembly protein AP180  0.02 0.58 1.21 ------------ 
▲RAP2A P10114 Ras-related protein Rap-2a precursor 0.03 0.58 1.21 ------------ 

▲STX1A Q16623 Syntaxin-1A 0.04 0.58 1.24 ▲#(53), ▲#(99), ▲#(100), 
▲*(64) 

▲OPA1 O60313 Dynamin-like 120 kDa protein 0.03 0.58 1.25 ▲#(13) 
▲SYN2 Q92777 Synapsin-2  0.04 0.58 1.26 ▼*(101) 
▲GAP43 P17677 Neuromodulin 0.04 0.58 1.27 ▲#(72),▲*(73) 
▲GNB4 Q9HAV0 Guanine nucleotide-binding protein subunit beta-4 0.01 0.58 1.28 ------------ 
▲GNAO1 P09471 Guanine nucleotide-binding protein G(o) subunit alpha 0.05 0.58 1.30 ------------ 
Cell growth and/or maintenance  
▼NEFM P07197 Neurofilament medium polypeptide (NF-M) 0.02 0.58 -2.06 ▼#(74), ▼# (102) 
▲MARCKS P29966 Myristoylated alanine-rich C-kinase substrate 0.00 0.58 1.51 ▲*(73) 

Immune response  
▼MAG P20916 Myelin-associated glycoprotein precursor 0.05 0.58 -2.35 ▼*(73), ▼*(103), ▼*(104) 
▼SCRN1 Q12765 Secernin-1 0.03 0.58 -1.21 ▲#(102) 

Metabolism  / energy pathways  
▼PADI2 Q9Y2J8 Protein-arginine deiminase type-2  0.03 0.58 -1.28 ------------ 
▼GAPDH P04406 Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) 0.02 0.58 -1.24 ▼#(17), ▲#(13) 
▼PRDX6 P30041 Peroxiredoxin-6  0.03 0.58 -1.20 ▲#(13),  
▲GLUD1 P00367 Glutamate dehydrogenase 1 (EC 1.4.1.3) 0.02 0.58 1.19 ------------ 
▼GAPD Q5ZEY3 Glyceraldehyde-3-phosphate dehydrogenase  0.02 0.58 -1.13 ------------ 
▲PDHA1 Q5JPT8 Pyruvate dehydrogenase 0.02 0.58 1.25 ------------ 
▼HSP90AA1 P07900 Heat shock protein HSP 90-alpha 0.02 0.58 -1.16 ▼#(14) 
Transport  
▼Q8TCR7 Q8TCR7 Putative uncharacterized protein DKFZp761K0922 0.02 0.58 -1.95 ------------ 
▲ATP2B4 P23634 Plasma membrane calcium-transporting ATPase 4 0.04 0.58 1.12 ▲#(74) 
▲AQP4 Q6L7A0 Aquaporin type4 transcript variant c 0.04 0.58 1.70 ------------ 

Biological process unknown  
▲NTM Q9P121 Neurotrimin 0.03 0.58 1.30 ------------ 
▲GDAP1 Q8TB36 Ganglioside-induced differentiation-associated protein 1 0.04 0.58 1.30 ------------ 
▲SH3GL2 Q3V638 SH3-domaingrb2-like2 0.05 0.58 1.22 ▲#(13), ▼#(17) 
Neurogenesis  
▲GPM6A P51674 Neuronal membrane glycoprotein M6-a 0.05 0.58 1.27 ------------ 

Response to biotic stimulus  
▲PRRT2 Q7Z6L0 Proline-rich transmembrane protein 2 0.01 0.58 1.34 ------------ 

 743 

 744 

 745 

 746 

 747 

 748 

 749 
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Figures 750 

Figure 1. Distinct biological processes in L-SCZ and BPD 751 

 752 

Figure 2. a) Validation of proteomic profiling results in post-mortem DLPFC from L-SCZ subjects. 753 

Representative Western blot images with numbers in parentheses indicating fold changes; significance at 754 

*p<0.05 and **p<0.01. Antibodies used (Abcam; Cambridge, UK, unless otherwise stated): N-CAM 755 

(1:6000; BD Biosciences, Oxford, UK), MARCKS (1:7000), GAP43 (1:2000), nNOS (1:7000), NFM 756 

(1:10000), MAG (1:1000), Calmodulin (1:5000; loading control), β-tubulin III (1:20000). b) Quantitative 757 

summary of Western blot validation results. 758 

 759 

Figure 3. a) Multivariate analysis of 1H NMR spectra generated from post-mortem brain extracts. Plots 760 

on the left show the separation for the PLS-DA scores for A) L-SCZ vs control and B) M-SCZ vs control. 761 

Plots on the right C) and D) represent the corresponding O-PLS-DA loading coefficient plots, showing 762 

spectral descriptors which distinguish the disease from the control groups. Direction of change is indicated 763 

by signal orientation (positive values indicate spectral regions co-varying with disease while negative 764 

correlation values specify spectral regions co-varying with controls). The range of spectral colour is 765 

proportional to the strength of the correlation with disease (red indicates highest correlation and blue 766 

indicates no correlation) based on R2 values. b) List of metabolite changes in schizophrenia. Numbers in 767 

parentheses indicate fold changes; significance at *p<0.05 and **p<0.01. 768 
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