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We consider a two-dimensional singularly perturbed transmission problem with two different diffusion coefficients, in a domain with smooth (analytic) boundary. The solution will contain boundary layers only in the part of the domain where the diffusion coefficient is high and interface layers along the interface. Utilizing existing and newly derived regularity results for the exact solution, we design a robust hp finite element method for its approximation. Under the assumption of analytic input data, we show that the method converges at an exponential rate, provided the mesh and polynomial degree distribution are chosen appropriately. Numerical results illustrating our theoretical findings are also included.

Introduction

The approximation of singularly perturbed problems has retained the attention of many authors in recent years. Let us mention [START_REF] Melenk | On the robust exponential convergence of hp finite element methods for problems with boundary layers[END_REF][START_REF] Miller | Fitted numerical methods for singularly perturbed problems[END_REF][START_REF] Morton | Numerical Solution of Convection-Diffusion Problems[END_REF][START_REF] Roos | Numerical methods for singularly perturbed differential equations[END_REF][START_REF] Schwab | p-and hp-Finite Element Methods[END_REF][START_REF] Schwab | The p and hp versions of the finite element method for problems with boundary layers[END_REF] and the references quoted there. However, in all references quoted no analysis is carried out for differential operators with piecewise constant or piecewise smooth coefficients. On the other hand, in many real life applications, the differential operators have such piecewise coefficients that may have a very large discrepancy. In that case, the solution of the problem will contain boundary layers near the exterior boundary (as usual) but will also contain interface layers along the interface where the coefficients have a large jump. We refer to [START_REF] Maghnouji | Boundary layers for transmission problems with singularities[END_REF] for the description of this phenomenon in one and two dimensions and to [START_REF] Nicaise | Finite element methods for a singularly perturbed transmission problem[END_REF] for several numerical methods for the robust approximation of such problems in one-dimension.

The goal of the present paper is to extend certain results from [START_REF] Nicaise | Finite element methods for a singularly perturbed transmission problem[END_REF] to two-dimensions. In particular, we consider a singularly perturbed transmission problem in a domain with analytic boundary. Under the assumption of the data also being analytic, we provide an asymptotic expansion for the solution (in the style of [START_REF] Melenk | hp-finite element methods for singular perturbations[END_REF]) that provides the necessary information for the design of a robust finite element method that converges at an exponential rate as the degree p of the approximating polynomials is increased. The expansion of the solution includes an outer (smooth) part, an inner (boundary layer) part, an interface layer and a (smooth) remainder. The regularity of each compoment is studied and known results from [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF] allow us to treat the outer and inner parts, as well as the remainder (defined on one part of the domain). The results obtained for the regularity of the interface layer (and the remainder defined on the other part of the domain) are new and in line with those reported in [START_REF] Nicaise | Finite element methods for a singularly perturbed transmission problem[END_REF] for the one-dimensional analog of our model problem. Our work closely follows what was done in [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF] but also includes the additional analysis for the interface layer.

The paper is organized as follows: In Section 2 we present the singularly perturbed problem and describe the typical phenomena. Section 3 is devoted to the expansion of the solution of our model problem into the parts mentioned above (i.e. outer, inner, interface and remainder). The regularity of each component is also described in that section. Section 4 gives the main approximation result and in Section 5 we show the results of numerical computations illustrating our theoretical findings. We end with some conclusions in Section 6.

Throughout the paper the spaces H s (Ω), with s ≥ 0, are the standard Sobolev spaces on the domain Ω ⊂ R 2 , with norm • s,Ω and semi-norm | • | s,Ω . The space H 1 0 (Ω) is defined, as usual, by H 1 0 (Ω) := {v ∈ H 1 (Ω) : v| ∂Ω = 0}. L p (Ω), p > 1, are the usual Lebesgue spaces with norm • 0,p,Ω (we drop the index p for p = 2). Finally, the notation A B means the existence of a positive constant C, which is independent of the quantities A and B under consideration and of the parameter ε, such that A ≤ CB.

The model problem

Let Ω + and Ω -be smooth domains in R 2 , with respective boundaries ∂Ω + and ∂Ω -, such that ∂Ω + ∩ ∂Ω -= Σ; an example is shown in Figure 1 below. We assume that ∂Ω is an analytic curve, i.e. ∂Ω ± and Σ are analytic curves. Moreover, we assume that ∂Ω + \Σ, as well as Σ are connected. We will write Ω = Ω + ∪ Ω -, and for any function u defined on Ω we will denote by u + (resp. u -) the restriction of u to Ω + (resp. Ω -) and we will write u ≡ (u + , u -).

Ω + Ω - Σ
Figure 1: Example of the domains Ω + and Ω -.

We consider the following singularly perturbed transmission problem: Find

u ε = u ε + , u ε - such that -ε 2 ∆u ε + + u ε + = f + in Ω + , (1) 
-∆u ε -+ u ε -= f -in Ω -, (2) 
u ε + = 0 on ∂Ω + \Σ, (3) 
u ε -= 0 on ∂Ω -\Σ, (4)

u ε + -u ε -= 0 on Σ, (5) 
ε 2 ∂u ε + ∂ν - ∂u ε - ∂ν = h on Σ, ( 6 
)
where ∆ denotes the Laplacian operator, ε ∈ (0, 1] is a given parameter, f ± , h are given smooth functions and ν denotes the outward normal vector along Σ oriented outside Ω + . The formal limit problem of (1)-( 6), as ε → 0, is

u 0 + = f + in Ω + , -∆u 0 -+ u 0 -= f -in Ω -, u 0 + = 0 on ∂Ω + \Σ, u 0 -= 0 on ∂Ω -\Σ, u 0 + -u 0 -= 0 on Σ, - ∂u 0 - ∂ν = h on Σ.
Since, in general, f + does not satisfy the boundary conditions f + = u 0 + on ∂Ω + \Σ and f + = u 0 -on Σ, we expect that the solution u ε will contain boundary layers along ∂Ω + \Σ and an interface layer along Σ.

We assume that the data of our problem is analytic and satisfies

(7) ∇ p f ± ∞,Ω ± ≤ C f ± γ p f ± p! ∀ p = 0, 1, 2, ..., (8) 
∇ p Σ h ∞,Σ ≤ C h γ p h p! ∀ p = 0, 1, 2, ...,
for some positive constants C f ± , γ f ± , C h , γ h , where ∇ Σ denotes the tangential derivative along Σ. The following theorem gives bounds on the derivatives of the solution to ( 1)-( 6) that are explicit in terms of the order of differentiation as well as the singular perturbation parameter ε.

Theorem 1 Let u ε = u ε + , u ε -be the solution to ( 1)-( 6) with the data satysfying ( 7), [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF]. Then there are constants C, K > 0 depending only of the data such that

(9) ε D α u ε + 0,Ω + + D α u ε -0,Ω -≤ CεK |α| max |α| , ε -1 |α| ∀ α = 1, 2, ....
Proof. This follows from the local estimates

ε|u ε + | 2,Bx 0 ∩Ω + + |u ε -| 2,Bx 0 ∩Ω -≤ C(ε -1 f + 0,B ′ x 0 ∩Ω + + f -0,B ′ x 0 ∩Ω -+ h B ′ x 0 ∩Σ + ε u ε + 1,B ′ x 0 ∩Ω + + u ε -1,B ′ x 0 ∩Ω -),
for all sufficiently small balls Bx 0 ⊂ B ′ x 0 centred at x 0 ∈ Σ (proved by a local change of variables and some reflexions to reduce the transmission problem into a Dirichlet problem and a Neumann one in half-balls) and the use of Morrey-Nirenberg techniques (see Theorem 2.1 in [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF] or Theorems 5.2.2 and 5.3.8 in [START_REF] Costabel | Corner singularities and analytic regularity of linear elliptic systems[END_REF]).

It should be noted that [START_REF] Miller | Fitted numerical methods for singularly perturbed problems[END_REF] gives sufficient information for the approximation to u ε in the so-called asymptotic case, i.e. when the degree p of the approximating polynomials satisfies p > O(ε -1 ). For the pre-asymptotic case, i.e. when p ≤ O(ε -1 ), we will need the regularity results provided in the next section.

Expansion of the solution

The solution of ( 1)-( 6) may be decomposed as [START_REF] Morton | Numerical Solution of Convection-Diffusion Problems[END_REF] u

ε = w ε + χ BL u ε BL + χ IL u ε IL + r ε ,
where w ε denotes the outer (smooth) part, u ε BL denotes the boundary layer along ∂Ω + \Σ, u ε IL denotes the interface layer along Σ and r ε denotes the remainder. The functions χ BL ,χ IL denote smooth cut-off functions (see equations ( 17), (18) ahead) in order to account for the fact that the aforementioned components do not have support in the entire domain Ω.

In order to define the inner (boundary layer) expansion we introduce boundary fitted coordinates as follows: Let (X(θ), Y (θ)) , θ ∈ [0, L] be an analytic L-periodic parametrization of ∂Ω + \Σ (by arc length), such that the normal vector (-Y ′ (θ), X ′ (θ)) always points into the domain Ω + . Let κ + (θ) denote the curvature of ∂Ω + \Σ and denote by T L the one-dimensional torus of length L. By the analyticity of ∂Ω we have that the functions X, Y and κ are analytic. We also let ρ 0 > 0 be a fixed constant satisfying [START_REF] Roos | Numerical methods for singularly perturbed differential equations[END_REF] 0

< ρ 0 < 1 κ + L ∞ ([0,L))
.

Then the mapping ψ : [0, ρ 0 ] × T L → Ω + given by ( 12)

ψ : (ρ, θ) → (X(θ) -ρY ′ (θ), Y (θ) + ρX ′ (θ))
is real analytic on [0, ρ 0 ] × T L . The function ψ maps the rectangle (0, ρ 0 ) × [0, L) onto a half-tubular neighborhood Ω 0 + of ∂Ω + \Σ, which may be described as ( 13)

Ω 0 + = {z -ρn z : z ∈ ∂Ω + \Σ, 0 < ρ < ρ 0 } , with z = z(θ) = (X(θ), Y (θ))
and n z the outward unit normal at z ∈ ∂Ω + \Σ.

The interface layer will also be defined in a neighborhood of the interface Σ. Quite analogously, let (X Σ (θ), Y Σ (θ)) , θ ∈ [0, L Σ ] be an analytic L Σ -periodic parametrization of Σ (as above), let κ Σ (θ) denote the curvature of Σ and denote by T L Σ the one-dimensional torus of length L Σ . With ρ Σ > 0 a fixed constant satisfying [START_REF] Schwab | The p and hp versions of the finite element method for problems with boundary layers[END_REF] 0

< ρ Σ < 1 κ Σ L ∞ ([0,L Σ )) ,
we define, analogously to (13),

Ω 0 Σ = {z -ρn Σ : z ∈ Σ, 0 < ρ < ρ Σ } , with z = z(θ) = (X Σ (θ), Y Σ (θ)) (15) 
and n Σ the outward unit normal at z ∈ Σ.

The smooth cut-off functions χ BL , χ IL appearing in [START_REF] Morton | Numerical Solution of Convection-Diffusion Problems[END_REF] are defined as follows: Let ρ 1 , ρ 2 be given satisfying

(16) 0 < ρ 1 < ρ 0 , 0 < ρ 2 < ρ Σ and let χ BL , χ IL be defined on Ω + via (17) χ BL (x) = 1 for 0 ≤ dist(x, ∂Ω + \Σ) ≤ ρ 1 0 for dist(x, ∂Ω + \Σ) ≥ (ρ 1 + ρ 0 )/2 , (18) χ IL (x) = 1 for 0 ≤ dist(x, Σ) ≤ ρ 2 0 for dist(x, Σ) ≥ (ρ 2 + ρ Σ )/2 .
The above will be utilized in sections 3.2 and 3.3 ahead.

Construction and regularity of the outer part

We begin by constructing the outer part w ε in [START_REF] Morton | Numerical Solution of Convection-Diffusion Problems[END_REF]. To this end, we expand the solution

u ε = u ε + , u ε -as a formal series in powers of ε, (19) 
u ε ± = u ± 0 + εu ± 1 + ε 2 u ± 2 + ...
and insert it in the differential equations ( 1)-( 6), equating like powers of ε. This allows us to get expressions for the functions u ± j , j = 0, 1, 2, .... In particular, for u + j we obtain (20)

u + 0 = f + , u + 2j = ∆ (2j+2) f + , u + 2j-1 = 0, j = 1, 2, ...
where ∆ (i) denotes the iterated Laplacian. For u - 0 we obtain

-∆u - 0 + u - 0 = f -in Ω -, (21) u 
- 0 = 0 on ∂Ω -\Σ, (22) ∂u - 0 ∂ν = -h on Σ. ( 23 
)
For j ≥ 1 we find u - 2j-1 = 0 and

-∆u - 2j + u - 2j = 0 in Ω -, (24) 
u - 2j = 0 on ∂Ω -\Σ, (25)

∂u - 2j ∂ν = ∂u + 2j-2 ∂ν on Σ. ( 26 
)
Note that u - 2j is not explicitly known but is solution of a Dirichlet-Neumann problem in Ω -. Due to the analyticity assumption, u - 2j is analytic as well (see equation (34) ahead). Using the above, we can define the outer expansion as

(27) w ± ≡ w ± M = M j=0 ε 2j u ± 2j ,
where M is the order of the expansion (i.e. the number of terms that we will include) and will ultimately be taken to be proportional to 1/ε (cf. [START_REF] Melenk | On the robust exponential convergence of hp finite element methods for problems with boundary layers[END_REF], [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF]). It is not difficult to see that

(28) -ε 2 ∆w + M + w + M -f + = ε 2M +2 ∆ (M +1) f + and (29)
-∆w - M + w - M -f -= 0. Moreover, we have the following theorem.

Theorem 2 Let w ± M be defined by (27). Then there exist positive constants K 1 and C depending only on the data of the problem, such that if εM is sufficiently small then (30)

D α w + M ∞,Ω + K |α| 1 |α|! ∀ α ∈ N 2 0 , (31) w 
- M k,Ω - C k+1 k! .
Proof. From Theorem 2.2 of [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF] we have that

D α w + M ∞,Ω + K |α| 1 |α|! 1 + (2MεK 2 ) 2M ∀ α ∈ N 2 0 ,
so if 2MεK 2 < 1 we get (30) . In order to establish (31), we first consider u - 0 , which satisfies the Dirichlet-Neumann problem ( 21)-( 23). Since the data of this problem are analytic, we have that u - 0 is also analytic [START_REF] Costabel | Corner singularities and analytic regularity of linear elliptic systems[END_REF], and moreover

u - 0 k,Ω -≤ C k+1 k! ∀ k ∈ N 0 .
Next, we consider u - 2j , j = 0, 1, ..., defined by (24)-(26), with again the data being analytic. Casting (24)-(26) into a variational formulation, allows us to write

u - 2j 2 1,Ω - = Σ ∂u + 2j-2 ∂ν u - 2j ∂u + 2j-2 ∂ν 0,Σ u - 2j 1,Ω - , which, using (20), gives (32) u - 2j 1,Ω - ∂u + 2j-2 ∂ν 0,Σ ∂ (∆ 2j f + ) ∂ν 0,Σ ∇ 4j+1 f + ∞,Ω + .
From [START_REF] Costabel | Corner singularities and analytic regularity of linear elliptic systems[END_REF] we have that there exists

C ∈ R + such that (33) 1 k! u - 2j k,Ω - ≤ C k+1    k ℓ=1 1 ℓ! ∂u - 2j ∂ν ℓ+ 1 2 ,Σ + u - 2j 1,Ω -    ,
and we note that (see eq. ( 26)),

∂u - 2j ∂ν 2 ℓ+ 1 2 ,Σ = ∂u + 2j-2 ∂ν 2 ℓ+ 1 2 ,Σ = ∂ (∆ 2j f + ) ∂ν 2 ℓ+ 1 2 ,Σ ∆ 2j f + 2 ℓ+1,Ω + |α|≤ℓ+1 Ω + D α ∆ 2j f + 2 dx |α|≤ℓ+1 D α ∆ 2j f + 2 ∞,Ω + .
Hence, (33) becomes (with the aid of ( 7) and ( 32))

1 k! u - 2j k,Ω - ≤ C k+1    k ℓ=1 1 ℓ! |α|≤ℓ+1 D α ∆ 2j f + ∞,Ω + + ∆ 2j f + ∞,Σ    C k+1    k ℓ=1 1 ℓ! |α|≤ℓ+1 γ |α|+2j (|α| + 2j)! + γ 2j (2j)!    C k+1 k ℓ=1 ℓ 2 γ ℓ+2j (ℓ + 2j)! C k+1 k 2 (2j)! k ℓ=1 γ k+2j ℓ + 2j ℓ C k+1 1 (2j)! (1 + γ) k+2j γ 2j C k+1 1 (2j)!γ 2j 1 for a suitable C 1 , γ 1 > 0. This shows that u - 2j are analytic and ∀ j = 0, 1, ... (34) u - 2j k,Ω - C k+1 1 k! (2j)!γ 2j 1 , k ∈ N. Thus, from the definition of w - M we have w - M k,Ω -≤ M j=0 ε 2j u - 2j k,Ω - C k+1 1 k! M j=0 ε 2j (2j)!γ 2j 1 C k+1 1 k! M j=0 ε 2j (2M) 2j γ 2j 1 C k+1 1 k! M j=0 (2εMγ 1 ) 2j C k+1 k!,
provided 2εMγ 1 < 1 (so that the above sum can be estimated by a converging geometric series). Estimate (31) follows.

Remark 1

The above theorem gives bounds on the smooth (outer) part of the solution to (1)-( 6) under the assumption that εM is sufficiently small. In the complementary case, the asymptotic expansion loses its meaning.

Construction and regularity of the boundary layers along ∂Ω + \Σ

Boundary layers are introduced in order to account for the fact that the function w + M does not satisfy the boundary condition on ∂Ω + \Σ (cf. ( 28)). These are precisely the ones constructed and analyzed in [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF], so we will only outline the procedure and quote the relevant results from [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF]. The boundary layer correction u ε BL of w + M is defined as the solution of

L ε u ε BL = 0 in Ω + , (35) u ε BL = -w + M on ∂Ω + \Σ, (36) 
where L ε is defined as

(37) L ε u := -ε 2 ∆u + u.
With κ + (θ) the curvature of ∂Ω + \Σ we set

σ + (ρ, θ) = 1 1 -κ + (θ)ρ ,
and we have (see, e.g. [START_REF] Arnold | Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model[END_REF])

∆u(ρ, θ) = ∂ 2 ρ u -κ + (θ)σ + (ρ, θ)∂ ρ u + σ 2 + (ρ, θ)∂ 2 θ u + ρκ ′ + (θ)σ 3 + (ρ, θ)∂ θ u.
Introducing the stretched variable ρ = ρ/ε, the operator

L ε becomes (38) L ε = -∂ 2 ρ + Id + εκ + (θ)σ + (ε ρ, θ)∂ ρ -ε 2 σ 2 + (ε ρ, θ) -ε 3 ρκ ′ + (θ)σ 3 + (ε ρ, θ)∂ θ .
Expanding the above in power series of ε, we can formally write

(39) L ε = ∞ i=0 ε i L i ,
where the operators L i have the form (see equations (2.12)-(2.14) in [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF])

(40) L 0 = -∂ 2 ρ + Id, L i = -ρ i-1 a i-1 1 ∂ ρ -ρ i-2 a i-2 2 ∂ 2 θ -ρ i-2 a i-3 3 ∂ θ , i ≥ 1,
and the coefficients a i j are given by (41)

a i 1 = -[κ + (θ)] i+1 , a i 2 = (i + 1) [κ + (θ)] i , a i 3 = (i + 1)(i + 2) 2 [κ + (θ)] i κ ′ + (θ), i ∈ N 0 , (42) 
a i 1 = a i 2 = a i 3 = 0 for i < 0.
We next make the formal ansatz

u ε BL = ∞ i=0 ε i U i ( ρ, θ),
and insert it into (35). This yields (43)

∞ i=0 ε i i j=0 L j U i-j = 0,
allowing us to find the following problem for the functions U i ( ρ, θ), i = 0, 1, 2, ...:

(44) -∂ 2 ρ U i + U i = F i =: F 1 i + F 2 i + F 3 i , (45) 
F 1 i = i-1 k=0 ρ k a k 1 ∂ ρ U i-1-k , F 2 i = i-2 k=0 ρ k a k 2 ∂ 2 θ U i-2-k , F 3 i = i-3 k=0 ρ k+1 a k 3 ∂ θ U i-3-k ,
where empty sums are assumed to be zero. (See, also, equations (2.15)-(2.16) in [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF]). The above are supplemented with boundary conditions

U i → 0 as ρ → ∞, U i ∂Ω\Σ =    -[f ] ∂Ω\Σ if i = 0, -∆ (i/2) f ∂Ω\Σ if i ∈ N is even, 0 if i ∈ N is odd.
The boundary layer (inner) expansion in ( 10) is then defined as

(46) u ε BL ≡ u M BL (ρ, θ) = 2M +1 j=0 ε j U j ( ρ, θ) = 2M +1 j=0 ε j U j (ρ/ε, θ),
and by construction, it satisfies the boundary condition

u M BL ∂Ω\Σ = - 2M +1 i=0 ε 2i ∆ (i) f ∂Ω\Σ .
By Theorem 2.2 of [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF] we have that for every α ∈ [0, 1) and all p, m ∈ N 0 , (47)

∂ p ρ ∂ m θ u M BL (ρ, θ) 1 + ε(2M + 1)K 2 1 -α 2M +1 m!K m+p 1 ε -p e -αρ/ε , for θ ∈ T L , ρ ∈ [0, ρ 0 ], with K 1 , K 2 > 0 independent of ε, p and 
m. Moreover, by Lemma 2.12 of [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF], there exist constants K, Θ > 0 independent of ε such that

(48) L ε u M BL (ρ, θ) K 2M +2 (ε(2M + 2) + |ρ|) 2M +2 e -ρ/ε ∀ (ρ, θ) ∈ B ρ 0 (0) × S(Θ),
where B δ (z) denotes the (open) disc in the complex plane of radius δ centered at z, and (49) S(Θ) = {θ ∈ C : Im(θ) < Θ} .

Construction and regularity of the interface layer on Σ

For a function ω = (ω + , ω -) we denote the jump

[[ω]] Σ on Σ as (50) [[ω]] Σ := (ω + )| Σ -(ω -)| Σ .
We define the function v I (ρ, θ) := v - I , v + I as the solution of the following problem:

(51)

                   -ε 2 ∆v + I + v + I = 0 in Ω + -∆v - I + v - I = 0 in Ω - [[v I ]] Σ = - ∞ j=0 ε 2j [[u 2j ]] Σ ε 2 ∂v + I ∂ρ - ∂v - I ∂ρ Σ = - ∞ j=0 ε 2j ε 2 ∂u + 2I ∂ρ - ∂u - 2j ∂ρ Σ
.

With ρ = ρ/ε as before, we write

v + I (ρ, θ) = v + I ( ρ, θ) , and problem (51) becomes (52)                        -∂ 2 ρ + Id v + I + εκ + (θ)σ(ε ρ, θ)∂ ρ v + I -ε 2 σ 2 (ε ρ, θ) v + I - -ε 3 ρκ ′ + (θ)σ 3 (ε ρ, θ)∂ θ v + I = 0 in Ω + -∆v - I + v - I = 0 in Ω - v + I -v - I | Σ = - ∞ j=0 ε 2j [[u 2j ]] Σ ε ∂ v + I ∂ ρ - ∂v - I ∂ρ Σ = - ∞ j=0 ε 2j ε 2 ∂u + 2j ∂ρ - ∂u - 2j ∂ρ Σ
. Now, we write

(53) v + I = ∞ j=0 ε j V + j , v - I = ∞ j=0 ε j V - j ,
and insert it in (52) equating like powers of ε, to get (utilizing again the expansion (39))

(54)

                             -∂ 2 ρ V + j + V + j = F 1 j + F 2 j + F 3 j in R + ∀ j ≥ 0 -∆V - j + V - j = 0 in Ω -∀ j ≥ 0 V + 2j -V - 2j = -u + 2j -u - 2j on Σ ∀ j ≥ 0 V + 2j+1 -V - 2j+1 = 0 on Σ ∀ j ≥ 0 - ∂V - 0 ∂ρ = ∂u - 0 ∂ρ on Σ ∂ ∂ρ V - 2j -∂ ∂ ρ V + 2j-1 = -∂ ∂ρ u - 2j -∂ ∂ρ u + 2j-2 on Σ ∀ j ≥ 1 ∂ ∂ρ V - 2j+1 -∂ ∂ ρ V + 2j = 0 on Σ ∀ j ≥ 0 , with F 1 j , F 2 j , F 3 j
given by (45) but with U replaced by V + . So for j = 0, we have

(55)      -∆V - 0 + V - 0 = 0 in Ω - - ∂V - 0 ∂ρ = ∂u - 0 ∂ρ on Σ V - 0 = 0 on ∂Ω -\Σ , ( 56 
) -∂ 2 ρ V + 0 + V + 0 = 0 in R + V + 0 = V - 0 -u + 0 -u - 0 on Σ , (57) 
   -∆V - 1 + V - 1 = 0 in Ω - ∂ ∂ρ V - 1 = ∂ ∂ ρ V + 0 on Σ V - 1 = 0 on ∂Ω -\Σ , ( 58 
) -∂ 2 ρ V + 1 + V + 1 = V + 0 in R + V + 1 = V - 1 on Σ .
In general, for j ≥ 0 odd we have

(59)    -∆V - 2j+1 + V - 2j+1 = 0 in Ω - ∂ ∂ρ V - 2j+1 = ∂ ∂ ρ V + 2j on Σ V - 2j+1 = 0 on ∂Ω -\Σ , ( 60 
) -∂ 2 ρ V + 2j+1 + V + 2j+1 = F 1 2j+1 + F 2 2j+1 + F 3 2j+1 in R + V + 2j+1 = V - 2j+1 on Σ
and for j ≥ 0 even we have (61)

     -∆V - 2j + V - 2j = 0 in Ω - ∂ ∂ρ V - 2j -∂ ∂ ρ V + 2j-1 = -∂ ∂ρ u - 2j -∂ ∂ρ u + 2j-2 on Σ V - 2j = 0 on ∂Ω -\Σ , ( 62 
) -∂ 2 ρ V + 2j + V + 2j = F 1 2j + F 2 2j + F 3 2j in R + , V + 2j = V - 2j -u + 2j -u - 2j on Σ .
The regularity of the functions V - j , V + j is given by Theorem 4 below. For its proof, we will need the following lemma.

Lemma 3 Let U j ( ρ, θ) , j = 0, 1, 2, ..., be the solutions to

(63) -∂ 2 ρ U j + U j = F j ( ρ, θ) in R + U j = G j (θ) on Σ , where F j ( ρ, θ) = F 1 j ( ρ, θ) + F 2 j ( ρ, θ) + F 2 j ( ρ, θ
) is given by ( 44)-( 45) and G j satisfy

(64) |G j (θ)| ≤ C G γ j G j j ,
for some positive constants C G , γ G depending only on the data. Then, there exist positive constants Θ, C U , γ U , depending only on the data, such that

(65) |U j ( ρ, θ)| ≤ C U γ j U (1 + j + ρ) j e -ρ ∀ ( ρ, θ) ∈ R + × S (Θ) ,
where S(Θ) is given by (49). Moreover, for any α ∈ [0, 1) there exists K ∈ R + depending only on the data, such that

(66) |U j ( ρ, θ)| K j j j (1 -α) -j e -α ρ , and (67) 
∂ p ρ ∂ q θ U j (ρ/ε, θ) ε -p e (1-α)p (p + 1) 1/2 q! (2/Θ) q γ j U j j (1 -α) -j e -ρ/ε ∀ p, q ∈ N 0 .
Proof. This is essentially a combination of Lemmas 2.9 and 2.11 in [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF]. Estimate (65) follows directly from Lemma 2.11 in [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF], while (66) follows from (65) and Lemma 2.8 in [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF]. Finally, (67) follows from Cauchy's integral formula, in exactly the same way as in the proof of (2.24) in [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF].

Theorem 4 Let V - j satisfy (59), (61) and V + j satisfy (60), (62) . Then there exist constants C, γ, K, Θ > 0 depending only on the data, such that

(68) V - j k,Ω - k!C k+1 j j γ j , while for θ ∈ T L Σ , ρ ∈ [0, ρ Σ ], α ∈ [0, 1), ( 69 
) V + j (ρ/ε, θ) K j j j (1 -α) -j e -αρ/ε , and (70) 
∂ p ρ ∂ q θ V + j (ρ/ε, θ) ε -p e (1-α)p (p + 1) 1/2 q! (2/Θ) q K j j j (1 -α) -j e -αρ/ε ,
for p, q ∈ N 0 and θ ∈ S(Θ) given by (49).

Proof. The proof is by induction on j. First we note that estimates (69), (70) follow from Lemma 3, provided we show that (64) is satisfied, i.e. on Σ the functions V + j are bounded by Cj j γ j for suitable constants C, γ > 0. This will be verified during our induction argument; in fact it will be the only thing we will show for V + j , with the understanding that an application of Lemma 3 gives the desired result.

For j = 0 we see from the variational formulation of (55) that V - 0 1,Ω - u - 0 1,Ω -, hence by (34) and [START_REF] Costabel | Corner singularities and analytic regularity of linear elliptic systems[END_REF] 

1 k! V - 0 k,Ω -≤ C k+1 k-2 ℓ=0 1 ℓ! ∂u - 0 ∂y ℓ+ 1 2 ,Σ + V - 0 1,Ω - C k+1 k ℓ=1 1 ℓ! u - 0 ℓ+1,Σ + u - 0 1,Ω - C k+1 k ℓ=1 1 ℓ! C ℓ+1 1 (ℓ + 1)! C k+1 .
Next, for V + 0 we see from (56) that V + 0 (ρ, θ) = G 0 (θ) e -ρ/ε for some function G 0 (θ) that depends on V - 0 , u + 0 , u - 0 . By the above, (20) and (34), we have that in the case j = 0, the boundary data for V + j is bounded by Cj j γ j for suitable constants C, γ > 0, hence by Lemma 3 the bounds (69), (70) hold for V + 0 . Now, from the variational formulation of (57) and the fact that

V + 0 (ρ, θ) = G 0 (θ)e -ρ , we have ∂ ∂ρ V + 0 (ρ, θ) = -G 0 (θ)e -ρ and then ∂ ∂ρ V + 0 (0, θ) = -G 0 (θ), hence Ω - (∇V - 1 • ∇V + V - 1 V ) dx = - Σ G 0 V dx ∀ V ∈ H 1 * (Ω -),
where

(71) H 1 * (Ω -) = u ∈ H 1 (Ω -) : u| ∂Ω -\Σ = 0 .
Thus,

V - 1 1,Ω - G 0 0,Σ = V + 0 0,Σ = V - 0 -(u + 0 -u - 0 ) 0,Σ ≤ V - 0 0,Σ + u + 0 0,Σ + u - 0 0,Σ ≤ C 1 ∈ R + .
From [START_REF] Costabel | Corner singularities and analytic regularity of linear elliptic systems[END_REF] and the above result, we get

1 k! V - 1 k,Ω -≤ C k+1    k-2 ℓ=0 1 ℓ! ∂ V + 0 ∂ρ ℓ+ 1 2 ,Σ + V - 1 1,Ω -    C k+1 k-2 ℓ=0 1 ℓ! G 0 ℓ+ 1 2 ,Σ + C 1 C k+1 k-2 ℓ=0 1 ℓ! V - 0 ℓ+ 1 2 ,Σ + u + 0 ℓ+ 1 2 ,Σ + u - 0 ℓ+ 1 2 ,Σ + C 1 C k+1 k ℓ=1 1 ℓ! (ℓ + 1)!C ℓ+1 + C 1 ,
which leads to

(72) V - 1 k,Ω - C k+1 k!.
In an analogous way as V + 0 ( ρ, θ) = G 0 (θ) e -ρ , we find that V + 1 ( ρ, θ) = -ρ 2 a 0 1 (θ)e -ρ +G 1 (θ) e -ρ , for some function G 1 (θ) that depends on V - 1 , hence in view of (72) we see that the boundary data for V + 1 satisfy the appropriate bound. As a result, (69)-(70) hold for V + 1 as well. So, we assume that (68)-(70) hold for j and we will establish them for j + 1.

The case of odd j: If j is odd, then j + 1 is even and we would like to establish bounds for V - 2s and V + 2s (with 2s = j + 1), which satisfy (61), (62) respectively. First, for V - 2s we see from the variational formulation of (61) that

V - 2s 1,Ω - ∂ ∂ ρ V + 2s-1 0,Σ + ∂ ∂ρ u - 2s 0,Σ + ∂ ∂ρ u + 2s-2 0,Σ ,
hence by (20), (34), a trace theorem and the induction hypothesis, we have

V - 2s 1,Ω - K 2s-1 (2s -1) 2s-1 + C u -γ 2s u -(2s)! + C f + γ 2s f + (2s)! C(2s)!γ 2s ,
for suitable constants C, γ > 0 independent of s. Therefore, from [START_REF] Costabel | Corner singularities and analytic regularity of linear elliptic systems[END_REF] we obtain for k ≥ 2

1 k! V - 2s k,Ω -≤ C k+1 k-2 ℓ=0 1 ℓ! ∂ ∂ ρ V + 2s-1 ℓ+ 1 2 ,Σ + ∂ ∂ρ u - 2s ℓ+ 1 2 ,Σ + ∂ ∂ρ u + 2s-2 ℓ+ 1 2 ,Σ + V - 2s 1,Ω - C k+1 k-2 ℓ=0 1 ℓ! V + 2s-1 ℓ+ 1 2 ,Σ + u - 2s ℓ+2,Ω -+ u + 2s-2 ℓ+2,Ω + + (2s)!γ 2s . (73) 
Now, u + 2s-2 = ∆ (2s) f + (see eq. ( 20)), hence using [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF] we have

u + 2s-2 ℓ+1,Ω + = ∆ (2s) f + ℓ+1,Ω + k ℓ=1 1 ℓ! |α|≤ℓ+1 D α ∆ (2s) f + ∞,Ω + k ℓ=1 1 ℓ! |α|≤ℓ+1 γ |α|+2s f (|α| + 2s)! k ℓ=1 ℓ 2 γ ℓ+2s f (ℓ + 2s)! k 2 (2s)! k ℓ=1 γ k+2s f ℓ + 2s ℓ (2s)! 1 + γ f k+2s γ 2s f (2s)! γ 2s ,
for suitable γ > 0 independent of ε. Also, by (62) we get

V + 2s-1 ℓ+ 1 2 ,Σ = V - 2s-1 -u + 2s-1 -u - 2s-1 ℓ+ 1 2 ,Σ ≤ V - 2s-1 ℓ+1,Ω -+ u + 2s-1 ℓ+1,Ω + + u - 2s-1 ℓ+1,Ω -.
Equation (20) gives u + 2s-1 = 0, and by ( 20), (34) and the induction hypothesis, we obtain

V + 2s-1 ℓ+ 1 2 ,Σ (ℓ + 1)!C ℓ+1 (2s -1) 2s-1 γ 2s-1 .
Thus, (73) becomes

1 k! V - 2s k,Ω - C k+1 k ℓ=1 1 ℓ! (ℓ + 1)!C ℓ+1 (2s -1) 2s-1 γ 2s-1 + C ℓ+1 u -(ℓ + 1)!(2s)!γ 2s u -+ (2s)! γ 2s f + +C k+1 (2s)!γ 2s C k+1 1 (2s) 2s γ 2s 1 ,
for suitable constants C 1 , γ 1 > 0 independent of ε. This establishes (68); to establish (69)-(70) we will simply check that the boundary data in (62) satisfies the appropriate bound (so that we may apply Lemma 3). Since

V + 2s = V - 2s -u + 2s -u - 2s on Σ, we see that for θ ∈ [0, L Σ ], (cf. ( 62 
)) V + 2s (0, θ) ≤ V - 2s (0, θ) + u + 2s (0, θ) + u - 2s (0, θ) C(2s) 2s γ 2s ,
which is the bound that allows us to apply Lemma 3 and conclude that for V + 2j ( ρ, θ), the estimates (69), (70) hold as desired.

The case of even j: If j is even, then j + 1 is odd and we would like to establish bounds for V - 2s+1 and V + 2s+1 (with 2s + 1 = j + 1), which satisfy (59), (60) respectively. First, for V - 2s+1 we see from the variational formulation of (59) that

V - 2s+1 1,Ω - V + 2s 0,Σ C + (2s) 2s γ 2s ≤ C + (2s + 1) 2s+1 γ 2s+1 ,
and, in a similar fashion as above, we obtain

1 k! V - 2s+1 k,Ω -≤ C k+1 k-2 ℓ=0 1 ℓ! V + 2s ℓ+1/2,Σ + V - 2s+1 1,Ω - C k+1 k-2 ℓ=0 (ℓ + 1)! ℓ! C ℓ+1 (2s) 2s γ 2s + C + (2s + 1) 2s+1 γ 2s+1 C k+1 2 (2s + 1) 2s+1 γ 2s+1 2 ,
for suitable constants C 2 , γ 2 > 0 independent of ε. Finally, from the above result we see that the boundary data of (60) satisfies the appropriate bound, hence by Lemma 3, V + 2s+1 satisfies (69) and (70) as desired.

In view of the previous theorem, we define the (truncated) interface layer expansion(s) as ( 74)

u ε IL := v + I,M , v - I,M
where

(75) v + I,M = 2M +1 j=0 ε j V + j , v - I,M = 2M +1 j=0 ε j V - j .
The following corollary follows from Theorem 4.

Corollary 5 There exist constants C, γ, Θ, K > 0 depending only on the data, such that under the assumption ε(2M + 1) max{γ, K} < 1, the functions v + I,M , v - I,M defined by (75) satisfy v -

I,M k,Ω - C k+1 k!, ∂ p ρ ∂ q θ v + I,M (ρ, θ) ε -p e p (p + 1) 1/2 q! 2 Θ q ,
for p, q ∈ N 0 , ρ ∈ [0, ρ Σ ] and θ ∈ S(Θ) given by (49).

Proof. By (75) and Theorem 4 we have

v - I,M k,Ω - ≤ 2M +1 j=0 ε j V - j k,Ω - 2M +1 j=0 ε j k!C k+1 j j γ j k!C k+1 2M +1 j=0 (ε(2M + 1)γ) j k!C k+1 and ∂ p ρ ∂ q θ v + I,M (ρ, θ) ≤ 2M +1 j=0 ε j ∂ p ρ ∂ q θ V + j (ρ, θ) 2M +1 j=0 ε j ε -p e p (p + 1) 1/2 q! 2 Θ q K j j j ε -p e p (p + 1) 1/2 q! 2 Θ q 2M +1 j=0 (εK(2M + 1)) j ε -p e p (p + 1) 1/2 q! 2 Θ q .
Finally in this section, we wish to see what the contribution of the interface layers is, to the remainder of the expansion. For the interface layers in Ω -we easily see that

(76) -∆ v - I,M + v - I,M = 0.
Now, by construction of the functions V + 2j we have (with the aid of ( 37) and ( 43))

L ε v + I,M = ∞ i=2M +2 ε i 2M +1 j=0 L i-j V + j = - 2M +1 j=0 ∞ i=2M +2 ε i ρ i-1-j a j-1-j 1 ∂ ρ V + j - 2M +1 j=0 ∞ i=2M +3 ε i ρ i-2-j a j-2-j 2 ∂ 2 θ V + j - - 2M +1 j=0 ∞ i=2M +4 ε i ρ i-2-j a j-3-j 3 ∂ θ V + j .
By Lemma 2.12 of [START_REF] Melenk | Analytic regularity for a singularly perturbed problem[END_REF], we have the bound (77)

L ε v + I,M (ρ, θ) K 2M +2 (ε(2M + 2) + |ρ|) 2M +2 e -ρ/ε ∀ (ρ, θ) ∈ B ρ 0 (0) × S(Θ),
for some K, Θ > 0 independent of ε. (As before, B δ (z) denotes the open disc in the complex plane of radius δ centered at z, and S(Θ) is given by (49).)

Remark 2 Corollary 5 shows that the interface layer functions in Ω + behave just like the boundary layers, while the interface layers in Ω -are smooth. This will be taken into consideration in the design of the approximation scheme in Section 4 ahead.

Remainder estimates

We now consider the remainder r ε ≡ r ε + , r ε -in the decomposition [START_REF] Morton | Numerical Solution of Convection-Diffusion Problems[END_REF], which is given by (78)

r ε + = u ε + -w ε + -χ BL u ε BL -χ IL v + I,M , (79) r ε -= u ε --w ε --χ IL v - I,M ,
and by construction, satisfies the equivalent (but homogeneous) boundary conditions as u ε on ∂Ω. To see this note that on ∂Ω -\Σ we have 4), ( 22) and ( 25). On ∂Ω + \Σ we have

r ε -∂Ω -\Σ = u ε --w ε --χ IL v - I,M ∂Ω -\Σ = 0, by ( 
r ε + ∂Ω + \Σ = u ε + -w ε + -χ BL u ε BL -χ IL v + I,M ∂Ω + \Σ = 0, by (3) 
, ( 36) and ( 18). Finally on Σ we have 5), (54) and 6), ( 23), ( 26) and (54). Moreover, we have the following.

r ε + -r ε -Σ = u ε + -u ε --w ε -+ w ε + + χ IL v - I,M -χ IL v + I,M Σ = 0 by (
ε 2 ∂r ε + ∂ν - ∂r ε - ∂ν Σ = ε 2 ∂u ε + ∂ν - ∂u ε - ∂ν - ∂w ε - ∂ν + ε 2 ∂w ε + ∂ν + ∂v - I,M ∂ν -ε 2 ∂ v + I,M ∂ν Σ = 0, by ( 
Theorem 6 Let r ε = r ε + , r ε -be given by ( 78)-( 79) and let

L ε r ε + = -ε 2 ∆r ε + + r ε + and L 1 r ε -= -∆r ε -+ r ε -. Then there exist constants K 1 , K 2 > 0 independent of ε, such that (80) L ε r ε + 0,Ω + (ε(2M + 2)K 1 ) 2M +2
and

(81) L 1 r ε -0,Ω - (ε(2M + 2)K 2 ) 2M +2 .
Proof. We first consider (80) and we have

L ε r ε + = L ε u ε + -w ε + -χ BL u ε BL -χ IL v + I,M = L ε u ε + -w ε + -L ε (χ BL u ε BL ) -L ε χ IL v + I,M . (82) 
From (28) we notice that (83)

L ε u ε + -w ε + = ε 2M +2 ∆ (M +1) f + , and also L ε (χ BL u ε BL ) = ε 2 (∆χ BL ) u ε BL -2ε 2 ∇χ BL • ∇u ε BL + χ BL L ε u ε BL ,
where the function χ BL equals 1 for 0 < ρ < ρ 0 and 0 for ρ > (ρ 1 + ρ 0 )/2. Hence by (47),

ε 2 (∆χ BL ) u ε BL 0,Ω + ε 2 1 + (ε(2M + 1)K) 2M +1 e -αρ/ε and ε 2 ∇χ BL • ∇u ε BL 0,Ω + ε 1 + (ε(2M + 1)K) 2M +1 e -αρ/ε ,
for some appropriate constant K > 0. Therefore, by (48) and the previous two inequalities, we obtain

(84) L ε (χ BL u ε BL ) 0,Ω + (ε(2M + 2)K) 2M +2 .
In a completely analogous way, we may obtain bounds for L ε χ IL v + I,M , viz.

(85)

L ε χ IL v + I,M 0,Ω + ε(2M + 2) K 2M +2
, for some appropriate constant K > 0. Combining (82)-( 85) we have

L ε r ε + 0,Ω + ε 2M +2 ∆ (M +1) f + 0,Ω + + (ε(2M + 2)K) 2M +2 + ε(2M + 2) K 2M +2 ε 2M +2 γ 2M +2 f + (2M + 2)! + (ε(2M + 2)K) 2M +2 + ε(2M + 2) K 2M +2 (ε(2M + 2)K 1 ) 2M +2 ,
for a suitable K 1 > 0 independent of ε. This establishes (80).

Turning our attention to (81), we have

L 1 r ε -= L 1 u ε --w ε --χ IL v - I,M = L 1 u ε --w ε --L 1 χ IL v - I,M . (86) 
We have from (86) (with the aid of (29))

L 1 r ε -= -L 1 χ IL v - I,M , hence by (76), L 1 r ε -0,Ω -= L 1 χ IL v - I,M 0Ω - = (∆χ IL ) v - I,M -2∇χ IL • ∇v - I,M + χ IL L 1 v - I,M 0,Ω - ≤ (∆χ IL ) v - I,M 0,Ω - + 2∇χ IL • ∇v - I,M 0,Ω - .
Since the function χ IL equals 1 for 0 < ρ < ρ Σ and 0 for ρ > (ρ 2 + ρ 0 )/2 (cf. ( 18)), we further get (using (68))

L 1 r ε -0,Ω - 2M +1 j=0 ε j V - j 0,Ω - + ∇V - j 0,Ω - 2M +1 j=0 ε j j j γ j 2M +1 j=0 (εγ(2M + 1)) j (εK 2 (2M + 2)) 2M +2
for a suitable K 2 > 0 independent of ε. Thus (81) is established and this completes the proof.

Remark 3 Theorem 6 shows that for εM sufficiently small, the remainder in ( 10) is exponentially small, hence it need not be approximated. This information will be utilized in the next section when we will construct the approximation to u ε .

Approximation results

We begin this section with the variational formulation of ( 1)-( 6), which reads: Find

u ε = u ε + , u ε -∈ H 1 0 (Ω) such that (87) B ε (u ε , v) = F (v) ∀ v = v ε + , v ε -∈ H 1 0 (Ω) , where (88) 
B ε (u ε , v) = Ω + ε 2 ∇ u ε + • ∇ v ε + + u ε + v ε + + Ω - ∇ u ε -• ∇ v ε -+ u ε -v ε -, (89) 
F (v) = Ω + f + v ε + + Ω - f -v ε -+ Σ hv.
It is straight forward to show that the bilinear form (88) is coercive and continuous on H 1 0 (Ω), hence the variational problem (87) admits a unique solution thanks to the Lax-Milgram lemma. The discrete version of (87) reads: Find

u ε N = u N + , u N -∈ V N ⊂ H 1 0 (Ω) such that (90) B ε (u ε N , v) = F (v) ∀ v = v ε + , v ε -∈ V N ⊂ H 1 0 (Ω) ,
and by Céa's Lemma we have

(91) u ε -u ε N ε ≤ inf v∈V N u ε -v ε ,
where the energy norm • ε is defined as (92) u 2 ε = B ε (u, u) . We now describe the subspace V N . For simplicity, we will focus on quadrilateral elements, even though triangular elements are also possible (see [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF] for this and other choices of a suitable mesh). Since the behavior of the solution u ε depends on the value of ε (cf. Theorem 1), we distinguish between the cases κpε ≥ 1/2 and κpε < 1/2 (with κ ∈ R a fixed constant) as follows: If κpε ≥ 1/2 then the mesh does not need any special design, as in this case the polynomial degree p of the approximating functions is high enough to ensure good approximability. Hence, in this case the mesh ∆ only needs to be regular in the sence of [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] (or satisfy conditions M1-M3 in [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF]). In the case κpε < 1/2 the mesh will include elements of size O(pε) along ∂Ω + in order for the boundary and interface layer effects to be captured -these are referred to as needle elements in [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF]. We now describe one such possible construction: Let Ω 0 + be given by ( 13), and divide ∂Ω + \Σ into subintervals (θ j , θ j+1 ) , j = 1, ..., m -1, θ ∈ ∂Ω + . Then draw the inward normal at θ j of length ρ 0 (see eq. ( 11)) and connect each point ρ j , θ j = (ρ 0 , θ j ) using the curve ρ = ρ 0 (=constant). Further, divide each

(93) Ω 0 + j := {(ρ, θ) : 0 ≤ ρ ≤ ρ 0 , θ j ≤ θ ≤ θ j+1 } , j = 1, ..., m
into Ω 0,1 + j , Ω 0,2 + j , where

Ω 0,1 + j = (ρ, θ) : θ j ≤ θ ≤ θ j+1 , 0 ≤ ρ ≤ 1 2 ρ 0 κpε , Ω 0,2 + j = Ω 0 + j \ Ω 0,1 + j .
In the above definitions, κ ∈ R is a fixed constant, p is the degree of the approximating polynomials and we recall that we assume κpε < 1/2. This will define a mesh ∆ 0 + := Ω 0,1 + j , Ω 0,2 + j m j=1

over Ω 0 + . We may define a completely analogous mesh ∆ 0 Σ over Ω 0 Σ (see eq. ( 15)), as

∆ 0 Σ := Ω 0,1 Σ k , Ω 0,2 Σ k n k=1 ,
with Ω 0,1 Σ k , Ω 0,2 Σ k defined in an analogous way as Ω 0,1 + j , Ω 0,2 + j . Next, let Ω 1

+ i ℓ i=1
be some subdivision of Ω 1 + that is compatible with ∆ 0 + and ∆ 0 Σ , and define the mesh

(94) ∆ + = Ω 0,1 Σ k , Ω 0,2 Σ k , Ω 0,1 + j , Ω 0,2 + j , Ω 1 + i , k = 1, ..., n, j = 1, ..., m, i = 1, ..., ℓ ,
over Ω + . The mesh ∆ -over Ω -is simply be chosen to be compatible with ∆ + , and regular, in the sense of [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. The mesh over the entire domain Ω is then taken to be

(95) ∆ = ∆ + ∪ ∆ -,
and we assume that the number of elements in ∆ is bounded independently of ε. The above mesh satisfies the definition of a regular admissible boundary layer mesh (Definition 3.2 in [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF]), which implies the following: With S := [0, 1] × [0, 1] the usual reference square, we associate with each quadrilateral Ω ± i ∈ ∆ a differentiable, bijective element mapping

M ± i : S → Ω ± i ,
which, in this case, satisfies ∀ i

D α M ± i L ∞ (S) γ |α| |α|! ∀ α ∈ N 2 0 .
The space V N is then defined as (96)

V N = u ∈ H 1 (Ω) : u| Ω ± i = φ p • M ± i -1 for φ p ∈ Q p (S) ∩ H 1 0 (Ω) ,
where Q p (S) denotes the space of all polynomials of degree p in each variable defined on the reference square S. Note that

N = dim V N = O p 2 .
Now, for p ≥ 1 we define on the space of continuous function C ([0, 1]) , the operator π p by interpolation in the p + 1 Gauss-Lobatto points, and on S we introduce the interpolation operator Π p as the tensor product of the two one-dimensional operators π x p and π y p . Then, by Lemma 3.8 in [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF], we have that for any u ∈ C ∞ (S) with D α u 0,S γ |α| |α|! ∀ α ∈ N 2 0 , there exists a constant σ > 0 depending only on γ, such that

(97) u -Π p u L ∞ (S) + ∇ (u -Π p u) L ∞ (S) e -σp .
Moreover, there holds (see, e.g., Lemma 3.7 in [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF]),

(98) Π p u L ∞ (S) (1 + ln p) 2 u L ∞ (S) ∂ x Π p u L ∞ (S) , ∂ y Π p u L ∞ (S) p 2 (1 + ln p) 2 u L ∞ (S)
.

We now prove our main approximation result.

Theorem 7 Let u ε ∈ H 1 0 (Ω) , u ε N ∈ V N be the solutions of ( 88) and (90), respectively, with V N defined by (96) on the mesh ∆ given by (95). Further, assume that ∂Ω is analytic and the functions f ± are analytic on Ω ± while the function h is analytic on Σ. Then, for κ sufficiently small, we have

u ε -u ε N ε N 2 e -b √ N ,
for some constant b > 0 independent of ε and p.

Proof. We consider the cases κpε > 1/2 (asymptotic case) and κpε ≤ 1/2 (pre-asymptotic case) separately.

Case 1 : κpε > 1/2 (asymptotic case)

By Theorem 1 there exist constants C, K > 0 depending only on the data such that

ε D α u ε + 0,Ω + + D α u ε -0,Ω -≤ CεK |α| max |α| , ε -1 |α| ∀ α = 1, 2, ....

Now

, by Lemma 3.10 of [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF] we have that for each element map M ± i ,

D α u ε ± • M ± i 0,S γ |α| ± |α|!e 1/ε ,
for some constants γ ± > 0 independent of ε and i. Hence, by (97) and Lemma 3.6 of [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF] we have

u ε ± • M ± i -Π p u ε ± • M ± i L ∞ (S) + ∇ u ε ± • M ± i -Π p u ε ± • M ± i L ∞ (S)
e -σp+1/ε .

Since 2κp > 1/ε, we have -σp + 1/ε ≤ -σp + 2κp and, under the assumption that κ < σ/2,

u ε ± • M ± i -Π p u ε ± • M ± i L ∞ (S) + ∇ u ε ± • M ± i -Π p u ε ± • M ± i L ∞ (S) e -bp ,
for some constant b > 0. By ( 91) and (92) we get the desired result.

Case 2 : κpε ≤ 1/2 (pre-asymptotic case)

In this case we utilize the expansion and regularity results of Section 3 which state that the solution u ε = u ε + , u ε -can be written as

u ε + = w + M + χ BL u M BL + χ IL v + I,M + r ε + , u ε -= w - M + χ IL v - I,M + r ε -,
with each term defined and analyzed in subsections 3.1-3.4. We begin be selecting M in such a way that εM is sufficiently small for all the regularity results of subsections 3.1-3.4 to hold true. (The lack of concreteness on our part is due to the careful constant selection made in [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF], i.e. such a choice for M is possible by [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF]). The proof relies on the following observations:

1. The terms w ± M , v - I,M are analytic in their respective domains, hence (97) may be applied.

2. The construction of the mesh allows us to approximate u M BL and v + I,M at an exponential rate.

Let us first consider item 1 above. For the term v - I,M we have, by Corollary 5, that for each element map M

- i D α v - I,M • M - i 0,S C |α| |α|!,
hence by (97),

v - I,M • M - i -Π p v - I,M • M - i L ∞ (S) + ∇ v - I,M • M - i -Π p v - I,M • M - i L ∞ (S)
e -bp .

The same works for the other two terms (the details are ommitted).

Next let us comment on item 2; since the steps are very similar for both u M BL and v + I,M , we will only consider the latter. Without loss of generality we assume that χ IL is 1 in Ω 0 Σ and 0 otherwise. Hence we only need to approximate v + I,M within Ω 0 Σ . To this end, we note that the mesh in Ω 0 Σ consists of two types of elements (cf. ( 94)):

Ω 0,1 Σ j = (ρ, θ) : θ j ≤ θ ≤ θ j+1 , 0 ≤ ρ ≤ 1 2 ρ 0 κpε and Ω 0,2 Σ j = Ω 0 + j \ Ω 0,1 + j .
For Ω 0,1 Σ j , with associated mapping M 0,1 j , we have from Proposition 3.11 in [7]

D α v + I,M • ψ -1 • M 0,1 j L ∞ (S) e κp K |α| |α|! ∀α ∈ N 2 0 ,
where ψ was defined by [START_REF] Nicaise | Finite element methods for a singularly perturbed transmission problem[END_REF]. Therefore, by (97)

v + I,M • ψ -1 • M 0,1 j -Π p v + I,M • ψ -1 • M 0,1 j L ∞ (S) + + ∇ v + I,M • ψ -1 • M 0,1 j -Π p v + I,M • ψ -1 • M 0,1 j L ∞ (S)
e κp e -bp , from which the desired result follows provided κ < b. Now, let us consider the approximation of v + I,M over the elements Ω 0,2 Σ j , with associated mapping M 0,1 j . From (47) we have

χ IL v + I,M • ψ -1 • M 0,1 j L ∞ (S) C α e -ακp , ∇ χ IL v + I,M • ψ -1 • M 0,1 j L ∞ (S) C α ε -1 e -ακp .
Therefore, from (98) we get

χ IL v + I,M • ψ -1 • M 0,1 j L ∞ (S) (1 + ln p) 2 e -bp and ∇ χ IL v + I,M • ψ -1 • M 0,1 j L ∞ (S) ε -1 p 2 (1 + ln p) 2 e -bp ,
from which the desired result follows once we use (92).

Turning to item 3, we have from the variational formulation (87)-(89), that the remainder

r ε = r ε + , r ε -satisfies B ε (r ε , v) = Ω + L ε r ε + v dx + Ω - L 1 r ε -v dx, ∀v ∈ H 1 0 (Ω).
Hence by Cauchy-Schwarz's inequality we get

B ε (r ε , r ε ) ≤ L ε r ε + 2 0,Ω + + L 1 r ε - 2 0,Ω -,
and by Theorem 6 we obtain

r ε ε = [B ε (r ε , r ε )] 1/2 (ε(2M + 2)K) 2M +2 e -bp ,
for some suitable constant b > 0, depending only on the data. This completes the proof.

Numerical results

In this section we will illustrate our theoretical findings for the model problem ( 1)-( 6), in the case when f + = f -= 1, h = 0 and the domain Ω consists of the two subdomains Ω + and Ω -, delimited by the three concentric circles with radii 1, 2 and 3. In other words, Ω + is the domain inside the two concentric circles of radii 1 and 2, while Ω -is the domain inside the two concentric circles of radii 2 and 3, as shown in figure 2.

Ω + Ω - Σ Figure 2: Domains Ω + and Ω -used for the computations.

We expect to have a boundary layer along ∂Ω + \Σ (the circle of radius 1) and an interface layer along Σ (the circle of radius 2). The mesh, shown in figure 3, accounts for the presence of the layers by including thin elements of size pε along ∂Ω + \Σ and Σ -the value of the constant κ appearing in the definition of the mesh in the previous section was taken to be 1 (a value known to produce almost the same results as those obtained with the "optimal " value of κ, see, e.g., [START_REF] Schwab | The p and hp versions of the finite element method for problems with boundary layers[END_REF]). An exact solution is available for this problem, hence our computations are reliable.

The computations were performed with the commercial package StressCheck (E.S.R.D., St. Louis, MO) which is a p-version FEM software package allowing the polynomial degree to vary from p = 1 to p = 8 (on a fixed mesh). Figure 4 below shows the approximate solution for p = 8, ε = 0.01, and figure 5 shows the convergence (in the energy norm) as p is increased -the exponential convergence is readily visible.

Conclusions

We have studied the finite element approximation of a singularly perturbed transmission problem posed on a (smooth) domain with analytic boundary. Upon obtaining appropriate regularity results, via asymptotic expansions, we were able to design and analyze an hp finite element method for the robust approximation of the solution to the singularly perturbed transmission problem. We showed that under the assumption of analytic data, our method converges at an exponential rate, independently of the singular perturbation parameter. This is in line with our one-dimensional results [START_REF] Nicaise | Finite element methods for a singularly perturbed transmission problem[END_REF], as well as with two-dimensional results for non- transmission problems [START_REF] Melenk | hp FEM for Reaction-Diffusion equations I: Robust expontial convergence[END_REF]. The approximation of singularly perturbed transmission problems on non-smooth domains is the focus of our current research efforts.
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 3 Figure 3: Design of the mesh (on a quarter of the domain).

Figure 4 :

 4 Figure 4: Approximate solution for p = 8, ε = 0.01.

Figure 5 :

 5 Figure 5: Convergence of the approximate solution: loglog plot(left); semilog plot (right).

The choice of M renders the term r ε ε,Ω negligible (exponentially small), hence the remainder need not be approximated.