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Abstract

This paper, which is the natural continuation of [14], studies a class of optimal control
problems with state constraints where the state equation is a differential equation with
delays. In [14] the problem is embedded in a suitable Hilbert space H and the regularity of
the associated Hamilton-Jacobi-Bellman (HJB) equation is studied. The goal of the present
paper is to exploit the regularity result of [14] to prove a Verification Theorem and find
optimal feedback controls for the problem. While it is easy to define a feedback control
formally following the classical case, the proof of its existence and optimality is hard due to
lack of full regularity of V and to the infinite dimensionality of the problem. The theory
developed is applied to study economic problems of optimal growth for nonlinear time-to-
build models. In particular, we show the existence and uniqueness of optimal controls and
their characterization as feedbacks.
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1 Introduction

The aim of this paper is to prove a Verification Theorem and the existence of optimal feedback
controls for a class of optimal control problems of delay differential equations (DDE’s) arising
in economic models.

This work is a natural continuation of [14]. Let us recall that in [14] we study optimal control
of differential equations with delays and state constraints. This class includes some problems
arising in economics, in particular growth models with time-to-build (see [2, 3, 4, 17]). In [14]
the problem is embedded in a suitable Hilbert space H and the associated Hamilton-Jacobi-
Bellman (HJB) equation is studied1. Therein the main result is the regularity of solutions to
such a HJB equation. More precisely it is shown that the value function has continuous classical
derivative in the direction of the “present”. This allows to define a feedback control in (an
almost) classical sense. In the present paper we use this regularity result to prove a Verification
Theorem and the existence of optimal feedback controls.

The class of optimal control problems we are going to study can be described as follows.
Given a control c(·) ≥ 0, the state x(·) satisfies a DDE{

x′(t) = rx(t) + f0

(
x(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
− c(t),

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0),
(1)

1A similar problem, but without state constraints and with no regularity result is studied in [10].
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with state constraint x(·) > 0 or x(·) ≥ 0. The objective is to maximize the functional

J(η; c(·)) :=

∫ +∞

0
e−ρt

(
U1(c(t)) + U2(x(t))

)
dt, ρ > 0, (2)

over all admissible controls c(·) that are locally integrable and such that the associated state
trajectory satisfies the state constraint above. The structure of the problem (state equation,
objective functional and state constraint) is determined by the usual intertemporal discounted
utility from consumption used in economic problems (economic growth with time to build and
vintage capital, see e.g. [2, 6, 7], and, in the stochastic case, optimal portfolio problems with
consumption). The treatment of such problems is indeed the main goal of our paper, as can
be seen from the examples in Section 5. Our techniques can be adapted to deal with other
problems, such as the minimization of quadratic (or, more generally, coercive) functionals
representing the energy or the distance to a target. This would require however nontrivial techni-
cal modifications and is beyond the scope of this paper. It will be the subject of further research.

The results of [14] allow us to state the existence of the directional derivative Vη0 of the
value function

V (η) = sup
c(·)

J(η, c(·)), η = (η0, η1) ,

with respect to η0. Since the feedback map can be written in terms of Vη0 , we can address the
problem of proving a Verification Theorem stating the optimality of a control satisfying a closed
loop property (see (24)).

This is a non-trivial result since the classical gradient of the value function does not exist
in this case and we need to prove first a verification theorem for viscosity solutions which is
new in this context and of independent interest. Let us recall that a verification theorem in
the framework of viscosity solutions is proved in the finite dimensional case in [21]. Adapting
the technique of that proof to our case is difficult due to the infinite dimensional nature of our
problem. Moreover, there is a mistake in the key Lemma 5.2, Chapter 5 of [21], see Remark 3.4
for more details. We provide a correct version of this lemma (Lemma 3.3) and then exploit it
to prove the Verification Theorem 3.22.

The next step is to study the closed loop equation associated to the feedback map. In
order to prove that the feedback control satisfies the hypotheses of the Verification Theorem,
we prove that he closed loop equation admits local solutions (Proposition 4.4) and that these
solutions are global under further hypotheses (Proposition 4.9). Then Verification Theorem
3.2 yields the existence of a unique locally optimal feedback control in the general case
(Theorem 4.5) and of a unique optimal feedback control (Theorem 4.10) under the hypotheses
of Proposition 4.9. Unfortunately, the assumptions of Proposition 4.9 are not satisfied in
the case of economic application we are interested in. In order to cover this case, we use an
approximation procedure that allows us to get rid of the aforementioned additional hypotheses
and obtain the existence of a unique optimal control and its characterization as feedback in the
interior region (Theorem 4.15). We do not address in this paper the issue of computing the
feedback control law. We believe that our results provide a basis for such computations. Indeed,
if one was able to approximate numerically the value function and its derivative with respect
to the “present”, then our result would allow us to approximate the optimal feedback control

2This result has been exploited in the paper [12] to prove a weaker verification theorem in a different context.
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law. In Section 5 we apply this result to the growth models with distributed time-to-build and
nonlinear production.

2 The optimal control problem and the value function

In this section we formulate the optimal control problem studied in this paper and recall, for
the reader’s convenience, the main results of [14]. We use the notations

L2
T := L2([−T, 0];R), W 1,2

T := W 1,2([−T, 0];R).

We denote by H the Hilbert space
H := R× L2

T ,

endowed with the inner product 〈·, ·〉 defined by

〈·, ·〉 = 〈·, ·〉R + 〈·, ·〉L2
T
,

and the norm ‖ · ‖ defined by
‖ · ‖2 = | · |2R + ‖ · ‖2L2

T
.

We denote by η = (η0, η1(·)) a generic element of this space. For convenience we also set

H+ := (0,+∞)× L2
T , H++ := (0,+∞)× {η1(·) ∈ L2

T | η1(·) ≥ 0 a.e.},

H̄+ := [0,+∞)× L2
T , H̄++ := [0,+∞)× {η1(·) ∈ L2

T | η1(·) ≥ 0 a.e.}.

Remark 2.1. Economic motivations we are mainly interested in (see [2, 3, 4] and Section 5)
require to study the optimal control problem with the initial condition in H++ in the case of state
constraint x(·) > 0 or in H̄+ in the case of state constraint x(·) ≥ 0. However the sets H++

and H̄++ are not convenient to work with in infinite dimension, since their topological interior
with respect to the ‖ · ‖-norm is empty. This is why we take initial states belonging to H+ or
H̄+ (respectively in the case of state constraint x(·) > 0 or x(·) ≥ 0).

For η ∈ H+ (respectively, η ∈ H̄+), we consider the controlled delay differential equation (1)
with the state constraint x(·) > 0 (respectively, x(·) ≥ 0) and control constraint c(·) ≥ 0.

The following will be standing assumptions on the functions a and f0. They will hold
throughout the whole paper and will not be repeated.

Hypothesis 2.2.

(i) a(·) ∈W 1,2
T is such that a(·) ≥ 0 and a(−T ) = 0;

(ii) f0 : [0,+∞)×R→ R is jointly concave, nondecreasing with respect to the second variable,
Lipschitz continuous with Lipschitz constant Cf0, and

f0(0, 0) ≥ 0. (3)

Remark 2.3. In this remark we discuss Hypothesis 2.2-(ii).

(a) Hypothesis 2.2-(ii) is assumed in [14] to prove the regularity of the value function (see [14,
Theorem 4.6], which corresponds to the second part of Theorem 2.13 in the present paper).
We explain in detail how it is used:

4



– The concavity of f0 is necessary to prove the concavity of the value function, which
is essential to prove the regularity result.

– The monotonicity is essential to address the problem of the state constraint. This
assumption could be avoided if one wanted to consider the problem without state con-
straint but with more general state equation.

– The global Lipschitz continuity of f0 with respect to both variables is assumed is needed
to obtain “good” results on the existence, uniqueness and continuous dependence on
data of the solutions to the state equation (1). In fact the local Lipschitz continuity
is required in the variable y only, since concavity and monotonicity automatically
guarantee the global Lipschitz continuity in any half-line of kind [a,+∞), which is
the part of our interest due to the state constraint. In economic applications it often
happens that f0 is a production function defined only for positive y. A typical example
is f0(x, y) = yα, α ∈ (0, 1), which is not Lipschitz continuous at 0+. This case cannot
be covered directly by our approach as we cannot extend such a function to a locally
Lipschitz continuous function on R. An attempt to study such a case would lead to
a non trivial technical problem in the proof of the continuity of the value function.
Indeed, in this case we cannot enlarge the natural set of initial data, which is the
positive cone H̄++ ⊂ H, to an open set without destroying the concavity of the value
function. This difficulty arises since the cone H̄++ has empty interior part in H and
is due to the infinite dimensional nature of our problem.

(b) Given the considerations of (a), we observe that Hypotesis 2.2-(ii) is clearly satisfied by
linear functions f0, but also by some nonlinear functions that are, e.g., meaningful exam-
ples of production functions. Indeed we can have f0(x, y) = g(y), where g is as follows
on [0,+∞) and is extended to a concave Lipschitz function on (−∞, 0) (the possibility of
this extension is exactly what we need to enlarge the set of initial data and preserve the
concavity):

– g(y) = a0 − b0e−γy, a0 ∈ R, b0 > 0, γ > 0, a0 − b0 ≥ 0;

– g(y) = a0(y + y0)γ − b0, γ ∈ (0, 1), a0 > 0, b0 ∈ R, y0 > 0, a0y
γ
0 − b0 ≥ 0;

– g(y) = −a0(y + y0)γ + b0, γ ∈ (−∞, 0), a0 > 0, b0 ∈ R, y0 > 0, −a0y
γ
0 + b0 ≥ 0;

– g(y) = a0 log(y + y0) + b0, a0 > 0, b0 ∈ R, y0 > 0, a0 log y0 + b0 ≥ 0.

(c) However the requirement of global Lipschitz continuity of f0 is not needed to get the main
results of the present paper, if we know a priori that the results of [14] hold true. We refer
to Remark 4.16 for comments on that.

From now on we will assume that f0 is extended to a Lipschitz continuous map on R2 setting

f0(x, y) := f0(0, y), for x < 0.

Without loss of generality (see [14]) we assume that r > 0.
We say that a function x : [−T,+∞) −→ R is a solution to equation (1) if x(t) = η1(t) for

t ∈ [−T, 0) and

x(t) = η0 +

∫ t

0
rx(s)ds+

∫ t

0
f0

(
x(s),

∫ 0

−T
a(ξ)x(s+ ξ)dξ

)
ds−

∫ t

0
c(s)ds, t ≥ 0. (4)
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From [14] we have that, for each η ∈ H and c(·) ∈ L1
loc([0,+∞);R+), equation (1) admits a

unique solution that is locally3 absolutely continuous on [0,+∞). We denote by x(·; η, c(·)) the
unique solution of (1) with initial value η ∈ H+ and control c. We emphasize that this is a
solution to the integral equation (4), hence it satisfies differential equation (1) for only almost
every t ∈ [0,∞).

For an initial condition η ∈ H+ we define a class of admissible controls for the problem with
state constraint x(·) > 0 as

C(η) := {c(·) ∈ L1
loc([0,+∞);R+) | x(·; η, c(·)) > 0}. (5)

In analogous way, for an initial condition η ∈ H̄+, we define a class of admissible controls for
the problem with state constraint x(·) ≥ 0 as

C̄(η) := {c(·) ∈ L1
loc([0,+∞);R+) | x(·; η, c(·)) ≥ 0}. (6)

In both cases, setting x(·) := x(·; η, c(·)), the problem consists in maximizing the functional (2),
where U1, U2 satisfy Hypothesis 2.4 below, over the set of corresponding admissible controls.

Differently from [14], for some reasons that will be clearer later, here we will deal explicitely
with the case of large state constraint x(·) ≥ 0. Subsection A.3 will be devoted to study the
relationship of the two problems starting from the interior region. From now on we will consider
the problem with state constraint x(·) ≥ 0, for which the set of admissible controls is given in (6).

The following will be standing assumptions on the utility functions U1, U2 and on the
disconuting rate ρ. They will hold throughout the whole paper and will not be repeated.

Hypothesis 2.4.

(i) U1 ∈ C([0,+∞);R) ∩ C2((0,+∞);R) and

U ′1 > 0, U ′′1 < 0; U ′1(0+) = +∞; (7)

∃β1 ∈ [0, 1), C1 > 0 such that U1(c) ≤ C1(1 + cβ1). (8)

Without loss of generality we will assume U1(0) = 0. We note that (7) and (8) imply
limc→+∞ U

′
1(c) = 0.

(ii) U2 : [0,+∞)→ [−∞,+∞), and U2 ∈ C((0,+∞);R) is increasing and concave. Moreover∫ +∞

0
e−ρtU2

(
e−Cf0 t

)
dt > −∞, (9)

and
∃β2 ∈ [0, 1), C2 > 0 such that U2(x) ≤ C2(1 + xβ2). (10)

(iii) The discounting rate ρ is such that

ρ > r + Cf0

(
1 + T · sup

ξ∈[−T,0]
a(ξ)

)
, (11)

where Cf0 is the Lipschitz constant of f0.

3In [14] the fact that the absolute continuity is local is not remarked.

6



Remark 2.5. We refer to [14] for comments on the assumptions above. Comparing to [14], we
observe that for simplicity of presentation only we have replaced the assumption

ρ > (β1 ∨ β2)

(
r + Cf0

(
1 + T · sup

ξ∈[−T,0]
a(ξ)

))
,

with stronger assumption (11). We note also that this would allow us to weaken assumptions
(8), (10) on U1, U2. However, we do not go deeper into these technical problems in order to focus
on other topics such as the existence of optimal controls and their characterization as feedback
controls.

For η ∈ H̄+ the value function of our problem is defined by

V (η) := sup
c(·)∈C̄(η)

J(η, c(·)), (12)

with sup ∅ = −∞. The domain of the value function is the set

D(V ) := {η ∈ H̄+ | V (η) > −∞}.

What is fundamental throughout the paper is the concavity of V (see [14, Prop. 2.10-(2) and
Prop. 2.14]).

Proposition 2.6. The set D(V ) is convex and the value function V is a concave proper function
on D(V ). �

Since V is concave and proper, there exist b0, b1 ∈ R such that

V (η) ≤ b0 + b1‖η‖, η ∈ D(V ). (13)

Also we have the strict monotonicity of V with respect to the first component (see [14,
Prop. 2.16]).

Proposition 2.7. The function η0 7→ V (η0, η1(·)) is strictly increasing for every η1 ∈ L2
T over

the set {η0 ≥ 0 | (η0, η1(·)) ∈ D(V )}. �

2.1 The delay problem rephrased in infinite dimension

Here we recall how to rewrite the original delay state equation (1) as an ordinary differential
equation in the space H. Formally, the unkown is

X(t) =
(
x(t), x(t+ ξ)ξ∈[−T,0]

)
and the equation for it is {

X ′(t) = AX(t) + F (X(t))− c(t)n̂,
X(0) = η.

(14)

where

• A : D(A) ⊂ H −→ H is an unbounded operator defined by A(η0, η1(·)) := (rη0, η
′
1(·)) with

the domain
D(A) := {η ∈ H | η1(·) ∈W 1,2

T , η1(0) = η0};
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• F : H −→ H is a Lipschitz continuous map defined by

F (η0, η1(·)) := (f (η0, η1(·)) , 0) ,

where f(η0, η1(·)) := f0

(
η0,
∫ 0
−T a(ξ)η1(ξ)dξ

)
;

• n̂ = (1, 0) ∈ H+, η ∈ H, c(·) ∈ L1
loc([0,+∞);R+).

It is well known that A is the infinitesimal generator of a strongly continuous semigroup (S(t))t≥0

on H. A mild solution of (14) is a function X ∈ C([0,+∞);H) which satisfies the integral
equation

X(t) = S(t)η +

∫ t

0
S(t− τ)F (X(τ))dτ +

∫ t

0
c(τ)S(t− τ)n̂ dτ, ∀t ≥ 0. (15)

We refer to [14] for the proofs of the following results.

Theorem 2.8. For each η ∈ H, c(·) ∈ L1
loc([0,+∞);R+), there exists a unique mild solution to

(14). �

We denote by X(·; η, c(·)) = (X0(·; η, c(·)), X1(·; η, c(·))) the unique solution to (14) for the initial
state η ∈ H and under the control c(·) ∈ L1([0,+∞);R+).

Proposition 2.9. Let η ∈ H, c(·) ∈ L1
loc([0,+∞);R+). Set x(·) := x(·; η, c(·)) and X(·) :=

X(·; η, c(·)). Then we have the equality in H

X(t) =
(
x(t), x(t+ ξ)ξ∈[−T,0]

)
, ∀t ≥ 0. �

The previous result justifies the infinite-dimensional approach. Indeed, due to Proposition 2.9,
the original optimization problem can be rewritten as

Maximize

∫ +∞

0
e−ρt (U1(c(t)) + U2(X0(t; η, c(·)))) dt, over c(·) ∈ C̄(η).

2.2 Continuity of the value function

Here we state a continuity property of the value function. Note that the generator A of the
semigroup (S(t))t≥0 in H has bounded inverse

A−1 (η0, η1) (s) =

(
η0

r
,
η0

r
−
∫ 0

s
η1(ξ)dξ

)
, s ∈ [−T, 0].

We define the ‖ · ‖−1-norm on H by

‖η‖−1 := ‖A−1η‖,

and the set
D◦ := Int(H,‖·‖−1)(D(V )).

Note that D◦ is open in (H, ‖ · ‖). A priori this set might be empty, but this is not the case due
to the following result (whose proof can be found in [14]).

Proposition 2.10.
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1. We have H++ ⊂ D◦. In particular, the set D(V ) has not empty interior part D◦ in the
space (H, ‖ · ‖−1).

2. The value function V is continuous with respect to ‖ · ‖−1 on D◦. �

We denote the boundary of D(V ) in the space (H, ‖ · ‖−1) by B, i.e.

B := Fr(H,‖·‖−1) (D(V )).

Clearly we have
D◦ ⊂ D(V ) ⊂ Clos(H,‖·‖−1)(D(V )) = D◦ ∪B.

In general the inclusions above are proper. We note that we have some information on D◦ and
B. For example, we know that

H++ ⊂ D◦, {η ∈ H̄++ | η0 = 0} ⊂ B.

However, D◦ and B may contain other points. In particular, D◦ may contain points from H+

and B may contain points from H̄+. We emphasize that B may also contain points from H+.
Thus, points η ∈ D(V ) such that η0 > 0 can be also boundary points. We refer to Subsection
A.2 for a characterization of these sets.

2.3 The operator A? and the superdifferential of V

Due to [14, Prop. 3.4], we have a characterization of the operator A?, adjoint of A, and of its
domain D(A?). Indeed

D(A?) = {η ∈ H | η1 ∈W 1,2
T , η1(−T ) = 0},

A?η = (rη0 + η1(0),−η′1(·)).

Note that V : D◦ → R is a continuous concave function, so that the superdifferential D+V (η)

D+V (η) :=
{
α ∈ H

∣∣∣ V (ζ)− V (η) ≤ 〈ζ − η, α〉, ∀ζ ∈ H
}

is not empty at each η ∈ D◦. Due to [14, Prop. 3.12], we have

D+V (η) ⊂ D(A?), ∀η ∈ D◦. (16)

Moreover, defining the directional superdifferential of V along n̂ = (1, 0) ∈ H at η ∈ D◦ as

D+
n̂ V (η) = {α0 ∈ R | V (ζ0, η1)− V (η0, η1) ≤ α0(ζ0 − η0), ∀ζ0 ∈ R},

we have the representation (see [14, Sect. 3.3])

D+
n̂ V (η) = {α0 | α ∈ D+V (η)}. (17)

Remark 2.11 (Errata). Here we take the opportunity to correct a slight mistake contained in
our previous paper [14] (we use the notation used in the present paper). There, in Section 3.3,
we introduced the set

D∗V (η) :=
{
α ∈ H

∣∣∣ ∃ηn → η, ηn ∈ D◦, such that ∃∇V (ηn) and ∇V (ηn)→ α
}
, (18)
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claiming that
D+V (η) = co (D∗V (η)) , η ∈ D◦. (19)

Actually this is not true if D∗V (η) defined as in (18) with strong convergence of the gradients;
it is true (see [9, Cor. 4.7]) if weak convergence of the gradients is taken in the definition of
D∗V (η):

D∗V (η) :=
{
α ∈ H

∣∣∣ ∃ηn → η, ηn ∈ D◦, such that ∃∇V (ηn) and ∇V (ηn) ⇀ α
}
.

The claim 4 of [14, Prop. 3.12] has to be correspondingly corrected taking the weak convergence
for the gradients. However, this weaker version of the result is still sufficient to prove the main
result [14, Th. 4.6], as in the proof of such result the weak convergence of the gradients is projected
in the direction n̂ = (1, 0) yielding the convergence of the respective terms.

2.4 The HJB equation in the viscosity sense and the directional regularity

The infinite-dimensional HJB equation associated to our optimization problem in the space H
is

ρv(η) = 〈η,A?∇v(η)〉+ f(η)vη0(η) + U2(η0) +H(vη0(η)), η ∈ D◦, (20)

where H is the Legendre transform of U1, i.e.

H(ζ0) := sup
c≥0

(U1(c)− ζ0c) , ζ0 > 0.

In [14] we have studied this equation by means of the viscosity approach as follows. Define the
set of regular test functions

τ :=
{
ϕ ∈ C1(H) | ∇ϕ(·) ∈ D(A?), η 7→ A?∇ϕ(η) is continuous}. (21)

Definition 2.12. (i) A continuous function v : D◦ → R is called a viscosity subsolution of (20)
on D◦ if for any ϕ ∈ τ and any ηM ∈ D◦ such that v − ϕ has a ‖ · ‖-local maximum at ηM we
have

ρv(ηM ) ≤ 〈ηM , A?∇ϕ(ηM )〉+ f(ηM )ϕη0(ηM ) + U2(η0) +H(ϕη0(ηM )).

(ii) A continuous function v : D◦ → R is called a viscosity supersolution of (20) on D◦ if
for any ϕ ∈ τ and any ηm ∈ D◦ such that v − ϕ has a ‖ · ‖-local minimum at ηm we have

ρv(ηm) ≥ 〈ηm, A?∇ϕ(ηm)〉+ f(ηm)ϕη0(ηm) + U2(η0) +H(ϕη0(ηm)).

(iii) A continuous function v : D◦ → R is called a viscosity solution of (20) on D◦ if it is
both a viscosity sub and supersolution.

Theorems 4.4 and 4.6 in [14] are summarized in the following

Theorem 2.13. The value function V is a viscosity solution to (20) on D◦. Moreover V is
differentiable along the direction n̂ = (1, 0) continuously in D◦. �
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3 Verification Theorem

Before to proceed with our first main result (Verification Theorem 3.2) we provide the definition
of optimal controls and we briefly discuss the main technical issues that arise in proving it.

Definition 3.1. Let η ∈ D(V ). A control c∗(·) ∈ C̄(η) is said to be optimal for the initial state η
if J(η; c∗(·)) = V (η). If X∗(·) is the associated infinite dimensional state trajectory, then X∗(·)
is said an optimal state and the pair (X∗(·), c∗(·)) is said to be an optimal pair. �

Due to the regularity provided by Theorem 2.13, we can define a feedback map on D◦,
which is expected to yield an optimal feedback control. Given p0 ∈ (0,+∞) we denote by
argmaxc≥0(U1(c)− cp0) the unique maximizer of [0,+∞)→ R, c 7→ U1(c)− cp0 (existence and
uniqueness of follow from the assumptions on U1). Then we may define the feedbck map for our
problem as

C(η) := argmaxc≥0 (U1(c)− cVη0(η)) , η ∈ D◦. (22)

We note that C is well-defined (and nonnegative) on D◦. Indeed, by Proposition 2.7, V is
strictly increasing with respect to η0 on this set, so we have Vη0(η) ∈ (0,+∞) for all η ∈ D◦.
Moreover, since Vη0 is continuous on D◦, also C is continuous on D◦. Note also that in general
we cannot extend this map by continuity up to the boundary B. In particular, we cannot extend
this map by continuity at the points η ∈ H̄++ such that η0 = 0.

Define for c ≥ 0 the operator Lc acting on τ by

[Lcϕ](η) := −ρϕ(η) + 〈η,A?∇ϕ(η)〉+ f(η)ϕη0(η)− cϕη0(η).

By Lemma 4.2 in [14], for every ϕ ∈ τ , c(·) ∈ C̄(η), setting X(·) := X(·; η, c(·)) we have

d

dt

[
e−ρtϕ(X(t))

]
= [Lc(t)ϕ](X(t)), for a.e. t ≥ 0.

If c(·) is continuous, then

d

dt

[
e−ρtϕ(X(t))

]
= [Lc(t)ϕ](X(t)), ∀t ≥ 0. (23)

We are ready to present our Verification Theorem.

Theorem 3.2 (Verification). Let η ∈ D◦. Let c∗(·) ∈ C̄(η) and set X∗(·) := X(·; η, c∗(·)).
Assume that X∗(t) ∈ D◦ for every t ≥ 0, so that t 7→ C (X∗(t)) is well-defined and continuous
in [0,+∞), and that

c∗(t) = C (X∗(t)) , for a.e. t ≥ 0. (24)

Then c∗(·) is optimal starting from η.

Note that the formulation of the Verification Theorem is the same as it would be in the classical
case, i.e. for V ∈ C1 (see Theorem 3.7, Chapter 5, of [21]). The proof here is much more difficult
since we can not assume the existence of the derivative of V with respect to η1. In the classical
case the main step of the proof is the computation of the derivative

t 7→ d

dt

[
e−ρtV (X∗(t))

]
. (25)
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and then using the HJB equation and integrating the resulting equality.

We want to get exactly the classical statement but we cannot proceed with the classical
proof since we cannot compute the derivative (25). So we proceed using the fact that V is a
viscosity solution (as e.g. in Theorem 3.9, Chapter 5, of [21] and in Theorems 5.4, 5.5, Chapter
6, of [18]). But two main difficulties arise (strongly connecteded with each other):

• We cannot say ex ante that the function

t 7→ e−ρtV (X∗(t)) (26)

is absolutely continuous. This would be true if X∗(t) ∈ D(A) for almost every t ≥ 0 and
X∗ ∈ L1

loc([0,+∞);D(A)), as required for example in Theorems 5.4, 5.5, Chapter 6, of
[18]. But we do not have these conditions, since we do not require that the initial datum η
belongs to D(A) and since the semigroup generated by the operator A acts as a left shift
operator on the infinite-dimensional component. Without this regularity we cannot apply
the Fundamental Theorem of Calculus.

• Consequently we have to deal with the concept of Dini derivatives of the function (26)
and, since we want to integrate them, we need a version of the Fundamental Theorem of
Calculus in inequality form relating the function and the integral of its Dini derivative.
Such a result in the context of stochastic verification theorems for viscosity solutions is
given in [21], Lemma 5.2, Chapter 5. Unfortunately, this result is not true in the version
given in the paper (we give a counterexample in Remark 3.4), so we have to use a more
refined result, the Saks Theorem, that needs stronger assumptions and that is based on
the theory of Dini derivatives.

To proceed we recall first that, if g is a continuous function on some interval [α, β] ⊂ R, the
right Dini derivatives of g are defined by

D+g(t) = lim sup
h↓0

g(t+ h)− g(t)

h
, D+g(t) = lim inf

h↓0

g(t+ h)− g(t)

h
, t ∈ [α, β),

and the left Dini derivatives by

D−g(t) = lim sup
h↑0

g(t+ h)− g(t)

h
, D−g(t) = lim inf

h↑0

g(t+ h)− g(t)

h
, t ∈ (α, β].

The following Lemma is a special case of the Saks Theorem (see [20, Ch.VI, p.204, Theorem
7.3])

Lemma 3.3. Let g ∈ C([0,+∞);R) and assume that there exists µ ∈ L1
loc((0,+∞);R) such

that
D−g(t) ≥ µ(t), for a.e. t ∈ (0,+∞). (27)

and that
D−g(t) > −∞ ∀t ∈ (0,+∞) (28)

except at most for those of a countable set. Then, for every 0 ≤ α ≤ β < +∞,

g(β)− g(α) ≥
∫ β

α
µ(t)dt. (29)

�
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Remark 3.4. We give some remarks on Lemma 3.3.

(a) If µ is continuous and the condition (27) holds for all t > 0 then (28) holds and so the
claim of Lemma 3.3 holds without assuming (28).

(b) We cannot avoid condition (28). If it does not hold then (29) is no longer true. For
example, if g = −f on [0, 1], where f is the Cantor function and µ ≡ 0, we have

µ(t) = 0 = g′(t) = D−g(t) for a.e. t ∈ (0, 1].

Therefore, taking α = 0, β = 1, the left handside of (29) is −1, while the right handside
is 0. Indeed, in this case D−g = −∞ on the Cantor set. So Lemma 5.2, Chapter 5, of
[21] is not correct. Indeed the condition required therein is not sufficient to apply Fatou’s
Lemma: it is assumed that only the limsup of difference quotients is estimated from above
by an integrable function while all difference quotients (for h sufficiently small) should be
also estimated from above by the same integrable function (and this is not true in the case
of our counterexample).

(c) Following item (b) above, one could substitute the assumption (28) with the following:

there exists ρ ∈ L1(0,+∞;R) such that, for some h0 > 0, we have g(t+h)−g(t)
h ≥ ρ(t), for

−h0 < h ≤ 0, for a.e. t > 0 (see e.g. Lemma 2.3 of [19]). However this assumption is
more difficult to check in our case than the one of our Lemma 3.3.

Proof of Theorem 3.2. Set X∗(s) := X(s; η, c∗(·)) for s ≥ 0 and notice that X∗ is
continuous as solution of (15). Since the feedback map C is continuous on D◦, we see from (24)
that the control c∗(·) admits a continuous version. We will refer to this continuous version.

Since V is concave, (17) holds. Therefore, for every s > 0 there exists p1(s) ∈ L2
T such that

(Vη0(X∗(s)), p1(s)) ∈ D+V (X∗(s)).

Let
ϕ(ζ) := V (X∗(s)) + 〈(Vη0(X∗(s)), p1(s)) , ζ −X∗(s)〉, ζ ∈ H,

so that
ϕ(X∗(s)) = V (X∗(s)), ϕ(ζ) ≥ V (ζ), ζ ∈ H.

By (16) we have ϕ ∈ τ . As we have noticed, the control c∗(·) is continuous. Therefore, by (23)

lim inf
h↑0

e−ρ(s+h)V (X∗(s+ h))− e−ρsV (X∗(s))

h
≥ lim inf

h↑0

e−ρ(s+h)ϕ(X∗(s+ h))− e−ρsϕ(X∗(s))

h

= e−ρs
[
Lc∗(s)ϕ

]
(X∗(s)) = e−ρs

[
− ρV (X∗(s)) + 〈X(s), A? (Vη0(X∗(s)), p1(s))〉

+ f(X∗(s))Vη0(X∗(s))− c∗(s)Vη0(X∗(s))
]
, ∀s > 0.

Due to the definition of c∗(·) we get

lim inf
h↑0

e−ρ(s+h)V (X∗(s+ h))− e−ρsV (X∗(s))

h
+ e−ρs[U1(c∗(s)) + U2(X∗0 (s))]

≥ e−ρs
[
− ρV (X∗(s)) + 〈X∗(s), A? (Vη0(X∗(s)), p1(s))〉

+ f(X∗(s))Vη0(X∗(s)) +H(X∗(s)) + U2(X∗0 (s))
]
, ∀s > 0.
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Due to the subsolution property of V we get

lim inf
h↑0

e−ρ(s+h)V (X∗(s+ h))− e−ρsV (X∗(s))

h
+ e−ρs

(
U1(c∗(s)) + U2(X∗0 (s))

)
≥ 0, ∀s > 0.

The function s 7→ e−ρsV (X∗(s)) and the function s 7→ e−ρs
(
U1(c∗(s)) + U2(X∗0 (s))

)
are contin-

uous. Therefore we can apply Lemma 3.3 (in the version of Remark 3.4-(a)) on [0,M ], M > 0,
getting

e−ρMV (X∗(M)) +

∫ M

0
e−ρs

(
U1(c∗(s)) + U2(X∗0 (s))

)
ds ≥ V (η). (30)

Now we want to take the limsup for M → +∞ in (30). Since U1 is nonnegative we have by
monotone convergence

lim sup
M→+∞

∫ M

0
e−ρsU1(c∗(s))ds = lim

M→+∞

∫ M

0
e−ρsU1(c∗(s))ds =

∫ +∞

0
e−ρsU1(c∗(s))ds. (31)

Moreover, the functions (fM )M>0 defined as

fM : [0,+∞)→ R, s 7→ 1[0,M ]e
−ρsU2(X∗0 (s)),

are dominated from above by the function [0,+∞) → R, s 7→ e−ρsU+
2 (X∗0 (s)). The latter

function is integrable due to (10), (70), Lemma A.3 and Proposition 2.9. Therefore Fatou’s
Lemma yields

lim sup
M→+∞

∫ M

0
e−ρsU2(X∗0 (s))ds ≤

∫ +∞

0
e−ρsU2(X∗0 (s))ds. (32)

Furthermore, again from estimate (70), Lemma A.3 and Proposition 2.9, we get

‖X∗(t)‖2 ≤
∥∥(x(t; η, 0), x(t+ ·; η, 0)|[−T,0]

)∥∥2 ≤ (1 + T )(a0 + a1‖η‖)2e2K0t, ∀t ≥ 0. (33)

Therefore (13) and (33) yield

V (X∗(t)) ≤ b0 + b1(1 + T )1/2(a0 + a1‖η‖)eK0t.

Since (11) holds, we have
lim sup
M→+∞

[
e−ρMV (X∗(M))

]
= 0. (34)

So, taking the limsup for M → +∞ in (30) and considering (31), (32) and (34), we get

J(η; c∗(·)) =

∫ +∞

0
e−ρs

(
U1(c∗(s)) + U2(X∗0 (s))

)
ds ≥ V (η), (35)

which gives the claim. �

Remark 3.5.

(i) Observe that no continuity or measurability property of p1(s) with respect to s is neeeded
in the proof of the theorem above.
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(ii) The Verification Theorem 3.2 gives as consequence a “half” of the Comparison Theorem for
viscosity solutions of the HJB equation (20). Indeed, suppose that in the definition of the
feedback map (22) and in the proof of Theorem 3.2 we replace the value function V with
another viscosity solution v of the HJB equation (20). Assume that such v is concave,
strictly increasing with respect to the first variable and with at most linear growth from
above at infinity. Then the feedback map is well defined due to Theorem 2.13. Therefore,
arguing as in the proof of Theorem 3.2, we would obtain (35) with v in place of V and the
inequality V ≥ v follows immediately. So, every viscosity solution v to the HJB equation
(20) verifying the properties above (concavity, strict monotonicity with respect to the first
variable and linear growth from above) is such that v ≤ V .

(iii) In Theorem 3.2 we provide a sufficient condition for optimality. Indeed, we have proved
that if the feedback map defines an admissible control then such a control is optimal. A
natural question arises whether, at least with a special choice of data, such a condition is
also necessary for the optimality, i.e. if, given any optimal control, it is always possible
to write it in feedback form. At this stage, i.e. if we do not know whether the closed
loop equation admits a strictly positive solution or not, from the viscosity point of view the
answer to this question relies in requiring that the value function is a bilateral viscosity
subsolution of (20) along the optimal state trajectory, i.e. requiring that the value function
satisfies the property of Definition 2.12-(i) also with the reversed inequality along this
trajectory.

Such a property of the value function is related to the so-called backward dynamic pro-
gramming principle which is, in turn, related to the backward study of the state equation
(see [5], Chapter III, Section 2.3). Differently from the finite-dimensional case, this topic
is not standard in infinite-dimension unless the operator A is the generator of a strongly
continuous group, which is not our case.

However, in our case we could use the original setting of the state equation with delays to
approach this problem. Then the problem reduces to finding, at least for sufficiently regular
data, a backward continuation of the solution. This problem is studied, e.g., in [15],
Chapter 2, Section 5. Unfortunately, our equation does not satisfy the main assumption
required in [15], which in our setting basically corresponds to the requirement that the
function a(·), when considered as a measure, has an atom at −T . Investigation of this
issue is left for future research.

4 Optimal feedbacks

In this section we use Theorem 3.2 to study the existence (and uniqueness) of optimal feedbacks
for our problem. The key point is to study the existence and uniqueness of the closed-loop delay
state equation associated to the map (22) in order to provide a control satisfying the assumptions
of Theorem 3.2. Given η ∈ D◦, the closed loop delay state equation takes the form{

x′(t) = rx(t) + f0

(
x(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
− C

(
(x(t), x(t+ ·)|[−T,0])

)
,

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0).
(36)
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4.1 Maximal solutions of the closed loop equations and locally optimal feed-
backs

We recall (see [14]) that the Dynamic Programming Principle for our problem states that, for
every η ∈ D(V ),

V (η) = sup
c(·)∈C̄(η)

[∫ τ

0
e−ρt

(
U1(c(t)) + U2(X0(t; η, c(·))

)
dt+ e−ρτV (X(τ ; η, c(·)))

]
, ∀τ > 0. (37)

In particular, for every η ∈ D(V ), c(·) ∈ C̄(η), τ > 0

V (η) ≥
∫ τ

0
e−ρt

(
U1(c(t)) + U2(X0(t; η, (·))

)
dt+ e−ρτV (X(τ ; η, c(·))). (38)

Given τ > 0, η ∈ D(V ), we define the convex set C̄τ (η) as the set of restrictions of the elements
of C̄(η) to the interval [0, τ), i.e.

C̄τ (η) := {c(·)|[0,τ) | c(·) ∈ C̄(η)}. (39)

Also, given τ > 0, η ∈ D(V ), we consider the following functional on C̄τ (η):

Jτ (η; cτ (·)) :=

∫ τ

0
e−ρt(U1(cτ (t)) + U2(X0(t; η, c(·)))dt+ e−ρτV (X(τ ; η, cτ (·))). (40)

Definition 4.1. Let η ∈ D(V ), τ > 0. We say that a control cτ (·) ∈ C̄τ (η) is a τ -locally optimal
control for η if it maximizes (40).

Remark 4.2.

(i) Given an optimal control c(·) ∈ C̄(η) for η ∈ D(V ), by Dynamic Programming Principle
its restriction cτ (·) := c(·)|[0,τ ] to [0, τ) is τ -locally optimal for the same η for every τ > 0.

(ii) The Dynamic Programming Principle shows that

Jτ (η; cτ (·)) ≤ V (η), ∀η ∈ D(V ), cτ (·) ∈ C̄τ (η). (41)

and that a control cτ (·) ∈ C̄τ (η) is τ -optimal if and only if it achieves equality in (38), i.e.

V (η) =

∫ τ

0
e−ρt(U1(cτ (t)) + U2(X0(t; η, cτ (·)))dt+ e−ρτV (X(τ ; η, cτ (·))). (42)

Proposition 4.3. Let η ∈ D(V ) and τ > 0. The functional (40) is strictly convex on C̄τ (η). In
particular there exists at most one maximizer of (40) over C̄τ (η).

Proof. The claim follows from the concavity of data of the delay state equation (1), the
concavity of U2 and V and the strict concavity of U1. �

The existence of locally optimal controls in feedback form is related to the existence of local
solutions to the cloed loop delay equation (36). So we are going to study (36).

Proposition 4.4.

1. Let η ∈ D◦. The closed loop delay state equation (36) admits a strictly positive local
solution x∗(·) defined on [0, τ) for some τ > 0.
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2. Let η ∈ H++ ⊂ D◦. The maximal interval of definition of a strictly positive local solution
x∗(·) of (36) is [0, τmax), where τmax > 0 is implicitely defined 4 as

τmax := inf{t > 0 | ∃ lim
s→t−

x∗(s) = 0}. (43)

Proof. 1. See Subsection A.4.

2. Let x∗(·) be a strictly positive solution of equation (36) defined on an interval [0, τ),
τ > 0. Define X∗(t) := (x∗(t), x∗(t+ ·)|[−T,0]) for t ∈ [0, τ), so that, as observed, X∗(t) ∈ D◦ for
every t ∈ [0, τ). Since C(ζ) ≥ 0 for every ζ ∈ D◦, we have x∗(·) ≤ x(·; η, 0). Therefore x∗(·) is
dominated from above on [0, τ) by

max
t∈[0,τ ]

x(·; η, 0).

On the other hand x∗(·) is also dominated from below by 0 on [0, τ), since x∗(·) is strictly
positive on this interval. Then a standard argument of differential equations show that it must
exist limt→τ− x

∗(t) ∈ [0,+∞) and that, if such limit is strictly positive, then the solution can
be extended. So the claim is proved. �

Now we get the desired result about the existence of locally optimal control in feedback form.

Theorem 4.5. Let τ > 0, η ∈ H++ and let x∗(·) be a strictly positive solution to the closed loop
delay state equation (36) defined on some interval [0, τ) (Proposition 4.4-(1)). Let c∗τ (·) be the
feedback control on [0, τ) associated to x∗(·) through (22), i.e.

c∗τ (t) := C
(
(x∗(t), x∗(t+ ·)|[−T,0])

)
, t ∈ [0, τ). (44)

Then c∗τ (·) ∈ C̄τ (η) and it is the unique τ -locally optimal control for η.

Proof. Admissibility. First of all note that, since η ∈ H++ and x∗(·) > 0 on [0, τ), we
have (x∗(t), x∗(t + ·)|[−T,0]) ∈ D◦ for every t ∈ [0, τ). So (44) is well defined and c∗τ (t) ≥ 0 for
every t ∈ [0, τ). Moreover, due to the continuity of x∗(·) on [0, τ) and of C on D◦, we see that
c∗τ (·) ∈ L1

loc([0, τ);R+).
Now we want to show that c∗τ (·) ∈ L1([0, τ);R+). By the uniqueness of solutions to the state

equation (1),5 we have the equality x(·; η, c∗τ (·)) = x∗(·) on [0, τ). We also notice that it must be
τ ≤ τmax, where τmax is the maximal time defined in Proposition 4.4-(2). Therefore, due to the
characterization of τmax provided by the same proposition, we see that x∗(·) can be extended
to a continuous function on [0, τ ]. Therefore also x(·; η, c∗τ (·)) can be extended to a continuous
function on [0, τ ]. Hence, expressing c∗τ (·) through the state equation, we see that c∗τ (·) can be
extended to a continuous function on [0, τ ] too. Therefore c∗τ (·) ∈ L1([0, τ);R+).

It remains to show that c∗τ (·) defined in (44) can be extended to a control c(·) ∈ C̄(η). First,
we note that, due to Hypothesis (2.2)-(ii) and properties of state equation (1) we have

ζ ∈ H̄++ =⇒ 0 ∈ C̄(ζ). (45)

Define

c(t) :=

{
c∗τ (t), if t ∈ [0, τ),

0, if t ≥ τ.
(46)

4With the agreement inf ∅ = +∞
5Here we consider the state equation (1) as seen on the interval [0, τ) for controls belonging to L1

loc([0, τ);R+).
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Note that c(·) ∈ L1([0,+∞);R+). By uniqueness of solutions to the state equation (1), we
have x(·; η, c(·)) = x(·; η, c∗τ (·)) = x∗(·) > 0 on the interval [0, τ). Moreover, by continuity of
x(·; η, c∗τ (·)), we have x(τ ; η, c∗τ (·)) ≥ 0. Thus

ζ := (x(τ ; η, c∗τ (·)), x∗(τ + ·; η, c∗τ (·))|[−T,0]) ∈ H̄++.

Hence, the flow property of solutions to the state equation and (45) yield c(·) ∈ C̄(η). By
construction of c(·) we have that c∗τ (·) is the restriction over [0, τ) of c(·) ∈ C̄(η) and this claim
is proved.

Optimality. Set X∗(·) := X(·; η, c∗(·)), where c∗(·) is provided by (46). By Proposition 2.9
we get X∗0 (·) = x∗(·). Since η ∈ H++ and x∗(·) > 0 on [0, τ), we see that X∗(t) ∈ D◦ for every
t ∈ [0, τ). Moreover, since x∗(·) solves the closed loop equation on [0, τ), we see that the pair
(c∗(·), X∗(·)) satisfies (24) for every t ∈ [0, τ). Therefore we may argue exactly as in the proof
of Theorem 3.2 to get (30) with τ in place of M that is

V (η) ≤
∫ τ

0
e−ρt

(
U1(c∗(t)) + U2(X∗0 (t))

)
dt+ e−ρτV (X∗(τ)) = Jτ (η, c∗τ (η)).

By Remark 4.2 we have the claim.

Uniqueness. It has already been proved in Proposition 4.3. �

As a consequence of Proposition 4.3 and Theorem 4.5 we also obtain the uniqueness of
solutions to the closed loop delay state equation (36).

Corollary 4.6. Let η ∈ H++. The closed loop delay state equation (36) admits a unique
strictly positive x∗(·) solution defined on its maximal interval of definition [0, τmax) provided by
Proposition 4.4.

Proof. The local existence has been already proved in Proposition 4.4. Let us suppose
that x∗1(·), x∗2(·) are two strictly positive solutions to (36) defined in [0, τ) for some τ > 0. Due
to Theorem 4.5, both of them would give rise to τ -local optimal controls c∗1,τ (·), c∗2,τ (·). By
Proposition 4.3, we must have c∗1,τ (·) = c∗2,τ (·) on [0, τ). Therefore

x∗1(t) = x(t; η, c∗1,τ (·)) = x(t; η, c∗2,τ (·)) = x∗2(t), ∀t ∈ [0, τ).

This shows that the maximal interval of definition of x∗1(·) and x∗2(·) is the same and that they
coincide on this interval, that is the claim. �

4.2 Optimal feedbacks when U2 is not integrable at 0+

Up to now we did not make any further assumption on the functions a and U2 except Hypotheses
2.2 and 2.4. In particular, U2 ≡ 0 is allowed. However, without any further assumption we have
no information on the behaviour of Vη0 when we approach the boundary of D(V ) and therefore
we are not able to say anything about the existence of strictly positive global solutions of the
closed loop equation. So basically we cannot say whether the hypothesis of Theorem 3.2 is
satisfied or not. In order to give sufficient conditions for that, we need additional assumptions.
We will use the following assumptions

(i) U2 is not integrable at 0+,

(ii)
∫ 0
−ε a(ξ)dξ > 0, ∀ε > 0,

(iii) f0(0, y) > 0, ∀y > 0.

(47)
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Remark 4.7. We note that it is possible that a function U2 satisfies Hypothesis 2.4-(i) and is not
integrable at 0+. Indeed the functions U2(x) = −x−1 is not integrable and satisfies Hypothesis
2.4-(ii) thanks to (11). We also note that, due to the continuity of f0, assumption (47)-(iii)
implies (3) and is indeed just a slightly stronger when compared to (3).

The following is the key result to prove the existence of a global strictly positive solution to the
closed loop delay state equation (36) under (47).

Lemma 4.8. Assume that (47)-(i) holds. Then

lim
ζ→η

Vη0(ζ) = +∞, ∀η ∈ B, (48)

where the limit is taken with respect to ‖ · ‖.

Proof. See Subsection A.4. �

Proposition 4.9. Let η ∈ H++ and assume (47). Then the closed loop delay state equation
(36) admits a unique strictly positive global solution x∗(·).

Proof. Since (47)-(i) holds, by Lemma 4.8 we can extend the map C to a continuous map
C̄ defined on the whole space (H, ‖ · ‖) defining C̄ ≡ 0 on the complement of D◦.

Let η ∈ H++ and let x∗(·) be the unique local solution to closed loop delay equation (36)
defined on its maximal interval of definition [0, τmax) provided by Corollary 4.6. We want
to prove that τmax = +∞. Assume by contradiction that τmax < +∞. This means that
limt→τ−max x

∗(t) = 0. Since C̄ is defined on the whole space H and continuous, it is possible to

extend x∗(·) to a solution x̄∗(·) of this extended closed loop equation (with C̄ in place of C) also on
[τmax, τmax+ε) for some ε > 0. Since f0 and C̄ are continuous we have x̄∗(·) ∈ C1([0, τmax+ε);R).
Let us see what happens in a neighborhood of τmax:

(a) by definition of τmax we must have x̄∗(·) = x∗(·) > 0 in a left neighborhood of τmax;

(b) x̄∗(τmax) = 0, therefore C̄
(
(x̄∗(τmax), x̄∗(τmax + ·)|[−T,0])

)
= 0; thus, due to item (a) above

and to (47)-(ii)&(iii), we must have d
dt x̄
∗(τmax) > 0.

Thus we see that the conclusion of (b) contradicts (a). Therefore τmax = +∞ and the claim is
proved. �

As a corollary of Proposition 4.9, we get the existence of a unique optimal control under
the assumption (47) for initial data in H++. Moreover this control is given in feedback form.
This is stated in the following result.

Theorem 4.10. Let (47) hold and η ∈ H++. Let x∗(·) be the unique strictly positive global
solution to the closed loop delay state equation (36) provided by Proposition 4.4. Let c∗(·) be the
feedback control on [0,+∞) associated to x∗(·) defined by (24), that is

c∗(t) := C((x∗(t), x∗(t+ ·)|[−T,0])), t ≥ 0. (49)

Then c∗(·) is admissible and it is the unique optimal control for η.

Proof. Proposition 4.9 and Theorem 3.2 show that the control (49) is admissible and
optimal. Remark 4.2-(i) and Proposition 4.3 yield the uniqueness. �

Remark 4.11. When (47) holds and η ∈ H++, then Theorem 4.10 provides a positive answer
to the question of Remark 3.5-(iii).
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4.3 Optimal controls in the case U1(c) = c1−σ, U2 ≡ 0

In Subsection 4.2 we have introduced the assumption of no integrability (47)-(i) of the utility
function U2. This has been necessary in order to ensure the existence of global strictly positive
solutions to the closed loop equation (36). Here we use the results of Subsection 4.2 to prove,
by means of an appropriate procedure of approximation, the existence of optimal control in the
case

U1(c) = c1−σ, σ ∈ (0, 1); U2 ≡ 0. (50)

We also introduce the assumption

(x, y) 7→ rx+ f0(x, y) nondecreasing in both the variables. (51)

The condition above is used to prove Proposition A.13, which is essential to make our approx-
imation procedure successful. We assume it as it is coherent with the application we have in
mind.

4.3.1 Approximating the utility on the state

Hereafter N∗ denotes the set of strictly positive natural numbers that is N∗ = {1, 2, ...}. Let us
consider a sequence of functions (Un2 )n∈N∗ satisfying Hypothesis 2.4-(ii) and such that

Un2 ↑ 0, Un2 not integrable at 0+, Un2 ≡ 0 on [1/n,+∞). (52)

We note that it is possible to construct such a sequence. Indeed, for any n ∈ N∗ we may find
εn ∈ (0, 1/n) such that the affine function ln : x 7→ ε−2

n (x− εn)− ε−1
n is such that ln(1/n) = 0.

Then the functions

Un2 :=


−x−1, if x ∈ (0, εn),

ln(x), if x ∈ [εn, 1/n),

0, if x ≥ 1/n,

satisfy Hypothesis 2.4-(ii) and (52).

Let us denote by Jn and Vn respectively the objective functionals and the value func-
tions of the problems with utilities U1 and Un2 . Let us also denote by J0 and V0 respectively
the objective functionals and the value functions of the problems with utilities U1 and U2 ≡ 0.
Finally, let us denote by D◦n and D◦0 the interiors in the space (H, ‖ · ‖−1) of D(Vn) and D(V0)
respectively. By Proposition 2.10-(1) we have H++ ⊂ D◦n for every n ∈ N∗. We observe that,
since the state equation does not change, the set of the admissible controls C̄(η) does not
depend on n ∈ N∗. Since the sequence (Un2 )n∈N∗ is nondecreasing, the sequence (Vn)n∈N∗ is
nondecreasing as well. Therefore H++ ⊂ D◦1 ⊂ D◦2 ⊂ ... ⊂ D◦0 and

∃ lim
n→+∞

Vn(η) := g(η) ≤ V0(η), ∀η ∈ H̄+. (53)

Due to Theorem 4.10, for any η ∈ H++ and n ∈ N∗ there exists a unique optimal control
c∗n(·) ∈ C̄(η) (in feedback form) for the problem Vn .

Definition 4.12 (ε-optimal control). Let η ∈ D(V0) and ε > 0. A control cε(·) ∈ C̄(η) is said
to be ε-optimal for V0(η) if J0(η; cε(·)) > V0(η)− ε.
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Proposition 4.13. Let (47)-(ii, iii) and (51) hold. Let η ∈ H++ and let (c∗n(·))n∈N∗ ⊂ C̄(η) be
the sequence of optimal controls for the problems Vn with initial datum η provided by Theorem
4.10. Then for every ε > 0, there exists n0 ∈ N∗ such that c∗n(·) is ε-optimal for V0(η) for every
n ≥ n0. Moreover

Vn(η)
n→∞−→ V0(η). (54)

Proof. By Proposition A.13, for every ε > 0 we can find nε > 0 and an ε-optimal control
cε(·) ∈ C̄(η) for V0(η) such that

1/nε ≤ inf
t∈[0,+∞)

x(t; η; cε(·)).

Since Unε2 ≡ 0 on [1/nε,+∞), we have

V0(η)− ε ≤ J0(η; cε(·)) =

∫ +∞

0
e−ρtU1(cε(t))dt

=

∫ +∞

0
e−ρt (U1(cε(t)) + Unε2 (x(t; η, cε(·)))) dt = Jnε(η; cε(·)) ≤ Vnε(η).

Since the sequence (Vn)n∈N is nondecreasing, from the latter inequality we get

V0(η)− ε ≤ Vn(η) = Jn(η, c∗n(·)) ≤ J0(η, c∗n(·)), ∀ n ≥ nε.

Taking also into account (53), we get both the claims. �

4.3.2 Existence and uniqueness of optimal controls

Proposition 4.14. Let (47)-(ii, iii), (50) and (51) hold true. For each η ∈ H++, there exists a
unique optimal control c∗(·) ∈ C̄(η) starting from η.

Proof. The uniqueness is a consequence of Remark 4.2-(i) and Proposition 4.3. We prove
the existence. Take a sequence of functions (Un2 )n∈N satisfying Hypothesis 2.4-(ii) and (52) and
let (c∗n(·))n∈N ⊂ C̄(η) be the sequence of controls considered in Proposition 4.13. Set

g∗n(t) := c∗n(t)1−σ ≥ 0, t ≥ 0.

Then, by (72) (note that this estimate does not depend on the utilities, but only on the state
equation, so it is independent of n), we have∫ +∞

0
e−ρtg∗n(t)1/1−σdt ≤ c0 + c1‖η‖.

This means that the sequence (g∗n)n∈N is bounded in the space

L1/1−σ
ρ := L1/1−σ([0,+∞), e−ρtdt;R).

Therefore we may find a subsequence weakly converging in L
1/1−σ
ρ to some nonnegative function

g∗ ∈ L1/1−σ
ρ . Without loss of generality we assume that such convergence is true for the original

sequence. Define
c∗(t) := g∗(t)1/1−σ ≥ 0, t ≥ 0. (55)

We claim that c∗(·) is admissible and optimal.
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Admissibility. By (55) we have c∗(·) ≥ 0. Moreover, since g∗ ∈ L1/1−σ
ρ , we see that c∗(·) ∈

L1
loc([0,+∞),R+). Now consider x∗(·) := x(·; η, c∗(·)). We have to prove that x∗(·) ≥ 0. Set

x∗n(·) := x(·; η, c∗n(·)). We have

x∗n(t) = η0 +

∫ t

0
rx∗n(s)ds+

∫ t

0
f0

(
x∗n(s),

∫ 0

−T
a(ξ)x∗n(s+ ξ)dξ

)
ds−

∫ t

0
c∗n(s)ds,

= η0 +

∫ t

0
rx∗n(s)ds+

∫ t

0
f0

(
x∗n(s),

∫ 0

−T
a(ξ)x∗n(s+ ξ)dξ

)
ds−

∫ t

0
g∗n(s)1/1−σds, (56)

Note that the functional

L1/1−σ
ρ → R, g 7→

∫ t

0
|g(s)|1/1−σds,

is convex and locally bounded from below. Therefore it is continuous, hence lower weakly

semicontinuous. Since gn⇀g∗ in L
1/1−σ
ρ and gn, g

∗ ≥ 0, we have∫ t

0
g∗(s)1/1−σds ≤ lim inf

n→∞

∫ t

0
gn(s)1/1−σds, ∀ t ≥ 0. (57)

Call α∗(t) := lim supn→∞ x
∗
n(t) ≥ 0, t ≥ 0. Due to (51)

lim sup
n→∞

(
rxn(s) + f0

(
xn(s),

∫ 0

−T
a(ξ)xn(s+ ξ)dξ

))
= rα(s) + f0

(
α(s),

∫ 0

−T
a(ξ)α(s+ ξ)dξ

)
, ∀s ≥ 0. (58)

Now, take the limsup in (56). Invoking the Fatou Lemma, (55), (57) and (58), we obtain

α∗(t) ≤ η0 +

∫ t

0
rα∗(s)ds+

∫ t

0
f0

(
α∗(s),

∫ 0

−T
a(ξ)α∗(s+ ξ)dξ

)
ds−

(∫ t

0
g∗(s)1/1−σds

)
= η0 +

∫ t

0
rα∗(s)ds+

∫ t

0
f0

(
α∗(s),

∫ 0

−T
a(ξ)α∗(s+ ξ)dξ

)
ds−

(∫ t

0
c∗(s)ds

)
.

From the above inequality and Lemma A.3 we deduce 0 ≤ α(t) ≤ x∗(t) for every t ≥ 0, so
c∗(·) ∈ C̄(η).

Optimality. First of all note that, due to the optimality of c∗n(·) for Vn and since (Un2 ) is
non-decreasinng we have

Vn(η) = Jn(η; c∗n(·)) ≤ J0(η; c∗n(·)). (59)

The function h ≡ 1 belongs to L
1/σ
ρ = (L

1/1−σ
ρ )∗. Therefore, since g∗n ⇀ g∗ in L

1/1−σ
ρ , we have

lim
n→∞

J0(η; c∗n(·)) = lim
n→∞

∫ +∞

0
e−ρtc∗n(t)1−σdt

= lim
n→∞

∫ +∞

0
e−ρtg∗n(t)dt =

∫ +∞

0
e−ρtg∗(t)dt = J0(η; c∗(·)). (60)

From (54), (59) and (60), we obtain V0(η) ≤ J0(η; c∗(·)), the optimality of c∗(·). �
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4.3.3 Characterization of the optimal control as feedback in the interior region

In Subsection 4.3.2 we have proved the existence and uniqueness of optimal controls for the
problem with utilities (50) and initial data η ∈ H++. Now we want to exploit the results of
Subsection 4.1 to characterize in this case the optimal control as feedback when the current
state belongs to D◦. To this end we note that we are not able to say if the optimal state
X∗(t) = (x∗(t), x∗(t + ·)|−T,0]) reaches the boundary B (which means, in this case of initial
datum η ∈ H++, that x∗(t) = 0 for some t > 0). Nevertheless, we are able to characterize the
optimal control as feedback when X∗(t) ∈ D◦, or equivalently, due to the fact that η ∈ H++,
when x∗(t) > 0.

Theorem 4.15. Let (47)-(ii, iii), (50) and (51) hold true. Let η ∈ H++ and let c∗(·) ∈ C̄(η)
be the optimal control provided by Proposition 4.14. Let X∗(·) := X(·; η, c∗(·)) be the associated
optimal state. Then

c∗(t) = C(X∗(t)), for a.e. t ≥ 0 such that X∗(t) ∈ D◦, (61)

where C is the feedback map defined in (22).

Proof. Let η ∈ H++ and let c∗(·) ∈ C̄(η) be the optimal control for η. Set X∗(·) :=
X(·; η, c∗(·)) and x∗(·) := x∗(·; η, c∗(·)). Recall that, by Proposition 2.9, we have

X∗(t) = (x∗(t), x∗(t+ ·)|[−T,0]), ∀ t ≥ 0. (62)

Note that, since η ∈ H++ ⊂ D◦, we have

I := {t ≥ 0 | X∗(t) ∈ D◦} = {t ≥ 0 | x∗(t) > 0}.

Since x∗(·) is continuous, the set I is open in [0,+∞). Thus, it may be written as

I = [a0, b0) ∪
⋃
n≥1

(an, bn),

where a0 = 0 and an < bn < an+1 for each n ≥ 0. Take s ∈ (an, bn) for some n ≥ 0 and set
ζ := X∗(s). Then we have ζ ∈ H++. The semigroup property of the solution X∗ gives

X∗(t+ s) = X(t; ζ, c∗(·+ s)), ∀ t ≥ 0. (63)

Aa a straightforward consequence of the Dynamic Programming Principle we have the optimality
of the control c∗(·+s) for the initial datum ζ. Again an application of the Dynamic Programming
Principle yields the equality

V0(ζ) =

∫ bn−s

0
e−ρtc∗(t+ s)1−σdt+ e−ρ(bn−s)V0(X(bn − s; ζ, c∗(·+ s))).

Now Theorem 4.5 (with τ = bn − s and c∗τ (·) = c∗(·+ s)), Remark 4.2-(ii) and (63) yield

c∗(t+ s) = C(X(t; ζ, c∗(·+ s))) = C(X∗(t+ s)), for a.e. t ∈ [0, bn − s).

By the arbitrariness of n ≥ 0 and s ∈ (an, bn), we get the claim. �

Remark 4.16. The main results of Sections 3 and 4 still hold without requiring the global
Lipschitz continuity of f0 if we take as given the results of [14].
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(a) In Section 3 we only use the concavity of V (which is ensured by the concavity of f0) to
get the Verification Theorem 3.2.

(b) In Subsection 4.1 the results on the closed loop equation only use the continuity of f0 to
prove the local existence (Proposition 4.4-(1)); the monotonicity in y and the sublinear
growth for x, y → +∞ of f0(x, y) (the latter being consequence of the concavity) to charac-
terize the maximal interval of definition of the solution (Proposition 4.4-(2)). With regard
to the latter point, we have to observe that the sublinear growth for x, y → +∞ is needed
to get the estimate (70) for initial data in H̄++.

(c) The proof of existence of a global solution to the closed loop equation in Subsection 4.2
uses the global Lipschitz continuity of f0 through the proof of Lemma 4.8. However the
global Lipschitz continuity in the proof is not necessary if we restrict the proof to data in
H̄++ and can be adapted by the same ingredients (monotonicity in y, sublinear growth for
x, y → +∞).

5 Economic application and an example

In this section we discuss how to apply our results to endogenous growth models with
time-to-build studied in the economic literature. This kind of models are studied mainly in the
case of pointwise delay (see [2, 3, 4]). Also the case of distributed delay is considered in the
economic literature (see [17] for the discrete time case and [] for the continuous time case), but
it is formulated in such a way that the delay appears in the control variable. Here we consider
the model with pointwise delay introduced in [2] and its version with distributed delay, which
is motivated as in [16, 17]6.

We start by recalling the model of [2]. Let x(t) denote the amount of capital per capita
in the economy at time t ≥ 0 and let c(t) be the per capita consumption rate. Both are assumed
to be positive for each t ≥ 0. The state equation is{

x′(t) = f(x(t− T ))− δx(t− T )− c(t),
x(0) = η0, x(s) = η1(s), s ∈ [−T, 0),

(64)

where δ ≥ 0 and f : R+ → R+ is the per capita production function that is continuous and
such that ξ 7→ f(ξ)− δξ is strictly increasing and concave. The goal is to maximize the utility
functional ∫ +∞

0
e−ρtU1(c(t))dt,

where U1 is as in Hypothesis 2.4-(i). This problem is carefully studied for linear f (the so called

AK model, where f(x) = αx with α > δ) and U1(c) = c1−σ

1−σ in [3, 4]. The analogous model with
distributed delay has the same objective functional and the following state equation{

x′(t) = f
(∫ 0
−T a(ξ)x(t+ ξ)dξ

)
− δ

∫ 0
−T a(ξ)x(t+ ξ)dξ − c(t),

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0),

Our goal is to apply, possibly under further assumptions, the results of our previous sections
to these problems (with either distributed or pointwise delay) to extend the qualitative analysis

6One can see also the examples’ section of [11].
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performed in [3, 4] for the case of pointwise delay, linear f and power U1. We observe that
the theory that we have developed here covers the distributed delay case, but not the pointwise
delay case7. So, first we show how to apply our results to the distributed delay case, and second
we develop an approximation procedure that allows to get some results also for the pointwise
delay case.

Concerning the distributed delay case we have the following results:

(i) Theorem 2.13 holds and so the value function has continuous derivative along the direction
η0 (the “present”).

(ii) Our Verification Theorem 3.2 holds: an admissible state-control pair satisfying the feed-
back relation (24) is optimal.

(iii) Proposition 4.14 holds. So, under the assumptions required in that proposition, there exists
a unique optimal control control. Differently from the linear case we cannot say that, for a
suitable set of initial data, the closed loop equation has a unique strictly positive solution.
This remains an open problem. However, due to Theorem 4.15, we can say that, when the
initial datum is in H++, the optimal state X∗ spends some time in the interior region D◦
and, for almost every t such that X∗(t) ∈ D◦, the feedback relation (61) holds.

We believe that these results are interesting from the economic point of view and may provide a
starting point for numerical approximations of the optimal pair. Moreover, we notice that, when
f is linear, δ = 0 (just for simplicity) and U1(c) = c1−σ

1−σ with σ ∈ (0, 1), we can find an explicit
solution to the HJB equation (not known in the literature) that can help to get a verification
theorem with an explicit feedback map. Indeed the state equation (1) takes the form{

x′(t) =
∫ 0
−T a(ξ)x(t+ ξ)dξ − c(t),

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0).

Now the delay part in the infinite dimensional representation can be inserted in the operator A,
defining

D(A) =
{
η ∈ H | η1 ∈W 1,2

T , η1(0) = η0

}
,

A : D(A)→ H, Aη =

(∫ 0

−T
a(ξ)η1(ξ)dξ, η′1(·)

)
.

So the infinite dimensional equation is simply{
X ′(t) = AX(t)− c(t)n̂,
X(0) = η.

The HJB equation (20) takes the form

ρv(η) = 〈η,A∗∇v(η)〉+
σ

1− σ
vη0(η)

σ−1
σ , (65)

where

D(A∗) =
{
η ∈ H | η1 ∈W 1,2

T , η1(−T ) = 0
}
, A∗η =

(
η1(0), a(·)η0 − η′1(·)

)
.

7We cannot treat directly this case for technical reasons that are explained in [14, Rem. 4.9].
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We guess a solution to this equation in the form

v(η) =
1

1− σ
〈η, ϕ〉1−σ, ϕ ∈ D(A∗). (66)

We easily check that the characteristic equation

λ =

∫ 0

−T
eλsa(s)ds

has a unique solution λ∗ > 0 and that, under the condition (11), the system{
ρ

1−σ = λ∗ + σ
1−σϕ

σ−1
σ

0

ϕ1(ξ) = ϕ0

∫ ξ
−T e

−λ∗(ξ−s)a(s)ds,

has also a unique solution ϕ̄ = (ϕ̄0, ϕ̄1(·)). Then one can see that ϕ̄ ∈ D(A∗), A∗ϕ̄ = λ∗ϕ̄ and
that v defined as in (66) with ϕ = ϕ̄ solves (65). The feedback map associated to this solution
is

C(η) = ϕ̄
−1/σ
0 〈η, ϕ̄〉. (67)

The infinite dimensional closed loop equation associated to this map is{
X ′(t) = AX(t)− ϕ̄−1/σ

0 〈X(t), ϕ̄〉,
X(0) = η.

(68)

which admits a unique mild solution X∗(t; η). So, by standard arguments we can prove the
following verification theorem.

Theorem 5.1. Let η ∈ H̄++. Assume that X∗(t; η) is an admissible state trajectory, that is
X∗0 (t; η) ≥ 0 for every t ≥ 0. Then v(η) = V (η) and the feedback control

c∗(t) = ϕ̄
−1/σ
0 〈X∗(t; η), ϕ̄〉

is the unique optimal control starting from η.

Given this theorem, if we want to find an optimal feedback control, we need to show that the
solution of the closed loop equation (68) is admissible, i.e. satisfies the constraint X∗0 (t; η) ≥ 0.
Since we have an explicit solution of the HJB equation, this may be possible arguing as in [4],
i.e. proving that for some set of initial data H0 ⊂ H̄++ this happens.

Concerning the pointwise delay case, standing the assumptions of Subsection 4.3, we approximate
the problem with a suitable sequence of problems with distributed delay. We sketch the argu-
ment, sending the reader to [13, Ch. 3] for more details. Let us take a sequence (ak)k∈N ⊂W 1,2

−2T

such that 
ak(−2T ) = 0,

‖ak‖L2
−2T
≤ 1,

(47)-(ii) holds true ∀ak,
ak

∗
⇀ δ−T in (C([−2T, 0];R))∗ ,

(69)

where δ−T is the Dirac measure concentrated at −T . We denote by xk(·; η, c(·)) the unique
solution of (1) where a(·) is replaced by ak(·) and by x(·; η, c(·)) the unique solution of (1) with
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a(·) = δ−T . Also we call (Pk), (P ) the corresponding optimization problems, we denote by
C̄k(η), C̄(η) the corresponding sets of admissible controls and by Vk, V the corresponding value
functions. Proposition 4.14 holds for the optimization problems (Pk). So, for every η ∈ H++

and for every k ∈ N, there exists a unique optimal control c∗k ∈ C̄k(η) for (Pk). Given ε > 0,
starting from c∗k, we can construct by means of the procedure used in the proof of Proposition
A.13 an ε-optimal control cεk ∈ C̄(η) for (Pk) such that xk(·; η, cεk(·)) ≥ 1/nε for suitable nε > 0.
Using the arguments of [13, Sec. 3.4.2], we can prove the following.

Proposition 5.2. Let η ∈ H++. We have Vk(η)→ V (η), as k →∞. Moreover for every ε > 0
we can find a constant kε such that the control cεkε above is admissible and 2ε-optimal for (P ).�

Appendix

A.1 Auxiliary results on the control problem and the value function

The proofs of the following results that are not provided here can be found in [14].8

Lemma A.3 (Comparison). Let η ∈ H and let c(·) ∈ L1
loc([0,+∞);R+). Let x(t), t ≥ 0, be an

absolutely continuous function satisfying almost everywhere the differential inequality{
x′(t) ≤ rx(t) + f0

(
x(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
− c(t),

x(0) ≤ η0, x(s) ≤ η1(s), for a.e. s ∈ [−T, 0).

Then x(·) ≤ x(·; η, c(·)). �

Proposition A.4.

1. For every η ∈ H̄+, we have C̄(η) 6= ∅ if and only if 0 ∈ C̄(η).

2. For every η ∈ H̄++ we have x(t; η, 0) ≥ η0e
−Cf0 t for all t ≥ 0, where Cf0 is the Lipschitz

constant of f0. �

The next result is a refinement of Proposition 2.9 in [14].

Proposition A.5.

1. There exist a0, a1 > 0 independent of η ∈ H̄+ such that

x(t; η, 0) ≤ (a0 + a1‖η‖)eK0t. (70)

where K0 = r + Cf0(1 + T · supξ∈[−T,0] |a(ξ)|).

2. There exist b0, b1 > 0 independent of η ∈ H̄+, c(·) ∈ C̄(η) such that∫ +∞

0
e−ρt

(
U1(c(t)) + U+

2 (x(t))
)
dt ≤ b0 + b1‖η‖. (71)

In particular, the functional (2) is well defined 9 for every η ∈ H̄+ and c(·) ∈ C(η).

8Actually the results of [14] are proved for the case of strict state constraint x(·) > 0. However, the same
proofs hold for the case of state large constraint x(·) ≥ 0 and/or the results for the case of strict state constraint
hold a fortiori for the case of weaker state constraint (see also Section 5 of [14]).

9Even if it may take the value −∞.
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3. There exist c0, c1 > 0 independent of η ∈ H̄+, c(·) ∈ C̄(η) such that∫ +∞

0
e−ρtc(t)dt ≤ c0 + c1‖η‖. (72)

Proof. Claims 1 and 2 are proved (in the case of strict state constraint x(·) > 0) in [14,
Prop. 2.9].10 We prove the third one. Let

ā := sup
ξ∈[−T,0]

a(ξ), p := f0(0, 0) ≥ 0.

Since f0 is Lipschitz continuous with Lipschitz constant Cf0 , we have

rx+ f0(x, y) ≤ rx+ Cf0(x+ |y|) + p := g(x, y), ∀x ∈ R+, ∀y ∈ R. (73)

Let η ∈ H+, c(·) ∈ C̄(η) and set x(·) := x(·; η, c(·)). Then Lemma A.3 and estimate (70) yield

x(t) ≤ x(t; η, 0) ≤ (a0 + a1‖η‖)eK0t, ∀t ≥ 0. (74)

By (1) and (73) we have

x′(t) ≤ g
(
x(t),

∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
− c(t). (75)

Set Kη := a0 + a1‖η‖. Using estimates (73) and (74) in the right hand side of (75) and the
monotonicity of g with respect to the second variable, we get

x′(s) ≤ rKηe
K0s + Cf0

(
Kηe

K0s + ‖a‖L2
T
‖η1‖L2

T
+ āTKηe

K0s
)

+ p− c(s), for a.e. s ≥ 0. (76)

Putting

K(s) := rKηe
K0s + Cf0

(
Kηe

K0s + ‖a‖L2
T
‖η1‖L2

T
+ āTKηe

K0s
)

+ p

and invoking (76) we obtain

x′(s) ≤ ρx(s) +K(s)− c(s), for a.e. s ≥ 0. (77)

Since c(·) ∈ C̄(η), we have x(·) ≥ 0. Hence, (76) and the Gronwall Lemma yield

0 ≤ x(t) ≤ η0e
ρt +

∫ t

0
eρ(t−s)K(s)ds−

∫ t

0
eρ(t−s)c(s)ds, ∀t ≥ 0. (78)

Multiplying (78) by e−ρt we find that∫ t

0
e−ρsc(s)ds ≤ η0 +

∫ t

0
e−ρsK(s)ds, ∀t ≥ 0.

Due to (11) we get the claim (72). �

10Explicit dependence of the estimates on ‖η‖ is not stated in [14]. However, the sublinear dependence as stated
in the above proposition can be easily deduced from the proofs in [14]. The sublinear dependence in the estimate
(71) can be also obtained arguing that the value function is proper and concave.
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A.2 Characterization of interior and boundary of D(V )

In Subsection 2.2, recalling [14], we have introduced the sets D◦ and B, respectively the interior
and the boundary of D(V ) in the space (H, ‖ · ‖−1). Here we provide a useful characterization
of these sets.. The following result is used in [14] to prove the continuity of the value function
(Proposition 2.10 here). We provide it here, because we are going to use it to characterize the
sets D◦ and B.

Lemma A.6. Let X(·), X̄(·) be the mild solutions to (14) starting respectively from η, η̄ ∈ H
and both under the null control. Then for every T0 > 0 there exists a constant CT0 > 0 such that

‖X(t)− X̄(t)‖−1 ≤ CT0‖η − η̄‖−1, ∀t ∈ [0, T0].

In particular, for every T0 ≥ 0 there exists a constant CT0 > 0 such that

|X0(t)− X̄0(t)| ≤ rCT0‖η − η̄‖−1, ∀t ∈ [0, T0]. �

Remark A.7. We note that, since ‖ · ‖−1 is dominated by ‖ · ‖, then for every T0 > 0 there
exists a constant C̃T0 > 0 such that

|X0(t)− X̄0(t)| ≤ rC̃T0‖η − η̄‖, ∀t ∈ [0, T0].

Lemma A.8. Let η ∈ H and
g(η) := min

t∈[0,T ]
x(·; η, 0). (79)

Then the function g is ‖ · ‖−1-continuous and

D◦ = {g > 0}, B = {g = 0}.

Proof. The fact that g : H → R defined in (79) is ‖ · ‖−1-continuous is a consequence of
Lemma A.6 and Proposition 2.9.

Let us show that D◦ = {g > 0}. Let η ∈ H be such that g(η) > 0. By continuity of g, we
have g(ζ) > 0 for every ζ ∈ B(η, ε) for sufficiently small ε > 0. Therefore(

x(T ; ζ, 0), x(T + ·; ζ, 0)|[−T.0]

)
∈ H++, ∀ζ ∈ B(η, ε).

Then Proposition A.4-(2) and the flow property of solutions to state equation (1) yield

x(t; ζ, 0) ≥ g(ζ)
(

1 ∧ e−Cf0 (t−T )
)
, ∀t ≥ 0. (80)

Recalling that g(ζ) > 0 in B(η, ε), we see that 0 ∈ C̄(ζ) for every ζ ∈ B(η, ε). Moreover, by (9)
we also have J(ζ; 0) > −∞ for every ζ ∈ B(η, ε). This shows that B(η, ε) ⊂ D(V ), so we have
proved the inclusion {g(η) > 0} ⊂ D◦.

Conversely, let η ∈ D◦ and suppose by contradiction that g(η) ≤ 0. This means that there
exists t ∈ (0, T ] such that x(t; η, 0) = 0. Let ε > 0 and consider ζ ∈ H defined as

ζ0 = η0 − ε, ζ1(·) ≡ η1(·),

so that ζ ∈ B(η, ε). We will to show that 0 /∈ C̄(ζ) for every ε > 0. By Proposition A.4-(1), this
will imply that C̄(ζ) = ∅ hence ζ /∈ D(V ). By arbitrariness of ε, this will imply that η /∈ D◦,
contradicting the initial assumption. Hence, also the inclusion D◦ ⊂ {g > 0} will be proved.
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Define y(·) := x(·; η, 0), x(·) := x(·; ζ, 0). By Lemma A.3, we have x(·) ≤ y(·). Let z(·), z̄(·) be
respectively the solutions on [0, T ] of the differential problems without control{

z′(t) = rz(t) + f0

(
z(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
,

z(0) = ζ0,{
z̄′(t) = rz̄(t) + f0

(
z̄(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
,

z̄(0) = η0.

Obviously we have z(·) ≡ x(·). Moreover, since x(·) ≤ y(·) and f0 is nondecreasing with
respect to the second variable, the comparison criterion for classical ODEs yields y(·) ≥ z̄(·).
Therefore, we can apply the classical results for ODEs with Lipschitz coefficients to show the
uniqueness of solutions to the above problems, that yields z(·) < z̄(·) on [0, T ]. Therefore,
x(t) = z(t) < z̄(t) ≤ y(t) = 0, hence 0 /∈ C̄(ζ) as claimed and the proof of the fact that
D◦ = {g > 0} is complete.

Let us show now that B = {g = 0}. The inclusion B ⊂ {g = 0} is a consequence of the
continuity of g and of the characterization D◦ = {g > 0}. On the other hand, let g(η) = 0 and
define for ε > 0

ζ0 = η0 + ε, ζ1(·) ≡ η1(·),

so that ζ ∈ B(η, ε). Moreover, arguing as above we get x(·; ζ, 0) > 0 on [0, T ] for every ε > 0.
This means that g(ζ) > 0 for every ε > 0 , so ζ ∈ D◦ for every ε > 0. Therefore, by the
arbitrariness of ε we obtain η ∈ B and the proof is complete. �

Remark A.9. Lemma A.8, Proposition A.4-(2) and the semigroup property of the solution of
state equation (1) show that

η ∈ D◦ ⇐⇒ x(t; η, 0) > 0, ∀t ≥ 0. (81)

Remark A.10. We note that the claim of Lemma A.8 holds also in the topology defined by the
norm ‖ · ‖, i.e. g is ‖ · ‖-continuous and

Int(H,‖·‖)(D(V )) = {g > 0}, Fr(H,‖·‖)D(V ) = {g = 0}.

In particular we have

Int(H,‖·‖)(D(V )) = D◦, Fr(H,‖·‖)D(V ) = B. (82)

A.3 Comparison with the case of state constraint x(·) > 0

In this subsection we investigate the relationship between the problems with strict and weak
state constraint when (51) holds true. Before to proceed we need to recall a result of Convex
Analysis. Let us recall that if J is a concave functional from some topological vector space X
to R ∪ {−∞}, its upper semicontinuous concave regularization is the functional

J̄ (x) := inf{F(x) | F : X → R ∪ {−∞}, F ≥ J ,
F : X → R ∪ {−∞} concave and upper semicontinuous}, x ∈ X.

The following result corresponds to Proposition 2.3.9-(ii) in [1].
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Lemma A.11. Let X be a topological vector space. Let J : X → R ∪ {−∞} concave and
let J̄ be its upper semicontinuous concave regularization. If lim supx→x0 J (x) > −∞, then
J̄ (x0) = lim supx→x0 J (x). �

Set L1
ρ := L1([0,+∞), e−ρtdt;R). Estimate (72) shows that

C̄(η) is a (convex) bounded subset of L1
ρ, ∀ η ∈ D(V ). (83)

Lemma A.12. Let η ∈ D(V ), (cn)n∈N ⊂ C̄(η) and c ∈ C̄(η). If cn⇀c weakly in L1
ρ, then

lim sup
n→∞

∫ +∞

0
e−ρtU1(cn(t))dt ≥

∫ +∞

0
e−ρtU1(c(t))dt.

Proof. For η ∈ D(V ), consider the functional (finiteness follows from non-negativity of U1

and (71))

C̄(η)→ R, c 7→
∫ +∞

0
e−ρtU1(c(t))dt.

This functional is concave, by concavity of U1. In order to apply Convex Analysis we have to
extend this functional to the whole space L1

ρ. Observe that U1 is defined on [0,+∞), so the
natural way to extend this functional to L1

ρ preserving concavity is by considering the functional

J : L1
ρ −→ R ∪ {−∞}, c 7−→

{∫ +∞
0 e−ρtU1(c(t))dt, if c ∈ C̄(η),

−∞, if c ∈ L1
ρ \ C̄(η).

This extended functional is still concave. Consider its upper semicontinuous concave regularized
envelope with respect to the weak topology of L1

ρ that is the functional

J̄ (c) := inf{F(c) | F : L1
ρ → R ∪ {−∞}, F ≥ J ,

F concave and upper semicontinuous with respect to the weak topology of L1
ρ}.

Take (cn)n∈N ⊂ C̄(η) and c ∈ C̄(η) such that cn⇀c in L1
ρ. Since U1 ≥ 0, we have

lim sup
n→∞

J (cn) =

∫ +∞

0
e−ρtU1(cn(t))dt ≥ 0 > −∞.

Then from Lemma A.11, we get

lim sup
n→∞

J (cn) = J̄ (c) ≥ J (c),

which is the claim �

Proposition A.13. Let (51) hold. Let η ∈ H++ and c(·) ∈ C̄(η). Then for every ε > 0, there
exists cε(·) ∈ C̄(η) and nε > 0 such that

x(t; η, cε(·)) ≥ 1/nε ∀t ≥ 0, and J(η, cε(·)) ≥ J(η, c(·))− ε. (84)

Proof. Let η ∈ D◦ and c(·) ∈ C̄(η). Let n ∈ N be such that 1/n ∈ (0, η0) and set
x(·) := x(·; η, c(·)). Consider the open set

In := {t ≥ 0 | x(t) < 1/n}.
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Consider the continuous function

xn(t) := x(t) ∨ (1/n), t ≥ 0 (85)

and the control (well defined for almost every t ≥ 0)

cn(t) := rxn(t) + f0

(
xn(t),

∫ 0

−T
a(ξ)xn(t+ ξ)dξ

)
− x′n(t). (86)

Note that x′n(·) = 0 everywhere on In and x′n(·) = x′(·) almost everywhere on Icn. Moreover xn(·)
is continuous. Therefore, expressing x′(·) through the state equation and taking into account
that x(·) is continuous, we obtain cn(·) ∈ L1

loc([0,+∞);R). Note that we do not know at this
stage if cn(·) ≥ 0. However, the existence and uniqueness of solution to the state equation (1)
clearly holds also for controls in L1

loc([0,+∞);R). So we have a solution x(·; η, cn(·)) to the state
equation (1) associated to the control cn(·). Moreover, by uniqueness of solution to this state
equation

x(t; η, cn(·)) = xn(t), ∀t ≥ 0. (87)

On In we have x′n(t) = 0 everywhere. So (3), (51) and the definition (86) of cn yield cn(t) ≥ 0
for almost every t ∈ In. On the other hand, we have for almost every t ≥ 0

x′n(t) = rxn(t) + f0

(
xn(t),

∫ 0

−T
a(ξ)xn(t+ ξ)dξ

)
− cn(t),

x′(t) = rx(t) + f0

(
x(t),

∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
− c(t).

So, since xn(·) = x(·) (and x′n(·) = x′(·)) almost everywhere on Icn, and recalling that xn(·) ≥ x(·)
everywhere, we get by monotonicity of f0 with respect to the second variable that cn(t) ≥ c(t) ≥ 0
for almost every t ∈ Icn. Therefore cn(t) ≥ 0 for almost every t ≥ 0. Hence, considering also (85)
and (87), we have cn(·) ∈ C̄(η).

Now we claim that the sequence (cn)n∈N is uniformly integrable in L1
ρ. To this end note that

0 ≤ xn(t)− x(t) ≤ 1/n, ∀t ≥ 0. (88)

Let ā := supξ∈[−T,0] |a(ξ)|. Due to the Lipschitz continuity of f0 and to (88), from the state
equation we get

x′n(s)− x′(s)−Kn ≤ c(s)− cn(s), for a.e. s ≥ 0,

where Kn := r/n+ Cf0(1/n+ T ā/n). Therefore

0 ≤ cn(s) ≤ c(s) + |x′n(s)|+ |x′(s)|+Kn, for a.e. s ≥ 0.

Taking into account (85) and (87) we see that |x′n(·)| ≤ |x′(·)| almost everywhere, so

0 ≤ cn(s) ≤ c(s) + 2|x′(s)|+K1, for a.e. s ≥ 0. (89)

By (72) we have c(·) ∈ L1
ρ. Moreover, expressing x′(·) through the state equation (1) and

using (11), (70) and Lemma A.3, we get x′(·) ∈ L1
ρ. Therefore, from (89) we get that (cn)n∈N

is uniformly integrable. Due to (83), the sequence (cn)n∈N ⊂ L1
ρ is bounded in L1

ρ. Then, by
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Dunford-Pettis Theorem, it is a relatively weakly compact set of L1
ρ. Therefore, we can find a

subsequence (cnk)k∈N weakly convergent towards some g ∈ L1
ρ. In particular∫ t

0
e−ρscnk(s)ds −→

∫ t

0
e−ρsg(s)ds, ∀ t ≥ 0. (90)

On the other hand, again due to the Lipschitz continuity of f0 and to (88), from the state
equation (1) we get

x′n(s)− x′(s)−Kn ≤ c(s)− cn(s) ≤ x′n(s)− x′(s) +Kn, for a.e. s ≥ 0,

where Kn := r/n+ Cf0(1/n+ T ā/n). Multiplying this inequality by e−ρs and integrating over
[0, t] we get

[
e−ρs(xn(s)− x(s))

]t
0

+ ρ

∫ t

0
e−ρs(xn(s)− x(s))ds−Kn

1− e−ρt

ρ

≤
∫ t

0
e−ρs(c(s)− cn(s))ds

≤
[
e−ρs(xn(s)− x(s))

]t
0

+ ρ

∫ t

0
e−ρs(xn(s)− x(s))ds+Kn

1− e−ρt

ρ
.

From the above inequality, taking into account (88) and the fact that xn(0) = x(0) (recall that
1/n < η0) we get

−Kn
1− e−ρt

ρ
≤
∫ t

0
e−ρs(c(s)− cn(s))ds ≤ 1/n+Kn

1− e−ρt

ρ
, ∀t > 0,

with Kn → 0 when n→∞. This implies∫ t

0
e−ρscn(s)ds

n→∞−→
∫ t

0
e−ρsc(s)ds, ∀t ≥ 0. (91)

From (90) and (91) we get ∫ t

0
e−ρsg(s)ds =

∫ t

0
e−ρsc(s)ds, ∀t ≥ 0. (92)

Deriving (92) we get g(t) = c(t) for almost every t ≥ 0. Thus cnk ⇀ c in L1
ρ. Applying Lemma

A.12 we get

lim sup
k→∞

∫ +∞

0
e−ρsU1(cnk(s))ds ≥

∫ +∞

0
e−ρsU1(c(s))ds. (93)

On the other hand, since x(·; η, cnk(·)) ≥ x(·) for every k ∈ N, we have by monotonicity of U2∫ +∞

0
e−ρtU2(xnk(t))dt ≥

∫ +∞

0
e−ρtU2(x(t))dt, ∀ k ∈ N. (94)

Therefore (85), (87), (93) and (94) yield the claim. �

From the proposition above we get the following corollary, showing that the problem
with state constraint x(·) > 0 and the problem with state constraint x(·) ≥ 0 have the same
value functions on H++ when (51) holds.

Corollary A.14. Let (51) hold. For every η ∈ H++ we have

sup
c(·)∈C̄(η)

J(η, c(·)) = sup
c(·)∈C(η)

J(η, c(·)). �
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A.4 Technical proofs

Proof of Proposition 4.4-(1). Let η ∈ D◦ the initial datum for the equation. We set

G(ζ) := rζ0 + f (ζ)− C (ζ) , ζ ∈ D◦.

Note that G is continuous at η, therefore locally bounded at η. We have to show the local
existence of a solution of {

x′(t) = G
(
(x(t), x(t+ ·)|[−T,0])

)
,

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0).

By construction (recall that the map C is defined only on D◦) such a solution will have the
property

(x∗(t), x∗(t+ ·)|[−T,0]) ∈ D◦,

therefore x∗(t) > 0.
Since G is locally bounded at η, there exists b > 0 such that m := sup‖ζ−η‖2≤b |G(ζ)| < +∞.

By continuity of translations in L2(R;R) we can find a ∈ [0, T ] such that∫ −t
−T
|η1(t+ ξ)− η1(ξ)|2dξ ≤ b/4, ∀t ∈ [0, a].

Moreover, without loss of generality, we can suppose that
∫ 0
−a |η1(ξ)|2dξ ≤ b/16. Set

α := min

{
a,

b

2m
,
b

16

(
b+ 2|η0|2

)−1
}
.

Define
M :=

{
x(·) ∈ C ([0, α];R)

∣∣ |x(·)− η0|2 ≤ b/2
}
.

M is a convex closed subset of the Banach space C([0, α];R) endowed with the sup-norm. Define

x(t+ ξ) := η1(t+ ξ), if t+ ξ ≤ 0,

and observe that, for t ∈ [0, α], x(·) ∈M ,∫ 0

−t
|x(t+ ξ)− η1(ξ)|2dξ ≤

∫ 0

−t

(
2|x(t+ ξ)|2 + 2|η1(ξ)|2

)
dξ

≤ 2

[∫ 0

−t

(
2 (|x(t+ ξ)− η0|)2 + 2|η0|2

)
dξ +

∫ 0

−t
|η1(ξ)|2dξ

]
≤ 2

[
2t

(
b

2
+ |η0|2

)
+

b

16

]
≤ b/4

So, for t ∈ [0, α], x(·) ∈M , we have

∥∥(x(t), x(t+ ·)|[−T,0]

)
− η
∥∥2 ≤ |x(t)− η0|2 +

∫ 0

−t
|x(t+ ξ)− η1(ξ)|2dξ +

∫ −t
−T
|η1(t+ ξ)− η1(ξ)|2dξ

≤ b/2 + b/4 + b/4 = b.
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Define, for t ∈ [0, α], x(·) ∈M ,

[J x](t) := η̄0 +

∫ t

0
G
(
x(s), x(s+ ·)|[−T,0]

)
ds, t ∈ [0, α].

We have ∣∣∣ [J x](t)− η0

∣∣∣ ≤ ∫ t

0

∣∣G (x(s), x(s+ ξ)|ξ∈[−T,0]

)∣∣ ds ≤ tm ≤ b/2.
Therefore we have proved that J maps the closed and convex set M in itself. We want to
prove that J admits a fixed point (so, by definition of J , the solution we are looking for). By
Schauder’s Theorem it is enough to prove that J is completely continuous, i.e. that J (M) is
compact. For any x(·) ∈M , we have the estimate∣∣∣ [J x](t)− [J x](t̄)

∣∣∣ ≤ ∫ t∨t̄

t∧t̄

∣∣G (x(s), x(s+ ·)|[−T,0]

)∣∣ ds ≤ m|t− t̄|, t, t̄ ∈ [0, α].

Therefore J (M) is a uniformly bounded and equicontinuous family in the space C([0, α];R).
Thus, by the Ascoli-Arzelà Theorem, J (M) is compact. �

Proof of Lemma 4.8. In this proof all topological notions are referred to the topology
defined by the norm ‖·‖ and thereby (82) is satisfied. Let η ∈ B and let (ηn) ⊂ D◦ be a sequence
such that ηn → η. Firstly we prove that

lim
ηn→η

V (ηn) = −∞. (95)

We can suppose without loss of generality that (ηn) ⊂ B(η, 1). Let g be the function defined in
Lemma A.8. By the same lemma we have

lim
n→∞

g(ηn) = 0. (96)

Let sn ∈ [0, T ] be such that
x(sn; ηn, 0) = g(ηn). (97)

For any n ∈ N, let cn(·) ∈ C̄(ηn) and set

xn(·) := x(·; ηn, cn(·)), pn := sup
ξ∈[0,2T ]

x(ξ; ηn, 0).

Since ηn ∈ B(η, 1), Remark A.7 shows that there exists K > 0 such that pn ≤ K for any n ∈ N.
By Lemma A.3 we have

xn(t) ≤ pn ≤ K, ∀t ∈ [0, 2T ]. (98)

By Lemma A.3, (96) and (97),

0 ≤ xn(sn) ≤ x(sn; ηn, 0) = g(ηn). (99)

Since f0(x, y) ≤ Cf0(|f0(0, 0)|+ |x|+ |y|) and (ηn) ⊂ B(η, 1), we have for the dynamics of xn(·)
in the interval [0, 2T ]

d

dt
xn(t) ≤ rxn(t) +R,
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where
R := Cf0

(
|f0(0, 0)|+K + ‖a‖L2

T
(‖η1‖L2

T
+ 1) + ‖a‖L2

T
T 1/2K

)
.

Therefore there exists C > 0 such that, for any s ∈ [0, T ], n ∈ N,

xn(t) ≤ xn(s) er(t−s) +
R

r
(er(t−s) − 1) ≤ xn(s)(1 + C(t− s)) + C(t− s), t ∈ [s, 2T ]. (100)

By (100) and (99)∫ 2T

sn

e−ρtU−2 (xn(t))dt ≤ e−2ρT

∫ 2T

sn

U−2
(
xn(sn)(1 + C(t− sn)) + C(t− sn)

)
dt

≤ e−2ρT

∫ 2T

sn

U−2 (g(ηn)(1 + C(t− sn)) + C(t− sn))dt

=
e−2ρT

C(xn(sn) + 1)

∫ xn(sn)(1+C(2T−sn))+C(2T−sn)

xn(sn)
U−2 (x)dt. (101)

Since 0 ≤ xn(·) ≤ K on [0, 2T ], from (101) and (99) we get∫ 2T

sn

e−ρtU−2 (xn(t))dt ≤ e−2ρT

C(K + 1)

∫ TC

g(ηn)∧(TC)
U−2 (x)dt. (102)

On the other hand, since ηn ∈ B(η, 1), Proposition 2.10-(2) shows that there exists C0 > 0 such
that ∫ +∞

0
e−ρt(U1(cn(t)) + U+

2 (xn(t)))dt ≤ C0 ∀n ∈ N, ∀cn ∈ C̄(ηn). (103)

For every fixed n ∈ N, the estimate (102) and (103) are uniform with respect to cn(·) ∈ C̄(ηn).
This means that

V (ηn) ≤ C0 +
e−2ρT

C(K + 1)

∫ TC

g(ηn)∧(TC)
U−2 (x)dt.

On the other hand (47)-(i) and (96) yield∫ TC

g(ηn)∧(TC)
U−2 (x)dt→ −∞, (104)

so we have proved (95). Now we prove (48) as a consequence of (95). Let η ∈ B and (ηn) ⊂ D◦
be such that ηn → η. Without loss of generality we can assume that (ηn) ⊂ B(η, 1). Let α > 0
and set

xnα(·) := x(· ; (ηn0 + α, ηn1 ), 0).

Since ηn ∈ D◦ for every N, we have in particular C̄(ηn) 6= ∅ for every n ∈ N. Then, by Proposition
A.4-(1), we have x(·; ηn, 0) ≥ 0 for every n ∈ N. By Lemma A.3, xnα(·) ≥ x(·; ηn, 0), so also
xnα(·) ≥ 0 for every n ∈ N. Let

ā = sup
ξ∈[−T,0]

|a(ξ)|.

Since f0 is nondecreasing on the second variable and Lipschitz continuous and ηn ∈ B(η, 1),
there exists some R > 0 independent of n such that

f0

(
xnα(t),

∫ 0

−T
a(ξ)xnα(t+ ξ)dξ

)
≥ f0

(
xnα(t),−ā‖ηn1 ‖L1

T

)
≥ −Cf0xnα(t)−R.
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Then we have for the dynamics of xnα{
d
dtx

n
α(t) ≥ (r − Cf0)xnα(t)−R,

xnα = ηn0 + α.

Since ηn ∈ D◦ for every n ∈ N, we have ηn0 > 0 for every n ∈ N. Thus, if we take α = R/(r+Cf0),
we have xnα(·) ≥ R/(r + Cf0) > 0 for every n ∈ N. This implies that, for such α, there exists
a constant K > 0 independent of n ∈ N such that J((ηn0 + α, ηn1 ); 0) ≥ K for every n ∈ N.
Therefore also V (ηn0 + α, ηn1 ) ≥ K for every n ∈ N. Due to the concavity of V we have the
estimate

Vη0(ηn) ≥ 1

α
[V (ηn0 + α, ηn1 (·))− V (ηn0 , η

n
1 (·))] ≥ 1

α
[K − V (ηn0 , η

n
1 (·))] , ∀n ∈ N.

From (95) we have the claim. �
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