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BP 53, 38041 GRENOBLE CEDEX 9, FRANCE

Résumé :
En fluide stratifié en densité, la masse ajoutée est modifiée par les forces de flottabilité. Sont considérés le mouvement
le plus simple – les petites oscillations d’un fluide illimité uniformément stratifié dans l’approximation de Boussinesq
– et les corps les plus simples – un cylindre circulaire horizontal et une sphère. Deux masses ajoutées distinctes sont
mises en évidence, l’une liée à la pression et l’énergie, l’autre à l’impulsion et au moment dipolaire. Leur application au
rayonnement d’ondes internes de gravité est discutée pour des oscillations forcées et libres.

Abstract :
In a density-stratified fluid, the modification of added mass by buoyancy is investigated for the simplest possible flow –
the small-amplitude motion of an unbounded Boussinesq uniformly stratified fluid – and the simplest possible bodies – a
horizontal circular cylinder and a sphere. Two distinct added masses arise, one involved in pressure and energy and the
other in momentum and dipole strength. Their application to the radiation of internal gravity waves by forced and free
oscillations is discussed.

Mots clefs : masse ajoutée, ondes internes, flottabilité, stratification

1 Introduction
Added mass characterizes the interaction of a body with a fluid flowing around it, or a topography with a
fluid flowing over it. One such interaction is the generation of internal gravity waves, called internal tides,
by the oscillation of the surface tide over bottom topography in the density-stratified ocean. Internal tides are
currently under scrutiny worldwide, as they are thought to dissipate up to 30% of the total surface tidal energy
(at a rate of about 1 TW). In this context, the power radiated to the internal tidal field is called the conversion
rate and has been the focus of many studies, reviewed in [1], all for specific topographies or under restrictive
approximations. We investigate the influence of density stratification on added mass for arbitrary bodies or
topographies, and discuss the relation of added mass to energy radiation (including conversion rate) and float
oscillation. Application to circular cylinders and spheres is performed explicitly.

2 Added mass in homogeneous flow
The concept of added mass pertains to the irrotational flow of a homogeneous fluid past a rigid body [2]. It
follows from the linearity of the flow, such that the translation of the body at the velocity U creates a velocity
potential φ = φiUi . By defining the added mass tensor mi j according to

mi j = ρ

I

S
niφ j d2S, (1)

with ρ the density of the fluid, S the surface of the body and n the inward normal to S, the pressure force on
the body may be expressed as

Fi =

I

S
pni d2S = −ρ

d
dt

I

S
niφ d2S = −mi j

dUj

dt
, (2)

the impulse and (kinetic) energy of the fluid as, respectively,

Ii = ρ

I

S
niφ d2S = mi jU j , E =

1
2
ρUi

I

S
niφ d2S =

1
2
mi jUiU j , (3)
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and the dipole strength of the body as

Di =

I

S

µ
niφ − xi

∂φ

∂n

∂
d2S =

1
ρ

(mfδi j + mi j )Uj , (4)

with δi j the Kronecker delta symbol, V the volume of the body and mf = ρV the mass of the displaced fluid.
Accordingly, added mass characterizes the flow fully, being involved in the dynamics of the body through F,
in the global dynamics of the fluid as a whole through I and E , and in the local dynamics of the distant fluid
throughD.

3 Added mass in stratified flow
The small-amplitude Boussinesq motion of a uniformly stratified fluid of buoyancy frequency N can similarly
be described in terms of a scalar function χ [3, 4, 5], satisfying the internal wave equation

µ
∂2

∂t2
∇
2
+ N2∇2h

∂
χ = 0, (5)

with the z-axis directed vertically upwards and the subscript h denoting a horizontal projection. The velocity u
and the disturbances p in pressure and ρ in density are related to the wave function through

u =

µ
∂2

∂t2
∇ + N2∇h

∂
χ, p = −ρ0

µ
∂2

∂t2
+ N2

∂
∂χ

∂t
, ρ = ρ0

N2

g
∂2χ

∂t∂z
, (6)

with g the acceleration due to gravity, while the pressure p0 and density ρ0 at rest satisfy dp0/dz = −ρ0g and
dρ0/dz = −ρ0N2/g. The hydrodynamic force on a moving body follows immediately as

Fi =

I

S
pni d2S = −ρ0

d
dt

I

S
ni

µ
∂2

∂t2
+ N2

∂
χ d2S. (7)

The momentum and total (kinetic plus potential) energy of the fluid have densities ρ0ui and 12ρ0u
2
i +

1
2ρ0N

2ζ 2,
respectively, with ζ = ∂2χ/∂t∂z the vertical displacement. By integrating the associated fluxes over the surface
of the body, the momentum and power outputs of this body are obtained as, respectively,

Ii = ρ0

I

S

µ
ni

∂2

∂t2
+ nhi N

2
∂

χ d2S, P = ρ0Ui
d
dt

I

S
ni

µ
∂2

∂t2
+ N2

∂
χ d2S. (8)

Introduction of the Green’s function of the wave equation [6] combined with application of standard techniques
[7, 8] yields a Kirchhoff–Helmholtz integral for internal waves, correcting [9] and generalizing [10]. Expansion
of this integral at large distances yields the dipole strength

Di =

I

S

∑µ
ni

∂2

∂t2
+ nhi N

2
∂

χ − xi
µ

∂2

∂t2
∂

∂n
+ N2

∂

∂nh

∂
χ

∏
d2S. (9)

Now, the linearity of the wave equation implies a linear relation between the velocity U of a rigid body and the
wave function that it creates, in the form of a temporal convolution χ = χi ∗ Ui . Two distinct definitions of
added mass arise: one,

m(1)
i j = ρ0

I

S
ni

µ
∂2

∂t2
+ N2

∂
χ j d2S, (10)

involved in pressure and power through

Fi = −m(1)
i j ∗

dUj

dt
, P = Ui

∑
m(1)
i j ∗

dUj

dt

∏
, (11)

and the other,

m(2)
i j = ρ0

I

S

µ
ni

∂2

∂t2
+ nhi N

2
∂

χ j d2S, (12)
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involved in momentum and dipole strength through

Ii = m(2)
i j ∗Uj , Di =

1
ρ0

h
mfδi jδ(t) + m(2)

i j

i
∗Uj , (13)

with δ(t) the Dirac delta function and mf = ρ0V the mass of the displaced fluid. The relation between the
two is more easily analysed in the monochromatic case, when the excitation U and the responses u, p and ρ
depend on time through the factor e−iωt which is suppressed in the following. Added masses are replaced by
their temporal Fourier transforms and the above relations simplify to

Fi = iωm(1)
i j U j , hPi =

ω

2
Im

h
m(1)
i j UiU j

i
, Ii = m(2)

i j U j , Di =
1
ρ0

h
mfδi j + m(2)

i j

i
Uj , (14)

with ¯ denoting a complex conjugate and h i a time average, so that

m(1)
i j =

µ
1−

N2

ω2
δi3

∂
m(2)
i j . (15)

As did [11, 12, 13], in the following we will consider the first definition only and omit the superscript (1).

4 Oscillating bodies
We consider two particular oscillating bodies, a horizontal circular cylinder and a sphere, of radius a, oscillating
with surface velocity distributionU(x). We represent them by source terms q = σδS in the wave equation [14],
namely by surface distributions of singularities of density σ (x). The condition of fixed normal velocity Un on
S becomes an integral equation for σ , namely, for all x ∈ S,

Un(x) =
1

4π(ω2 − N2)1/2

µ
ω2

∂

∂n
− N2

∂

∂nh

∂I

S

σ (x0)
[ω2(x− x0)2 − N2(z − z0)2]1/2

d2S0. (16)

It is solved by the combination of stretched orthogonal curvilinear coordinates [15, 16] and eigenfunction
expansion [17]. Specifically, for the sphere, of radial velocityUr (θ,ϕ)with θ the colatitude and ϕ the azimuth,
we consider frequencies ω > N and introduce stretched oblate spheroidal coordinates (ξ, η,ϕ) by

rh =
N
ω
a cosh ξ sin η, z =

N
(ω2 − N2)1/2

a sinh ξ cos η, (17)

with rh = |xh|. The sphere is turned into the surface ξ = ξ0 = arccosh(ω/N ) while the kernel of the integral
equation is turned into Coulomb’s potential, expanded in spherical harmonics Ylm(η,ϕ) as

1
[ω2(x− x0)2 − N2(z − z0)2]1/2

= i
4π
Na

∞X

l=0

lX

m=−l
(−1)m

(l − m)!
(l + m)!

× Plm(i sinh ξ<)Qlm(i sinh ξ>)Ylm(η,ϕ)Ylm(η0,ϕ0), (18)

with Plm and Qlm associated Legendre functions and ξ< (ξ>) the smaller (larger) of ξ and ξ 0. The solution of
the problem is then immediate, in the form

σ (θ,ϕ) =
N2

ω2

∞X

l=0

lX

m=−l
(−1)m

(l + m)!
(l − m)!

Ulm
Plm(i sinh ξ0)Q0

lm(i sinh ξ0)
Ylm(θ,ϕ), (19)

with Ulm =
RR

Ur (θ,ϕ)Ylm(θ,ϕ) sin θ dθdϕ. Causality allows its analytic continuation onto the upper half
of the complex ω-plane, which amounts to replacing ω by ω + i0 namely to adding to the real ω a positive
imaginary part which is later allowed to tend to zero.
For rigid oscillations at the uniform velocity U, only the dipolar terms l = 1 remain. We obtain

q(x) =

∑
2

1+ B(ω/N )
Uh ·

xh
a

+
1

1− B(ω/N )
Uz

z
a

∏
δ(r − a), (20)
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FIG. 1 – Coefficients of (a) added mass and (b) damping for a circular cylinder ( ) and a sphere oscillating
either vertically ( ) or horizontally ( ).

where r = |x| and

B
≥ ω

N

¥
=

ω2

N2

∑
1−

µ
ω2

N2
− 1

∂1/2
arcsin

µ
N
ω

∂∏
, (21)

with analytic continuation, at the frequencies |ω| < N of propagative internal waves,

B
≥ ω

N

¥
=

ω2

N2

Ω
1−

µ
1−

ω2

N2

∂1/2∑
arccosh

µ
N
|ω|

∂
+ i

π

2
signω

∏æ
. (22)

The circular cylinder is treated in the same way, with elliptical coordinates replacing spheroidal coordinates,
and trigonometric functions replacing spherical harmonics. We obtain, for rigid oscillations,

q(x) =

("

1+

µ
1−

N2

ω2

∂1/2#

Ux
x
a

+

"

1+

µ
1−

N2

ω2

∂−1/2#

Uz
z
a

)

δ(r − a), (23)

with continuation (1 − N2/ω2)1/2 = i(N2/ω2 − 1)1/2 signω at |ω| < N . In the limit ω/N → ∞ the
effect of the stratification vanishes and the classical results q(x) = (3/2)U · (x/a)δ(r − a) for the sphere and
2U · (x/a)δ(r − a) for the cylinder in a homogeneous fluid [14] are recovered.
The associated added mass coefficients Ci j = mi j/mf, deduced from Di =

R
xiq(x) d3x = V [δi j + Ci j/(1−

δi3N2/ω2)]Uj , are complex. Their real part represents added inertia and their imaginary part, only present for
|ω| < N , represents wave damping. For the cylinder and the sphere only the diagonal coefficients are nonzero.
They are given for the cylinder by

Cx = Cz =

µ
1−

N2

ω2

∂1/2
, (24)

and for the sphere by

Ch =
1− B(ω/N )

1+ B(ω/N )
, Cz =

µ
1−

N2

ω2

∂
B(ω/N )

1− B(ω/N )
. (25)

They coincide with those obtained by direct solution of the equations of motion in [11, 13] for the sphere and
[18, 19] for the cylinder. Their variations, represented in figure 1, have been confirmed by the experiments in
[20, 21] for horizontal oscillations. In the limit ω/N → ∞ the values C∞ = 1 for the cylinder and 1/2 for the
sphere in a homogeneous fluid are recovered.

5 Forced oscillations
A first application is the power output hPi of a body oscillating with displacement amplitude A at the angle α
to the vertical (becoming a conversion rate for α = π/2). The calculation of hPi usually involves complicated
integration [5, 22, 23], made unnecessary by added mass. Assuming symmetry around the vertical and about
the horizontal, so that C11 = C22 = Ch and C33 = Cz with all other coefficients zero, we have simply

hPi =
1
2mfω

3A2 Im
h
Ch sin2 α + Cz cos2 α

i
. (26)
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FIG. 2 – For a circular cylinder ( ) and a sphere ( ), (a) power output of forced oscillations, normalized
by P0 = ρ0N 3a2A2 for the cylinder and ρ0N 3a3A2 for the sphere, and (b) free buoyant oscillations.

For ω > N , the waves are evanescent and no power is radiated. For 0 < ω < N , the waves are propagative and
the power output is for the cylinder, per unit length along its span,

hPi =
π

2
ρ0a2A2ω2(N2 − ω2)1/2, (27)

consistent with direct solution of the equations of motion in [18], and for the sphere

hPi =
π2

3
ρ0a3A2ω3

µ
1−

ω2

N2

∂1/2∑
2

ω2

N2
sin2 α

|1+ B(ω/N )|2
+

µ
1−

ω2

N2

∂
cos2 α

|1− B(ω/N )|2

∏
. (28)

Its variations with ω are represented in figure 2a, consistent with experimental measurements for horizontal
oscillations [20, 21]. It is a maximum at ω/N =

√
(2/3) ≈ 0.82 for the cylinder and ω/N varying weakly,

between 0.84 and 0.85, with α for the sphere.
Consider now an assembly of incoherent elementary excitations of approximately constant size, oscillatingwith
approximately fixed excursion in random directions. In a uniformly stratified fluid, this assembly will generate
waves with a power spectrum peaked at ω/N ≈ 0.8. If a region of disorganized turbulent motion can indeed
be considered as an assembly of this type, then the above might explain the peaks observed at ω/N = 0.8
and 0.7 for two-dimensional regions of mixed fluid collapsing after release at [24] and above [25] their neutral
buoyancy level, respectively.

6 Free oscillations
A second application is the free buoyant oscillations of a body displaced slightly from its neutral buoyancy level
then released abruptly. Under an arbitrary external force Fe, the positionX = (X,Y, Z) = (X1, X2, X3) of the
centroid of the body relative to this level satisfies the equation

m
d2Xi
dt2

= −mN2δi3Z(t) − mi j (t) ∗
d2X j

dt2
+ Fei (t), (29)

with ρ0 the density at rest at the neutral buoyancy level andm = ρ0V the mass of the body. The first term on the
right-hand side represents the hydrostatic force, namely the combination of weight −mgez and Archimedes’
force

H
S p0n d

2S = mfgez ∼ mgez − mN2Zez , and the second term the hydrodynamic force
H
S pn d

2S. By
temporal Fourier transformation we obtain, in terms of the added mass coefficients,

{ω2[δi j + Ci j (ω)]− N2δi3δi j }X j (ω) = −
Fei (ω)

m
. (30)

For release at t = 0 after initial displacement h0, the external force ismN2h0H(−t)ez with H(t) the Heaviside
step function. Assuming the body to be symmetric around the vertical so that only the coefficient C33 = Cz
comes into play, and writing the position of the body as Z(t) = h0H(−t) + h(t) with h(t) causal, we have

h(ω)

h0
=
i
ω

1+ Cz(ω)

1+ Cz(ω) − N2/ω2
, (31)

5



19ème Congrès Français de Mécanique Marseille, 24–28 août 2009

yielding for the cylinder and the sphere, respectively,

h(ω)

h0
=

i
(ω2 − N2)1/2

,
h(ω)

h0
=

i
(ω2 − N2)1/2

ω

N
arcsin

µ
N
ω

∂
, (32)

and by Fourier inversion
h(t)
h0

= H(t)J0(Nt),
h(t)
h0

=
π

2
H(t)E1(Nt), (33)

with J0 a Bessel function andE1 aWeber function. The oscillations, represented in figure 2b, are consistentwith
direct solution of the equations of motion and experiments for small initial displacement in [26]. Experiments
for larger initial displacements [27, 28] have pointed out the importance of viscous damping, either laminar or
turbulent, and the topic remains an area of active research, both theoretically [29] and experimentally [30, 31, 32].

7 Conclusion
The concept of added mass has been generalized to the small Boussinesq oscillations of a density-stratified
fluid. Two distinct added masses arise, one associated with pressure and energy and the other with impulse
and dipole strength. The added mass tensor loses its symmetry and becomes frequency-dependent. The power
output of an oscillating body in a fluid at rest, or the conversion rate of an oscillatory flow over a fixed obstacle,
are expressed in terms of added mass coefficients alone, as are the buoyant oscillations of a float.
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