
HAL Id: hal-00583033
https://hal.science/hal-00583033

Submitted on 25 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A service discovery and automatic deployment
component-based software infrastructure for Ubiquitous

Computing
Areski Flissi, Christophe Gransart, Philippe Merle

To cite this version:
Areski Flissi, Christophe Gransart, Philippe Merle. A service discovery and automatic deployment
component-based software infrastructure for Ubiquitous Computing. The 17th Conference on Ad-
vanced Information Systems Engineering - CAiSE’05 Workshop, Jun 2005, Porto, Portugal. pp.601-
615. �hal-00583033�

https://hal.science/hal-00583033
https://hal.archives-ouvertes.fr

A Service Discovery and Automatic Deployment

Component-Based Software Infrastructure

for Ubiquitous Computing1

Areski Flissi1, Christophe Gransart2, Philippe Merle3

1 LIFL / CNRS,

Université des Sciences et Technologies de Lille (USTL)

59655 Villeneuve d’Ascq, France
Areski.Flissi@lifl.fr

2 INRETS-LEOST,

20 rue Elisee Reclus, BP 317

59666 Villeneuve d’Ascq, France
Christophe.Gransart@inrets.fr

3LIFL / INRIA Futurs,

Université des Sciences et Technologies de Lille (USTL)

59655 Villeneuve d’Ascq, France
Philippe.Merle@inria.fr

Abstract. Software applications running on mobile devices are more and more

needed. These applications have strong requirements to address: device

heterogeneity, limited resources, networked communications, and security.

Moreover it is required to have appropriate application design, discovery,

deployment, and execution paradigms. These requirements are similar to those

of any ubiquitous computing application. In this paper, we present a

component-based software infrastructure to design, discover, deploy, and

execute ubiquitous computing contextual applications. Applications are

designed as assemblies of distributed software components. These assemblies

are dynamically discovered according to end-users’ physical location and

device capabilities. Then appropriate assemblies are automatically deployed on

users’ devices. Ubiquitous contextual services and our software infrastructure

are built on top of the OMG’s CORBA Component Model (CCM) and are

implemented using the OpenCCM platform. As illustration, a service to get

information about departure trains is described in detail.

1 Introduction

Software applications running on mobile devices are more and more required. This

new challenge is now called ubiquitous computing. Lot of problems must be taken

into account during development of these ubiquitous computing applications.

1 This work is completed with the support of Nord/Pas-de-Calais Regional Council and the

Regional Management of Research and Technology of Nord/Pas-de-Calais within the

framework of the “Contrat Plan Etat/Région”.

Terminals used are generally heterogeneous: users can achieve their tasks using a

laptop with wireless network card or using a PDA or a smart phone. These terminals

have different operating systems and limited hardware resources like RAM or CPU.

Moreover mobility is difficult to take into account in applications. Very often, when

user goes out of the wireless network coverage, this event generates an error in the

application. Last but not least, security in wireless distributed applications is also a

big challenge.

Currently, there is no global solution to build ubiquitous contextual applications.

Indeed, existing solutions only address the problems of service discovery and

deployment. Service design and implementation must be done separately with another

technology than that used to build the discovery and deployment functionalities. In

this paper, we present a global solution through a component-based software

infrastructure to easily design, discover, deploy and execute applications on mobile

devices. However, we only focus on applications running in contextual environments

like a railway station. Security, disconnection and lost of connectivity are not

considered in this paper.

In our approach, a service is deployed on a distributed architecture and running on

several equipments (mobile and fixed). Services are designed as assemblies of

distributed software components. These assemblies are dynamically and contextually

discovered according to end-users’ physical location and device capabilities thanks to

a service registry. Then appropriate assemblies are automatically deployed to users’

devices using a service activator. At runtime, interactions between the components are

done using distributed middleware. Ubiquitous contextual services and our software

infrastructure are designed on top of the OMG’s CORBA Component Model (CCM)

[1]. A prototype is implemented using the OpenCCM [2] platform, an open source

Java-based CCM implementation.

The reminder of this paper is organized as follows. Section 2 describes an example

which will be realized with our platform and the challenges to address in the context

of ubiquitous computing. Section 3 presents the design principles to develop a

ubiquitous contextual service with distributed software components. These principles

are illustrated on the departure train example. Section 4 details the ubiquitous

computing software infrastructure composed of discovery and deployment

functionalities, especially service registry and activator components. Section 5

describes the implementation of our software infrastructure and discusses about the

current limitations. Section 6 presents some related works. Finally, Section 7

concludes this paper and gives some future work perspectives.

2. The context

This section presents an example of applications that we want to realize. Next, we

present several problems related with ubiquitous contextual applications.

2.1. An example of contextual applications

To illustrate ubiquitous contextual services, let us take the following example. A

commuter with a wireless PDA is arriving into a railway station. When he/she is

inside of the hall, his/her PDA automatically knows where his/her owner is and

launches services to obtain some information about the departure platform, train

schedule, etc. This service can be used with several user interfaces (see Figure 1):

with a GUI or with a text to speech interface.

Fig. 1. The Train Service Use Case.

2.2. The challenges

To realize this simple scenario, we must take into account several issues related to

ubiquitous and contextual applications:

− Heterogeneity of devices

Devices which could be used are various: user can access to services from a laptop,

a PDA or a smart phone. These devices run different operating systems (Windows,

Linux, WinCE, PalmOS, Symbian, etc.). Concerning the wireless link, several

technologies are also available as Wi-Fi (IEEE 802.11a/b/g) or Bluetooth for

short/medium range network, GPRS or UMTS for national coverage. − Low Resources

Power consumption is a major problem with mobile devices. Moreover, PDA and

smart phones have less memory and smaller processor than laptops. Network

connectivity is not always available. These points will modify the way to design

applications. − Distributed Applications

 The service to get information about the departure platform is distributed on

several computers. The graphical user interface is running on the PDA and the

process to extract data from the train operator information system is running on fixed

computers. Communication between fixed part and mobile part is achieved through

the wireless network. Service implementation can be achieved using a communication

middleware (CORBA, messaging, etc.). − Security

Security is also a major issue in this kind of applications. All the actors (mobile

terminals, infrastructure, and servers) are concerned. To achieve security, several

solutions based on authentication and cryptography need to be integrated. − Service Discovery

The next problem is how a user knows that some services are available in a

particular location. Moreover, code of available services to deploy will be different if

the computer is a black and white PDA or a color laptop for instance. To make this

choice, the system needs some information about the client terminal. According to

this information, it can present a subset of services which can potentially run on the

user’s terminal.

The discovery process can be done by the user: he/she explicitly sends a request to

the environment to check if some services are available. The opposite solution is that

the environment sends periodically information about available services. Then the

user is automatically notified that some services exist. − Service Deployment

Once the user knows that an interesting service is available then the infrastructure

must deploy the code on the user’s device. Deployment consists to fetch software

components from a repository, to download them, to instantiate, configure, and

interconnect components. In our context, applications must be incrementally

deployed: components running on fixed computers are deployed in a preliminary step,

and then components running on user’s terminal are deployed on user’s demand.

When a user comes back to a location where he/she used previously a service, does

he/she have to redo the discovery and deployment process? It would be interesting

that its terminal maintains information about services previously used and create a

kind of service information profile.

3 The Model for Ubiquitous Contextual Services

This section presents our model for designing ubiquitous contextual services. Firstly,

the principles of the underlying software component model used in our approach are

discussed. Then the component-based design of the train service is presented.

3.1 The distributed software component model

In our model, a ubiquitous contextual service is a composition of distributed and

interconnected software components. The underlying component model is based on

the definition given by Clemens Szyperski in [3]: “A software component is a unit of

composition with contractually specified interfaces and explicit context dependencies

only. A software component can be deployed independently and is subject to

composition by third parties”. In this definition, an interface means a set of method

signatures. A signature captures a method name, a set of parameter types, a set of

exceptions, and a result type. Context dependencies encompass all metadata

describing the required context to run the component, e.g. binary libraries and other

components required by the implementation of the component. However we enhance

this definition with the notions of distribution and interconnection.

A ubiquitous contextual service is deployed and run on a distributed system

composed of several fixed and mobile computers. Then its components are distributed

over the system: Each software component is assigned on a node in the system. In

order to support component interactions, data exchanges and component behavior

synchronization, two kinds of distributed interaction patterns are needed at least2: 1-

to-1 synchronous invocations and 1-to-many asynchronous notifications. With the

first interaction pattern, a client component calls methods provided by a server

component in a synchronous way, i.e. the client waits until the server replies. For

instance, this allows a client component to obtain a data stored or computed by a

server component (e.g. get the list of departure trains) or to request the execution of

some behavior of a server component (e.g. add a new arrival train). With the second

interaction pattern, a producer component sends data to consumer components in an

asynchronous way, i.e. the producer and consumers work in parallel. For instance, this

allows a producer to broadcast the new value of a data to all interested consumers or

to notify a new event like an alarm (e.g. notify the departure or arrival of a train).

In order to support these two interaction patterns, the components need to be

interconnected. For this purpose, each component provides interaction ports. Four

kinds of ports are available3: facet identifying an interface provided by a server

component and its methods are invoked synchronously by client components,

receptacle identifying an interface required by a client component and provided by

another component, event source identifying a channel used by a producer component

to send events asynchronously, and event sink identifying the interface allowing a

consumer component to receive asynchronous events. Moreover each component

provides a base reference interface offering management and control methods, i.e. to

configure attributes, to connect facets to receptacles and event sinks to event sources.

This management interface is mainly used during deployment and reconfiguration of

distributed software component applications.

The different concepts discussed previously, i.e. component, reference interface,

attribute, synchronous interaction via facet and receptacle ports, and asynchronous

interaction via event sink and source ports, are illustrated in Figure 2. These principles

are used to design and build both ubiquitous contextual services and our service

discovery and deployment infrastructure discussed in Section 4.

In order to build services, it is needed to compose a set of distributed software

components. For this purpose, components must be packaged into component

archives containing both the component binary implementation and metadata

describing context dependencies at least. Moreover, a same component could have

different implementations (e.g. a GUI for small PDA screens, another for laptops,

etc.). Then a component archive must allow one to store different implementations

2 Other interaction patterns could be considered as continuous data flow, asynchronous

invocations with wait-by-necessity, etc. However these patterns are not currently needed for

our prototyped services.
3 Here we reuse the terminology defined in the CORBA Component Model.

and metadata for each that describes the appropriate running context. Then

component archives could be assembled together to form assemblies of distributed

software components. These assemblies must identify the component instances to

create at deployment time, the configuration of their business attributes, the

interconnections between their ports, and finally the physical assignment to nodes.

This description could be expressed via an Architecture Definition Language (ADL)

or any other metadata formats. Then assembly descriptions and component archives

could be packaged together into assembly archives. Then these assembly archives

could be deployed automatically as they contain all the required information.

M obile assem bly

M obile assem bly

Fixed assem bly

C om ponentC om ponent

R eferenceR eference FacetFacet

R eceptacleR eceptacle

E vent SourceE vent Source

E vent S inkE vent S inkA ttributeA ttribute

T rain

G U I

R ailw ay

Station

D atabase

T rain

Schedule

D atabase

T rain

Schedule

T rain

G U I

Synchronous

Invocation

A synchronous

N otificationA ssem bly

Fig. 2. The train service as a composition of distributed software components.

3.2 The component-based design of the train service

The composition of distributed software components used in our train service is

depicted in Figure 2. This service is composed of three main components: − The Database Train Schedule Component (DTSC) encapsulates the back office

information system of the railway operator. It could be deployed on one main

frame or replicated over a cluster of servers4. − The Railway Station Component (RSC) extracts data related to a specific railway

station from the previous component, and it sends them to the user terminals. A

railway station component must be deployed on each railway station, it is

configured appropriately, e.g. with the railway station identifier used to query the

back office information system, and it is connected by a receptacle port to the

DTSC. This component provides a facet for querying local contextual railway

station information, and an event source to notify user terminals of recent updates

of this contextual information.

4 Replication of components is out of the scope of this paper.

− A Train Graphical User Interface (GUI) component presents to end-users the trains

which will soon leave from or arrive to the contextual railway station where the

user is. For this purpose, this component has two ports - a receptacle and a event

sink – to receive data from the contextual TSC, respectively in a synchronous and

an asynchronous way. This component is the mobile part of the train service: One

instance is deployed and running on each user’s mobile terminal. The deployment

is done automatically on user’s demands. The implementation on the deployed

instance depends of the terminal capabilities - e.g. black and white or color screen,

and screen size – and user’s preferences – e.g. interface language. Then several

heterogeneous instances could be simultaneously present in the whole system.

These three components are deployed at different times in the life cycle of the train

service. The two first components must be deployed in a preliminary step and will run

during the whole life time of the service. On the other hand, Train GUI components

are deployed dynamically on user’s demands and are instantiated in the system during

short periods of times. Then to address this, two different assemblies must be built:

One containing the two components running on the fixed computers, and one

packaging the mobile part of the service. In order to interconnect Train GUI

components to the contextual Railway Station component, it is required that the first

assembly exports the RSC reference into a naming or trader registry, and then the

second assembly could import the RSC reference from the used registry. In order to

allow these incremental deployments and interconnections of assemblies, it is

required that the assembly description format provides constructions to express

exportations and importations.

4 The Ubiquitous Computing Software Infrastructure

This section describes our software infrastructure dedicated to ubiquitous computing.

This infrastructure especially focuses on the problems of service discovery, automatic

deployment and execution on users’ devices according to their contextual

information. We have chosen to model this infrastructure using the distributed

component-based approach presented in Section 3. Part of it, i.e. a set of components

composing the software infrastructure, is dedicated to the discovery of contextual

services, whereas some components are responsible of the deployment and the

execution of services (i.e. the instantiation on the user’s device of the client part of the

application). These two aspects are discussed in detail respectively in Section 4.1 and

4.2.

4.1 Dynamic discovery of contextual services

The dynamic discovery of contextual services concerns problems raised in Section 2

about the way a user entering a specific area is informed on available services and

also if these services are adapted to his/her device. Indeed, considering our example

of service providing information on trains, the questions raised are:

− How and when a user arriving in a railway station is informed about the existence

of a service providing information on trains, and − How and when the GUI showing the information could be adapted to the user’s

device capabilities.

4.1.1 The Service Registry and Service Activator Components

To address the problem of the discovery of contextual services, we first introduce a

component in our software infrastructure named Service Registry. The Service

Registry (SR) component is a “server-side” component of the infrastructure

architecture. By this we mean that this component will be instantiated on fixed

computers of the ubiquitous environment (e.g. a server in the railway station). It is in

charge of the following main points:

1. Manage the list of available services: the SR component maintains a list of services

and offers a way for service provider administrators/operators to register, update

and remove services.

2. Transmit its unique identifier: every SR has a unique ID allowing the

differentiation of multiple service providers. Indeed, ubiquitous environments can

co-exist from user point of view in some particular cases. Actually, this happens in

our example of application if the railway station is near a museum offering

ubiquitous services too (like information on current exhibitions, etc.) for instance.

3. Be able to compute the appropriate mobile assembly and/or component

implementations of services according to the user’s device contextual information

(hardware and software capabilities), also called “user profile”.

4. Transmit the list of registered services: the list sent to a user should reference only

services that are adapted to the device.

Secondly, a component named Service Activator represents the “client-side”

component of the infrastructure and, as such, has to be started on mobile devices. The

Service Activator (SA) component interacts with the SR as follows:

1. Receive SR ID: from it, users will be able to access the list of available services

registered in the corresponding SR.

2. Transmit the user profile: this information is sent by the SA component to the SR

that has been selected by the user.

3. Receive and display a list of available contextual services: from the list, the user

can choose and request the deployment of a service.

4.1.2 Discovery of Service Registry and Negotiation Protocol

Thanks to this component-based architecture, the challenge of contextual services

discovery can be reformulated as follows: how the SR is discovered by the SA

components? Different scenarios at this stage exist, depending on who - the

user/device or the server hosting the SR - is initiating the service discovery. Using a

protocol based on multicast, the first case, i.e. the services search is initiated by user,

implies the user’s device being in a “transmit” mode (TX), which means to start a

periodically sending of search requests. The second case, i.e. the user’s device is in a

“receive” mode (RX), implies that the server is in charge of the periodical sending of

requests through the network. This case is more interesting if we take into account

several aspects. First of all, considering energy aspect, just let us have a look at power

consumption provided by some IEEE 802.11x wireless cards specifications [4, 5, 6].

Table 1 simply shows that the device power consumption is reduced by 25 to 35

percents in the RX mode. This mode will then be implemented in our software

infrastructure. Also, this leads us to the following question: which period for requests

transmission from server to devices must be used? This period depends on both the

mobile device moving speed and the wireless network coverage surface. More the

moving speed is important more the period must be short. On the other hand, if the

coverage surface is large then the period could be longer.

Table 1. Power consumption of some IEEE 802.11x wireless cards

 TX Mode RX Mode RX/TX

802.11b Compaq WL110 [4] 280 mA 180 mA 65 %

802.11b/g Buffalo AirStation G54 [5] 550 mA 350 mA 64 %

802.11a/b/g Dlink DWL-AG660 [6] 500 mA 379 mA 75 %

Next, having one emitter (the service provider server) and several receivers (users’

devices) that are waiting for requests generates less network traffic than the opposite.

This has to be pointed out in the context of ubiquitous applications as the number of

devices involved can be potentially important. At last, the RX mode allows a

transparent discovery of the SR from users’ point of view and updates are

automatically and immediately notified to devices.

Once the SR is discovered, the user is able to send requests to get the list of

contextual services that are adapted to the device. For instance, many

implementations of the GUI for the train service are available: GUI for white and

black or color screens, text to speech interfaces, resolution, French or English

language interfaces, etc. So, depending on the device hardware and software

characteristics but also on user’s concerns (e.g. for the choice of the language of the

interface), different component assemblies of the client service part can be proposed.

That’s the reason why a “negotiation protocol” has been defined between the user’s

mobile device and the SR’s host for the contextual services list discovery. The first

step of this protocol concerns the ability of the client service part (the mobile

assembly of the service) to be conform to the user/device profile. The

hardware/software device information is sent by the SA to the SR once this last is

detected by the user’s device. Then, the SR computes a list of mobile assemblies that

are adapted to the device characteristics and sends it. The SA receives this list and the

user can then choose among the list of available contextual services displayed. Also,

for each service, many assemblies could be available. Indeed, if the SR computes that

the device can instantiate both color and text to speech interfaces, the user can select

between many configurations: color and text to speech interfaces, just the text to

speech interface, etc. What’s more, other configurations of the service assembly can

be considered, not just in term of component implementation choices but also in term

of application architecture. To illustrate this point, we can imagine that the user is a

non-French speaker arriving in a French railway station, so that, if exists, a functional

component realizing the French-to-user’s language translation of the user interface

has to be expressed in the alternate configuration.

Finally, all steps of the different interactions between components of our software

infrastructure are illustrated in Figure 3, from the SR discovery by SA (1) to the

available contextual services list receiving, including user profile sending (2) and

computation of appropriate configuration of mobile assemblies (3).

(3) Compute and send

available services list

(2) Send “profile”

(1) Transmit ID

Service

Registry

User Device
Service Provider

Server

Service

Activator

Fig. 3. The negotiation protocol steps of the contextual services list discovery.

4.2 Automatic Deployment and Execution of Services

Once the user has selected a service, the software infrastructure has to deploy the code

on the device. In the context of component-based applications, deployment consists of

many steps that we can classify in three important phases:

− Component binaries downloading from a repository to devices, − Instantiation of these components (e.g. the GUI) on the user’s device, and − Interconnection them with the components that belong to the fixed part of the

service.

For this purpose, we introduce a third component in our architecture that we call

Deployer (DP). As for the SA component, it is a “client-side” component and, as such,

is instantiated on users’ devices. Figure 4 completes our architecture of a software

infrastructure for ubiquitous computing and details steps from the service choice by

user (4) to deployment of the client part of the application (5, 6a and 6b).

Service

Activator

User Device

Deployer

(4) Select a service

Service Provider Server

Repository of

assemblies
(5) Download mobile

assembly

GUIGUI TrainsTrains
(6a) Instantiate component

(6b) Interconnect and

configure components

(3) Compute and send

available services list

(2) Send “profile”

(1) Transmit ID

Service

Registry

Fig. 4. Service selection and deployment on user’s devices.

The components of the service that are running on fixed computers - e.g. the

component that extracts information on trains to send to users in our example - have

been deployed and instantiated in a preliminary step and according to the same

deployment process. Assembly that is downloaded on device only contains mobile

components to be instantiated on user’s terminal and interconnected to previously

instantiated fixed components if necessary. The repository of assemblies mentioned in

Figure 4 can be located on the service provider server or on a remote HTTP or FTP

(or anything else) server.

Once all these steps achieved, end-user can use features provided by the contextual

service, that is, in our case, accessing details on trains on departure. Nevertheless, the

role of the DP component is not limited to deploy and instantiate selected services. In

fact, this component is in charge of the entire life cycle of the application. In the

context of ubiquitous computing, users arrive and go outside of ubiquitous

environments. For instance, the user has taken his train which has started. When users

will come in the railway station again, as they know (if they remember) that the

“trains” service exists, they would like to use it immediately. That means not having

to select one of the displayed SR ID, next waiting for the user’s profile transmission,

choosing the appropriate service and so on. The idea then is to keep in cache mobile

assemblies of services that users would be likely to reuse. The DP component of our

architecture allows that. If the user goes outside the network coverage zone, the DP

component manages the different scenarios, depending on the type of service:

− The service is available in a “disconnected” state – This case has no consequence

for the user (e.g. the “mailbox” example). − The service isn’t available in a disconnected state (e.g. our “trains” example) – The

DP asks if the user wants to completely remove the service from device or if

he/she wants to keep assembly’s archive of the service. In this last case, the mobile

assembly is put in a cache (stored in the device flash memory) so that the user will

be able to reuse it in future by just instantiating the client part of the application

(i.e. only from step (6) in our architecture illustrated in Figure 6), obviously if the

service is ever available. Service’s versions management is done thanks a unique

identifier attached to each service.

5 Implementation

To realize our component-based software infrastructure dedicated to ubiquitous

computing, we choose the OMG CORBA Component Model (CCM). This section

previously briefly describes this component model and the OpenCCM platform,

which is an open-source implementation of this standard. Next, we detail

implementation of the architecture of our software infrastructure defined in Section 4,

especially the CORBA components of this architecture and their interactions. Then

the implementation of the train service is discussed.

5.1 The OMG CORBA Component Model and OpenCCM

The CORBA Component Model is the first vendor neutral open standard for

Distributed Component Computing supporting various programming languages,

operating systems, networks and CORBA products seamlessly [1]. This model is a

specification defined by the Object Management Group (OMG) consortium for

creating distributed, server-side scalable, component-based, language-neutral,

transactional, multi-user and secure applications. Software components enhance the

object paradigm. Moreover, the CCM defines an architecture dedicated to software

engineering and more exactly to the life cycle of software development process:

design, implementation, packaging, assembling, deployment, and execution. A

CORBA component consists of a reference interface, a set of interaction ports and

business attributes. Ports allow one to describe how a component is “communicating”

with other components. As previously discussed in Section 3.1, the CCM defines four

types of ports: facets, receptacles, event sinks and event sources. Finally, CCM

provides an XML-based packaging and assembling facility coupled to an automatic

distributed deployment process.

The OpenCCM platform [2] is the first public available and open source

implementation of the CCM specification. Since 2002, OpenCCM is hosted by the

ObjectWeb consortium, an international consortium promoting open source

middleware. The OpenCCM platform is fully written in Java and supports most of

available Java-based CORBA products, i.e. JacORB, OpenORB, ORBacus or Borland

Enterprise Server. OpenCCM is not only a CCM middleware platform for executing

CCM applications but it also offers a methodology for building distributed

applications including UML-based designing, packaging, assembling, deployment,

and management tools. OpenCCM works on various operating systems like Linux,

Solaris, Windows NT/2000/XP, and also Windows CE and Linux Familiar for PDA.

5.2 The Software Infrastructure Implementation

First of all, two CORBA components have been defined to respectively model the SR

and the SA components specified in our architecture. The SR component provides a

facet allowing users to get the list of available services. Also, it is represented by a

GUI allowing administrators to manage this list. The SA component is represented by

a GUI instantiated on user’s device to display, firstly a list of SR that have been

“detected”, secondly the list of available services registered on each SR selected by

user. What’s more, a third CORBA component named Multicast has been defined to

implement the interactions between the SA and the SR components during the services

discovery phase (Figure 5). The generic Multicast component provides a facet

implementing a “Send/Receive” service of multicast requests and is instantiated on

each nodes (i.e. on all devices and servers). SA and SR components are both bound to

the Multicast component (but not the same instance). SR uses the “Send” service to

send its ID whereas SA uses the “Receive” one to get it. Using of multicast requests is

well suited for the implementation of the discovery protocol in the context of a

ubiquitous environment. Indeed, SA and SR components are not directly connected

(from a CCM point of view), which was the original goal as user/device is not

supposed to know about its environment before discovering it!

As far as the deployment is concerned, a CORBA component implements the DP

component. It provides a facet used by the SA component receptacle. This facet offers

many operations for deploying the service. More precisely, the DP component is

connected, through a receptacle, to the OpenCCM Distributed Component

Infrastructure (DCI). The DCI infrastructure is designed as a set of CORBA

components to manage the deployment phase of CCM applications [7]. Components

of the DCI provide facets offering deployment operations as install an assembly by

downloading it from a repository to the device, instantiate it or tear down it. Also, the

DP‘s facet implements cache management of assemblies. Finally, the following figure

shows the assembly of SA, SR, Multicast and Deployer CORBA components,

connected to the OpenCCM DCI infrastructure:

Service

Registry

- Send multicast requests

- Receive multicast requests

Send / Receive

MultiCast

- Get services list

- Add, update, remove services

Service

Activator

Deployer

OpenCCM DCI

DCI ComponentsDCI Components

Services

Deploy

- Install, instantiate assembly

- Remove, cache assembly

Service

Registry

- Send multicast requests

- Receive multicast requests

Send / Receive

MultiCastMultiCast

- Get services list

- Add, update, remove services

Service

Activator

Service

Activator

Deployer

OpenCCM DCI

DCI ComponentsDCI Components

Services

Deploy

- Install, instantiate assembly

- Remove, cache assembly

Fig. 5. The CORBA Components Assembly of the Service Discovery and Automatic

Deployment Infrastructure.

To experiment our infrastructure, we have also implemented the “trains” service

using two CORBA components. A Server component is responsible of getting, from

service provider’s information system (SP-IS), and sending, through an event source,

information on trains. A Client component, deployed on users’ devices, receives these

data through an event sink and displays a table using a GUI. Figure 6 illustrates on a

PDA this example of service at work, i.e. after the service’s dynamic discovery and its

automatic deployment. A laptop has been used to host the Server component and the

SP-IS and the network used is an IEEE 802.11b wireless network.

Fig. 6. An example of service at work on a communicating PDA.

5.3 Limitations

The implementation of our software infrastructure for ubiquitous computing based on

the CCM and the OpenCCM platform allows us to address the problems of the

contextual services discovery and automatic deployment on user’s device according

to hardware/software capabilities. Nevertheless, some limitations should be

emphasized:

− The size of assembly archives may cause some download time problems during the

installation step of the deployment. This is due to the limited throughput of current

wireless networks, and the way containers are generated in OpenCCM which

implies component binary archives being in some case very large. A dynamic

generation of container classes at execution time could address this problem by

reducing the size and downloading time of assembly archives. − The multicast protocol had to be implemented using a specific hand-written

component (Multicast). This component would be useless if multicast

communications between CORBA components will be directly supported by the

CCM platform. − Infrastructure’s components (but also many ubiquitous services) use threads.

Management of these threads is done in the component business implementation

code. This point can be avoided if the component’s container will able to manage

threads. − Security during service discovery, automatic deployment, and execution is not

currently addressed in our infrastructure. This firstly requires the integration of

security mechanisms like SSL secure communications at the ORB level, and access

control at the OpenCCM container level. Secondly, security policies dedicated to

our infrastructure must be defined and enforced. Some security integration works

have been already prototyped for next OpenCCM versions. − Finally, this approach supposes the client part of the infrastructure (the SA,

Multicast and DP components, with the OpenCCM application server and DCI

components) being previously installed on devices. Currently, this is done

manually. Solutions, as partnerships with device manufacturers for instance, should

be considered.

6 Related Works

The OMG/ISO trader [8] and the RM-ODP [9] trader mediate advertisement and

discovery of services. The implementation of our service registry could use such

technologies.

JINI [10] from Sun Microsystems offers several ways to discover services. The

Multicast Request Protocol permits to user’s terminal to send a multicast request to a

lookup service. The response is sent via a TCP unicast message. The opposite

solution, named Multicast Announcement Protocol, is used by lookup services to

announce their presence to any interested parties that may be listening and "in range"

of the multicast scope of the lookup service.

The Appear Provisioning Server [11] from AppearNetworks is an infrastructure

dedicated to service discovery and deployment. This allows deployment of wireless

infrastructure in which applications and documents are available on users’ terminal on

dedicated places. Applications are developed independently of the infrastructure. In

this sense, they do not provide a seamless solution for both infrastructure and

services.

The AMPROS project [12] aims to study and develop a middleware for mobile

environment. As our proposal, it is based on CCM and the OpenCCM platform. They

are developing a set of tools to adapt the applications at runtime.

7 Conclusion

Ubiquitous and context aware applications are one of the new challenges in

distributed computing area. Until now, there is no global solution from the design step

to the execution step to build such applications. To address this challenge, we have

presented in this paper a global solution based on distributed software components to

build both ubiquitous context aware applications and the required discovery and

automatic deployment infrastructure. This solution has been designed on top of the

OMG’s CORBA Component Model and implemented using the OpenCCM platform.

A sample train service example has been designed, prototyped and already run on top

of PDA devices and wireless networks.

Our future works will go in two directions. Firstly, we want to experiment our

approach on other service scenarios in order to define a model-driven methodology to

build ubiquitous contextual services independently of underlying execution platforms.

Secondly, according to the current limitations listed in Section 5.3, we will enhance

the OpenCCM platform in several directions: dynamic container generation to reduce

the size of assembly archives and improve downloading time on slow wireless

networks, integrate multicast communications in the CCM model, integrate a

threading service inside CCM containers, and address security at the different

required levels (i.e. in underlying CORBA middleware, in runtime containers, and in

discovery and deployment components).

8 References

1. Object Management Group: CORBA Components Specification, version 3.0. OMG TC

Document formal/2002-06-65. OMG, Boston (2002)

2. OpenCCM Team: The OpenCCM Project. http://openccm.objectweb.org (2002)

3. Szyperski, C.: Component Software: Beyond Object-Oriented Programming (Second

Edition). Component Software Series, Addison-Wesley and ACM Press (2002)

4. Compaq: WL 110 Wireless Card User Manual (2001)

5. Buffalo Tech: WLI-CB-G54A User Manual (2002)

6. D-link; DWL-AG660 User Manual (2004)

7. Hoffmann, A., Ritter, T., Reznik, J., Born, M., Neubauer, B., Stoinski, F., Boehme, H.,

Folliot, B., Vadet, M., Lang, U., Merle, P., Contreras, C.: Specification of the Deployment

and Configuration. IST COACH Document Deliverable #2.4. http://www.ist-coach.org

(2003)

8. Object Management Group: Trading Object Service Specification, verion 1.0. OMG TC

Document formal/2000-06-27. OMG, Boston (2000)

9. Leydekkers, P.: Multimedia Services in Open Distributed Telecommunications

Environments. PhD Thesis CTIT (1997)

10. Edwards, W. K.: Core Jini Introduction. Prentice Hall PTR (1999)

11. AppearNetworks: The Appear Provisioning Server. http://www.appearnetworks.com

12. Ayed, D., Taconet, C., Bernard, G.: Deployment and Reconfiguration of Component-based

Applications in AMPROS. Proactive computing workshop (PROW 2004) - Helsinki,

Finland (2004)

