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We study both numerically and experimentally two-dimensional soliton bound states in quadratic media and

demonstrate their symmetry-breaking instability. The experiment is performed in a potassium titanyl phosphate

crystal in a type-II configuration. The bound state is generated by the copropagation of the antisymmetric

fundamental beam locked in phase with the symmetrical second harmonic one. Experimental results are in good

agreement with numerical simulations of the nonlinear wave equations.

DOI: 10.1103/PhysRevA.83.013807 PACS number(s): 42.65.Tg, 42.65.Ky

I. INTRODUCTION

Since the early works of Torruellas et al. [1], Torner

et al. [2,3], and Boardman et al. [4], it has been well known

that second-order nonlinearity (χ (2)) can lead to efficient

self-guiding effects. In that context, soliton beam propagation

in nonlinear media commonly used for frequency conversion

has been observed in plenty of configurations (see Ref. [5]

for a review) including, in particular, the (2 + 1)-dimensional

[(2 + 1)D] geometry [1,3,6] for which Kerr solitons are not

stable [7]. As expected in a medium that supports soliton

propagation, modulation instability (MI) [8] has also been

observed in quadratic materials [9–12]. In a theoretical paper,

Haelterman et al. predicted the existence in these media of

multiple soliton bound states analogous to those of Kerr media

[13]. In Kerr media these bound states have a vector nature

in the sense that they consist of coupled linearly polarized

solitons of orthogonal polarization in phase quadrature [14]. In

quadratic media the bound states are the result of the coupling

of two parallel quadratic soliton beams of the same polarization

but having π -out-of-phase fundamental field envelopes. It was

shown in Ref. [13] that these quadratic bound states exhibit a

symmetry-breaking instability that results in a power transfer

from one soliton of the bound state to the other, in a way similar

to what happens in Kerr soliton bound states. The existence and

the symmetry-breaking instability of the soliton bound states

have already been demonstrated in Kerr media [15,16]. Until

now, no experimental demonstrations have been presented

concerning the existence and the propagation dynamics of

quadratic bound soliton states whereas collisions between

individual solitons [17] have been observed [18]. This can be

explained by the difficulty in performing the polarization and

spatial shaping of the bound-state components while assuring

the appropriate phase relation between them. In the Kerr

configuration only, the phase-locking problem can be bypassed

by using circularly polarized components. Here, we overcome

this issue by using a couple of phase plates controlling the

spatial features of the beams and their phase relation and

demonstrate the quadratic bound-state dynamics.

In the present paper, we provide a detailed study of

the dynamical features of quadratic soliton bound states.

In particular, we demonstrate experimentally that the bound
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states undergo the theoretically predicted symmetry-breaking

instability. However, for practical reasons we considered in our

experiment the generation and propagation of the bound states

in a (2 + 1)D geometry whereas theory has been developed

for the (1 + 1)D geometry [13]. In addition, we considered a

type-II phase-matching configuration that implies walk-offs

between the waves involved in the underlying three-wave-

mixing process. For these reasons we first had to check the

existence of the bound states with two transverse dimensions

in the type-II phase-matching arrangement. This was done

numerically on the basis of a realistic wave propagation model.

We first calculated the stationary soliton solutions of this model

by means of a standard relaxation method. This calculation

allowed us to confirm the existence of (2 + 1)D quadratic

soliton bound states in a type-II phase-matching configuration.

We then simulated the propagation of these bound states to

confirm their invariant nature as well as to show that they

suffer a symmetry-breaking instability exactly as predicted in

Ref. [13] for the (1 + 1)D geometry. Finally, we provide a

statistical analysis from laser shots of the symmetry-breaking

instability of the bound states.

II. NUMERICAL STUDY

As in the first demonstration of the existence of the

quadratic soliton [1], we chose the commonly used potas-

sium titanyl phosphate (KTP) crystal as nonlinear quadratic

material. The reasons for this choice are its availability in

large format (centimeter size), its high efficiency, and its high

damage threshold (>500 MW/cm2 [19]).

In KTP the propagation of the fundamental and second

harmonic fields in the type-II phase-matching configuration

can be described by a set of three equations [1]. They model

the propagation of the three fields involved in the nonlinear

wave coupling, i.e., ordinary and extraordinary polarized

fundamental fields (FF) and the extraordinary polarized second

harmonic field (SH):
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with Uo, Ue, and Ve the ordinary, extraordinary FF, and

extraordinary SH, and nFF
o , nFF

e , and nSH
e their refractive
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indices, respectively. � stands for the 2D transverse Laplacian

operator ∂2

∂x2 +
∂2

∂y2 , and ρFF
e,x = 0.19◦ and ρSH

e,x = 0.28◦ are

the spatial walk-off angles of the two extraordinary beams.

We assume that the KTP crystal is cut for second harmonic

generation at 1064 nm. This implies the angle values θ = 90◦

(corresponding to propagation in the X-Y crystal plane),

φ = 23.5◦ (with tan φ = Y0/X0;
−−−−→
(X0,Y0) defining the beam

propagation direction in the X-Y crystal plane). Note that the

coordinates axes (x,y,z) are chosen so that the x axis is in

the direction of the walk-off. The parameters δ1 and δ2 are the

phase mismatches between the two FF fields and the SH field.

The nonlinear coefficient is written as γ = deffωFF/c, where

ωFF is the FF angular frequency, c is the speed of light in

vacuum, and deff is the effective nonlinearity given by deff =

d31 sin2 φ + d24 cos2 φ2 (for θ = 90◦), with d31 = 1.95 pm/V

and d24 = 3.9 pm/V [19].

Compared to the model of Ref. [13] in which the quadratic

soliton bound states and their instability have been predicted,

the main differences are the 2D transverse geometry and the

type-II phase-matching configuration (two FF components

leading to a system of three coupled equations instead of

two) with the associated spatial walk-off between the three

field components. Given these fundamental differences, we

have first checked numerically the existence of the bound

states as stationary solutions of Eqs. (1) and then we studied

numerically their stability through a standard beam propaga-

tion method. These preliminary studies are the object of the

following paragraphs.

A. Soliton bound states

The stationary solutions of the model (1) have been

calculated numerically using the so-called relaxation method

[20], Sec. 17.3]. We considered as initial guess a two-lobe

structure with antisymmetric profiles in the FF components

and a symmetric profile in the SH component so as to mimic

the (1 + 1)D soliton solution of Ref. [13]. The two lobes are

naturally centered on the y axis, so that the system symmetry

is not broken by the walk-offs that are in the x direction.
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FIG. 1. (Color online) Quadratic soliton bound state correspond-

ing to a total power of 29 kW as calculated numerically from

Eqs. (1) with the experimental parameters given in the text. Shown are

amplitude profiles of (a) Uo, (b) Ue, and (c) Ve and their corresponding

phase profiles [(d), (e), and (f), respectively].

An example of a calculated quadratic soliton bound state is

depicted in Fig. 1. One can clearly see that each component

exhibits a dual-hump structure and a phase slope in the walk-

off direction. The FFs carry a π phase step at y = 0, their

profiles being antisymmetric in the y direction, in contrast to

SH one, which is symmetric. The bound state can then be

described as a couple of quadratic solitons (the left and right

intensity lobes) propagating invariantly side by side owing to

the interaction equilibrium ensured by the π phase relation

between their fundamental components. In the following, the

bound-state dynamics will be described by means of the left

and right soliton behaviors.

This solution has been computed for a crystal misalign-

ment of −0.32◦ with respect to the phase-matching angle

of φ = 23.5◦. This misalignment corresponds to a phase

mismatch δk = ωFF/c(nFF
o + nFF

e − 2nSH
e ) < 0. This negative

phase mismatch is required for the existence of soliton bound

states [13] although quadratic solitons exist under both positive

and negative phase-mismatch condition [5].

B. Symmetry-breaking dynamics

Solving Eqs. (1) by means of a (2 + 1)D split-step Fourier

method we simulated the propagation of these quadratic

soliton bound states. These simulations will provide more

information on the physics of the soliton bound states as they

give access to the amplitude and phase evolution during their

propagation and their dependency on the perturbation. The

output profiles of the three interacting waves Uo, Ue, and

Ve, are presented in Fig. 2. As expected, Figs. 2(a1)–2(a3)

show that the soliton bound state propagates undistorted;
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FIG. 2. (Color online) Simulated output intensity profiles of the

three interacting waves after 2 cm of propagation of (a) the numerical

bound-state solution of Fig. 1; (b) the same initial conditions as in

(a) but in the linear regime (low power) and in the absence of initial

phase slope in the x direction; (c) the same as in (b) but at soliton

power.
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in particular, it conserves its profile and, in spite of the

walk-offs, its propagation direction (with the total power here

being 29 kW). The absence of visible walk-off is naturally

due to the compensation of the initial phase slopes in the

input profiles. Note that the compensation is not perfect as a

slight (≈10-µm) translation in the direction of the walk-off

is observable in Figs. 2(a1)–2(a3). This can be explained by

the limited transverse resolution of our numerical simulations

(8 and 4 µm in the x and y directions, respectively) as imposed

by computational limitations. However, the remaining drift

is far lower than what can be observed without phase slope

compensation, as described thereafter.

Figures 2(b1)–2(b3) show the output intensity profiles of

the same soliton bound-state envelopes but in the linear regime

of propagation, that is, at very low power (the total power here

being 29 W) and in the absence of the walk-off compensation

phase slopes. The observed beam broadening clearly shows

that diffraction governs propagation. We also see that the

walk-off separates the different beam components: −62- and

−94-µm x translation for the extraordinary FF and SH,

respectively, as expected from the values of the two walk-off

angles in Eqs. (1).

Figures 2(c1)–2(c3) present the propagation of the same

input envelopes without phase slope, but with the appropriate

power corresponding to the soliton bound-state solution

computed numerically and shown in Fig. 1. It is clear from this

result that the quadratic nonlinearity induces spatial self- and

mutual trapping of the field components even in the absence

of phase slope in the initial field profiles. The walk-off only

results in a tilted propagation in the x direction. A common

translation of −82 µm in x is observed on each beam. This

result is of importance because it demonstrates that soliton

propagation does not require an initial phase slope in the beam

profiles. The absence of phase slope is only responsible for

a drift while the self- and mutual confinement is preserved.

In our experiment it is therefore legitimate and convenient to

generate the beam profiles without their phase slope, which

strongly simplifies the beam-shaping setup.

Propagation simulations of field profiles as obtained in

the experiment were performed to observe the generation

dynamics of the bound state starting from nonideal profiles

and to check the stability of the soliton bound states. The

SH profile is a simple circular Gaussian beam while the FF

profiles are formed by juxtaposing two out-of-phase circular

Gaussian beams of smaller diameter. For the three beams the

phase profile is flat. A 10% intensity noise with a random

phase has been added to the three envelopes in order to mimic

experimental conditions. Figure 3 presents a typical result of

the simulations with a total beam power of 20 kW. The input

beams are shown in Fig. 3(a). The other figures allow us to

identify three steps in the propagation dynamics. Over the first

5 mm we see that the SH beam is spontaneously reshaped to

adopt the two-hump profile of the exact soliton bound-state

solution [Fig. 3(b)]. After 2 cm the FF envelopes start to

exhibit an asymmetry [Fig. 3(c)], which is the signature of

the symmetry-breaking instability predicted in the (1 + 1)D

geometry in Ref. [13]. The instability develops rapidly and

results in an almost complete transfer of power from one

soliton of the bound state to the other, exactly as what happens

in the Kerr-type soliton bound state [21] [Fig. 3(d)]. At
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FIG. 3. (Color online) Simulated intensity profiles in the

y direction (resulting from integration in x) of the beams corre-

sponding to a total power of 20 kW. The red (bottom bold), magenta

(bottom), and blue (upper) lines represent Uo, Ue, and Ve, respectively.

(a) Input z = 0 cm, (b) z = 0.5 cm, (c) z = 2 cm, and (d) z = 5 cm.

this stage the beams progressively adopt the profiles of the

well-known stable single quadratic soliton. As the symmetry-

breaking instability is induced by noise, the direction of the

energy transfer from one lobe to the other is random. As a

result, we can expect in the experiment to observe from shot to

shot a random left-right symmetry breaking of the laser beam.

III. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig. 4. A Nd:YAG

Q-switched mode-locked laser emitting 1064-nm, 55-ps

pulses with energy in the millijoule range is used to generate

both the FF and the SH fields. After cleaning up the beam

profile through spatial filtering, the linear polarization is set

to 45◦ by using a half-wave plate combined with a polarizer

so as to reach the maximum SH generation efficiency (≈50%)

in a 2-cm-long KTP crystal cut for type-II phase matching

(KTP1). The FF and SH beams are then shaped in a cylindrical

lens arrangement (Lx,Ly) and launched into the second KTP

crystal (KTP2, with the same specifications as KTP1).

The phase profiles of the beams are shaped after the lenses

by means of two glass plates P1 and P2. P1 is a nonparallel

plate (truncated prism) with an angle of 1◦ between its main

faces. A simple translation of this plate in the transverse plane

allows for a fine tuning of the phase difference between the

FF and SH input fields. Experimental results show that a 1-cm

translation corresponds approximately to a 2π relative phase

shift. Note that this plate induces a spatial misalignment of

Spatial

filter

Polarizer

KTP1

Nd:YAG

1064nm

55ps

KTP2

/2

L
y

L
x

Imaging

system 1

P1
P2

Imaging

system 2

FIG. 4. (Color online) Experimental setup. λ/2 stands for the

half-wave plate. Lx and Ly are cylindrical lenses with focal length of

150 mm in the x direction and 80 mm in the y directions, respectively.

P1 and P2 are the phase plates. FF and SH are imaged using distinct

imaging systems with synchronized CCD cameras.
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the FF and SH beams due to dispersion (refraction through a

prism); however, the 1◦ angular aperture is sufficiently small to

induce only negligible misalignments. The second plate P2 is

covered on half the surface by a thin glass layer. The layer has

a thickness inducing a π phase shift across the FF beam and a

nearly 2π phase shift across the SH beam. Due to diffraction

the π phase shift in the FF beam induces in the focal plane

of the lenses two well-separated lobes of opposite phase while

the perturbation caused by the nearly 2π phase shift in the SH

beam is merely washed out provided that this phase jump is

established on a sufficiently short distance in the transverse

plane. One can therefore reasonably admit that this shaping

process leads to field distributions that are close to those of the

theoretical soliton bound state.

In a first step, only the KTP1 crystal is placed in the beam

and oriented by means of a couple of rotation stages in order

to optimize frequency conversion. According to numerical

simulation a conversion of 90% would be necessary but, due to

experimental constraints (available power and crystal length),

a maximum conversion of 50% has been achieved. This limit is

not critical as the excess FF energy is lost in the crystal KTP2

through radiative waves in the soliton generation process. The

KTP2 crystal is then placed in the focal plane of the lenses.

KTP2 is aligned by generating first a fundamental (single-

hump) quadratic soliton. It is then misaligned by a few tenths of

degrees with respect to the phase-matching angle in order to get

the negative phase mismatch necessary for the generation of

soliton beams. The generation of a fundamental (single-hump)

quadratic soliton is obtained through the introduction of phase

plate P1 by finely tuning its transverse position in the beam.

Then the phase plate P2 is introduced to induce the π phase

shift in the middle of the FF beam. The setup is therefore ready

to study through power tuning the formation and the stability

of the two-hump quadratic soliton bound state. The power was

adjusted by using a set of absorptive density filters to obtain the

most polarization- and wavelength-insensitive power tuning.

As the KTP2 crystal is only 2 cm long, the symmetry

breaking of the beam can only be observed at the first stage of

its development, as illustrated by the simulated output profiles

of Fig. 3(c). The fully developed left-right symmetry breaking

leading to complete energy transfer, as illustrated in Fig. 3(d),

would require a 5-cm-long crystal.

IV. EXPERIMENTAL RESULTS

A. Two-dimensional profiles

Our results are presented in Fig. 5. Figures 5(a1)–5(a3)

show the input intensity profiles of the three fields Uo, Ue,

and Ve, respectively. This allows us to check the efficiency of

the beam-shaping technique. As can be seen, a rather smooth

and symmetric dual-lobe structure is obtained in both FF

components, while the SH field exhibits a single-lobe profile.

The visible distortion of this profile is attributed to the effect

of the finite-width SH 2π phase shift induced by the shaping

setup. Note however that what is important is that the SH

energy is located in one single lobe well centered on the phase

defect of the FF fields.

The output profiles at low power are presented in

Figs. 5(b1)–5(b3). As expected, the three components undergo
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FIG. 5. (Color online) Experimental intensity profiles of Uo,

Ue, and Ve in the first, second, and third column, respectively.

(a) Input condition, (b) output in the low-power regime, (c,d) output

at soliton power ≈ 60 kW showing both the soliton bound state and

its symmetry breaking, and (e) output at soliton power but with an

unfavorable FF and SH phase relation.

a strong diffraction and a clear spatial separation due to

the birefringence walk-off in the crystal. Note that in the

present case propagation is not strictly linear, as SHG clearly

occurs from the diffracted FF beam wings, which results

in the distorted FF profiles and SH intensity background of

Fig. 5(b). One can estimate that the FF extraordinary and SH

fields undergo ≈ −55- and ≈ −100-µm walk-of-induced x

translations. These values are in good agreement with those

predicted by the numerical simulation of Fig. 2(b).

Figures 5(c1)–5(c3) show the three output beams obtained

at a power of ≈60 kW for which self-guiding is observed.

As can be seen, the FF and SH beams are now nicely self-

guided through mutual trapping. Their nonlinear interactions

compensate not only for diffraction but also for the difference

in walk-off angles between the field components. The walk-off

is now clearly the same for the three components, resulting

in a final translation of approximately 68 µm. Moreover, the

SH intensity distribution [Fig. 5(c3)] exhibits a fine dual-

lobe structure which reflects the nonlinear beam-reshaping

process numerically predicted and illustrated in Fig. 3. This

observation clearly demonstrates the existence of the two-

hump quadratic soliton bound state theoretically predicted in

Ref. [13].

However, this result is not obtained systematically. The

experiment is repeated and from one laser shot to another

there are significant dissimilarities. In most cases the intensity
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profiles adopt a one-lobe structure randomly displaced either

to the left or the right with respect to the center of the above

symmetrical profile. This behavior is a clear signature of the

symmetry-breaking instability.

A typical example of a symmetry-broken beam is shown in

Figs. 5(d1)–5(d3) for exactly the same experimental conditions

as those of Figs. 5(c1)–5(c3). As can be seen, the three initially

symmetric fields have transferred almost all their power to a

single-lobe structure displaced to the left of the initial beam

axis. Quite remarkably, the resulting beam is quite smooth

and well confined, which shows that the compensation of

diffraction and the mutual field trapping are both maintained in

the symmetry-breaking process. This is in excellent agreement

with the numerical simulations that show in the final stage

of the instability process the formation of a single-lobe

fundamental quadratic soliton.

Figures 5(e1)–5(e3) show what is observed when the rela-

tive phase between the FF and SH fields is not controlled (phase

plate P1 is removed from the setup). Even at power levels

corresponding to the soliton regime (≈60 kW), diffraction is

no longer compensated and the mutual field trapping is reduced

to the formation of some randomly distributed spots. It is the

contrast between this erratic behavior and the soliton regime

that allowed us to finely tune the relative phase between the

FF and SH fields by means of the phase plate P1.

B. Statistical study

Figure 6 shows the result of a statistical study of the

instability. It shows histograms of a measure of the beam asym-

metry. Because of the radiative wave and noise background in

the beam images (mainly due to the absence of diffraction

compensation in the pulse wings), the beam asymmetry could

not be evaluated simply through the first-order intensity

distribution moment. We adopted an alternative technique that

consisted in making a fit of the two beam peaks by means

of two separate and independent Gaussian functions (the

two-dimensional intensity distribution being first integrated

over the x direction so that the fit is performed on the two-peak

intensity profile in y). We then defined the beam asymmetry

parameter S as being the ratio between the intensity of the

left beam Gaussian fit and the overall beam intensity. The

parameter S is then the relative weight of the left beam, a

value of 0.5 corresponding to a symmetric beam.

Figure 6(a) shows the S distribution of the input beam.

As can be seen, the input beam is not perfectly stable due to

variations of the spatial profile of the Q-switched laser pulses

from shot to shot (since there are 10% intensity fluctuations in

the spatial profiles of the laser pulses).

0.25 0.25 0.250.5 0.5 0.50.75 0.75 0.75
0

1

S

(a) (b) (c)

FIG. 6. (Color online) Statistical study of the soliton symmetry-

breaking process: (a) input beam, 66 laser shots; (b) output in the

low-power regime, 87 laser shots; (c) output in the soliton regime,

159 shots.

Figure 6(b) shows the statistics for the output beam at the

relatively low power (≈1 kW) corresponding to Fig. 5(b1)–

5(b3). As previously mentioned, at this power there is non-

negligible energy transfer between the FF and SH components,

leading to some complexity. The resulting distribution width

reveals that nonlinear effects already induce some kind of

instability. However, the distribution remains peaked at the

origin, showing that the symmetric output is still the most

probable.

Figure 6(c) reveals that in the soliton regime (60 kW) the

distribution is split into two main lobes of approximately the

same height. Clearly the probability of getting a symmetric

event becomes much weaker and in a large majority of the

events symmetry breaking occurs. The large width of the

distribution lobes shows that the fundamental quadratic soliton

beam resulting from the symmetry breaking has an orientation

that greatly fluctuates from shot to shot.

V. CONCLUSION

In summary, we have shown numerically and experimen-

tally the existence of the (2 + 1)D quadratic soliton bound state

as a stationary solution of the full nonlinear wave propagation

model including birefringence walk-off. The experiments were

performed by launching in a type-II KTP crystal a field

configuration that is as close as possible to the theoretical

soliton-bound-state solution, which means that we controlled

the relative phase between the fundamental and second

harmonic fields and that we shaped the fundamental field into

an antisymmetric two-lobe amplitude profile. Although the

propagation length is relatively short (2 cm), the symmetry-

breaking instability of the soliton bound state has been clearly

observed thanks to the pulse-to-pulse noise fluctuations of

the Q-switched laser used for the experiment. From shot to

shot the spatial profile changes sufficiently to get two regimes

of propagation in the same experiment. Depending to the

shot, the noise perturbation spatial asymmetry is either weak

enough to allow for steady propagation of the bound state

or, conversely, able to seed the instability, in which case

the symmetry breaking leads to a single-lobe fundamental

quadratic soliton walking transversely at variable angles. We

provided a statistical study that shows the robustness of the

symmetry-breaking dynamics that is at play in the quadratic

soliton bound state, a feature that might have some potential

application for all-optical signal processing in which beam

self-guiding and switching processes are key functions.
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