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In an attempt to understand the role of structural rearrangement onto the cell response during imposed cyclic stresses, we
simulated numerically the frequency-dependent behavior of a viscoelastic tensegrity structure (VTS model) made of 24 elastic
cables and 6 rigid bars. The VTS computational model was based on the nonsmooth contact dynamics (NSCD) method in which
the constitutive elements of the tensegrity structure are considered as a set of material points that mutually interact. Low
amplitude oscillatory loading conditions were applied and the frequency response of the overall structure was studied in terms
of frequency dependence of mechanical properties. The latter were normalized by the homogeneous properties of constitutive
elements in order to capture the essential feature of spatial rearrangement. The results reveal a specific frequency-dependent
contribution of elastic and viscous effects which is responsible for significant changes in the VTS model dynamical properties.
The mechanism behind is related to the variable contribution of spatial rearrangement of VIS elements which is decreased
from low to high frequency as dominant effects are transferred from mainly elastic to mainly viscous. More precisely, the
elasticity modulus increases with frequency while the viscosity modulus decreases, each evolution corresponding to a specific
power-law dependency. The satisfactorily agreement found between present numerical results and the literature data issued
from in vitro cell experiments suggests that the frequency-dependent mechanism of spatial rearrangement presently described

could play a significant and predictable role during oscillatory cell dynamics.
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Introduction

Passive cell deformation resulting from the application of me-
chanical stress by neighboring cells or the microenvironment as
well as stress-induced active cell response mediated by mechan-
otransduction are both fundamental processes involved in the con-
trol of many cellular functions such as differentiation, growth,
DNA and/or protein synthesis, wound healing, and tissue remod-
eling [1-5]. The accomplishment of these cellular processes is
possible because the cytoskeleton (CSK), i.e., a three-dimensional
prestressed structure principally composed of a network of three
types of interconnected filamentous biopolymers (actin filaments,
microtubules, and intermediate filaments), spatially rearranges
while CSK elements are redistributed throughout the multiscale
CSK substructures which extend from the entire cell size (e.g.,
through stress fibers) down to an individual actin filament length
[6—8]. Note that the “short-term” (or passive) stress/strain harden-
ing of the CSK (let us say a minute or less) should not be con-
founded with the “long term” (or active) stress/strain hardening
(let us say from hours to days or more). The latter is currently
observed secondary to the active responses of the cell to imposed
stimuli, e.g., CSK remodeling after sufficient exposure (i.e.,
hours) to fluid shear flow [9-11], activation of the acto-myosin
contractile apparatus induced by several tens of minutes of cell
compression using a microplates device [12]. The “short term”
spatial rearrangement has already been thought to promote non-
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linear effects such as stress-hardening behavior of the cell [13-17]
or the internal tension dependence of cell rigidity [18-22]. Note
that tension dependence of cell rigidity has recently been con-
firmed by Sultan et al. [23] who found a positive prestress depen-
dence of the elastic modulus G’ in both homogeneous and hetero-
geneous tensegrity structures close to the presently studied one.
Noteworthy, recent experiments on micromanipulated living cells
have revealed a more or less marked time (or frequency) depen-
dence of the cellular mechanical response [12,24-28] with the
expression of multiple time constants of cellular substructures
(i.e., the number of cell-characteristic time constants would vary
from two to infinite, depending on authors [24,29-32]).
Tensegrity models have been thought to be good candidates to
describe the static behavior of cellular systems. There is at least
two basic underlying assumptions for that: (i) tensegrity structures
were proposed to model the CSK of stabilized adherent cells, i.e.,
these cells do not lose their mechanical integrity during the time
of observation/measurement meaning that the rapid dynamic
movement of peripheral actin filaments is not represented by such
models; (ii) due to the spatial rearrangement of their elements,
tensegrity structures can support large deformations still with no
defect in their mechanical integrity [6,17—-19,33-37]. Surprisingly,
the frequency-dependent behavior of tensegrity structures has
only been rarely studied while it could help to understand the
contribution of rearrangement of structural elements to the cell
response during imposed cyclic/oscillatory stresses. Sultan et al.
[23] have used a slightly modified tensegrity structure made of
viscoelastic elements in an attempt to fit experimental results. In
fact, their model differs from the one presently studied both in
terms of the number of constitutive elements (i.e., 36 structural



elements in [23] and only 30 elements in the present study) and in
terms of distribution of element viscoelastic properties (i.e., Sul-
tan et al. have considered both a constant value of viscosity modu-
lus and an arbitrary distribution of elastic modulus within the
cables whereas we have used the same constant viscoelastic prop-
erties for all the cables in the present tensegrity structure). It ap-
pears from [23] that only a highly heterogeneous tensegrity model
with a nonrealistic range of elastic properties could lead to quan-
titative agreement between experimental data and model predic-
tion.

Thus, a number of key questions remain to be solved if one
wants to better understand the contribution of the structural rear-
rangement in the oscillatory cell response. They concern (i) the
variable contribution of spatial redistribution of elements as oscil-
latory frequency of the tensegrity structure changes, (ii) the rela-
tionships between the global properties of the structure, (i.e., time
constants; elastic modulus; viscous modulus) and the local vis-
coelastic properties of constitutive elements, and (iii) the linearity
assumption which is a point still under debate [38] which could
not be considered in the Sultan et al. model while it is of prior
interest in the oscillated tensegrity structure especially at large
initial (or oscillatory) deformations [19]. Noteworthy, a
frequency-dependent characterization of large-scale structural ef-
fects is required in the discussion about the exact nature of the
cellular material. For instance, it would be of interest to estimate
the contribution of spatial rearrangement of CSK elements on os-
cillatory cell mechanics.

In an attempt to answer the above questions, we used a recent
computational model describing the mechanical behavior of a 30-
element viscoelastic tensegrity structure (VTS model) anchored
on the substrate through four attachment points previously used
by our group to study the tensegrity response to transient stress
loading [36,39]. To do so, we modified the loading conditions
previously imposed transiently to the VTS model, to apply cyclic/
oscillatory stresses. Mechanical properties of elements were main-
tained constant (i.e., a unique time constant characterizes all con-
stitutive elements of the indeed homogeneous tensegrity structure)
in order to capture the essential feature of the spatial redistribution
effects and not the effect of an arbitrary heterogeneous distribu-
tion of individual properties as in [23]. Furthermore, we studied
the influence of both the scale and the level of internal tension of
the VTS model on the frequency response, which has not been
studied in [23]. The tensegrity structure approach was justified
because previous tensegrity model results were found at least in
qualitative agreement with several experimental results. Although
presently limited to low amplitude oscillations (i.e., less than 10%
of oscillatory deformation of the VTS model) and no initial defor-
mation (i.e., the VTS model is oscillated around its symmetrical
resting shape), present results reveal that, depending on oscillatory
frequency, behavior of the VTS model is modified because the
weight of spatial redistribution of VTS elements varies as fre-
quency changes. Such a mechanism is specifically revealed by
oscillatory VTS model motion at fixed loading amplitudes.

Method

Constitutive Equations. The present viscoelastic tensegrity
structure (VT structure) is composed of a discontinuous network
of six bars compressed by a continuous network of 24 pre-
stretched cables (Fig. 1). This model has been previously de-
scribed and studied in steady-state conditions by simulating tran-
sient steps of loading (i.e., creep tests) [36,39]. At the reference
state, where no external force is applied, the bars are aligned in
pairs in the direction of the coordinate axes (Fig. 1). This sym-
metrical resting shape of the structure corresponds to the equilib-
rium between tension in cables and compression in bars [40,41].
In the present model, the bars are assumed to be rigid while each
cable is assumed to behave like an elementary viscoelastic “Voigt”
model (i.e., an “elastic” spring arranged in parallel with a “vis-
cous” dashpot) supporting only tension. Cables may become to-

Fig. 1 Spatial view of the viscoelastic tensegrity structure
(VTS) studied (6 bars and 24 viscoelastic cables). At the refer-
ence state (no external force applied to the structure), the four
nodes {1, 2, 4, 8} are anchored and fixed in their spatial posi-
tions (@). The rectangular base {x,y,z} is the referential sys-
tem. Oscillating forces (Fz and -Fz) are applied at nodal points
{6, 11} along the z axis. The overall deformation of the VTS
model is defined by the displacement along the z axis of the
two nodes {6, 11} normalized by the bar length L, which char-
acterizes the size of the structure.

tally slacken if their actual length happens to be less than their
natural resting length secondary to the interplay of compressive
force on that cable.

The constitutive equations describe the dynamic behaviour of
the VTS model taking into account the time dependence of cable
properties and assuming linear viscoelasticity. They derive from
the force equilibrium at each node and can be written by the
following matrix equation of motion:

{F} =[K()}{U} + [C()HU} + [M(U){U} (1)

where the external force vector {F} is related to (i) the nodal
displacement vector {u} associated to the global rigidity matrix
[K(U)], (ii) the nodal displacement derivative or velocity vector
{u} associated to the global damping matrix [C(U)], and (iii) the
nodal acceleration vector {ii} associated to the mass matrix
[M(U)]. The force and nodal displacement/velocity/acceleration
vectors are [ 1 X 36] column vectors and the rigidity/damping/mass
matrices have a dimension [36 X 36] even before considering the
boundary conditions (i.e., the external forces {F} applied and the
four nodal linkages).

However, the numerical resolution of such a system of dynamic
equations (Eq. (1)) appears difficult by using the common “finite
element method” software (e.g., ABAQus©) because the computa-
tion fails as soon as the tension in a given cable drops to zero
secondary to the unilateral condition in the mechanical behaviour
of cables [42]. In the aim to forestall this problem, we have de-
veloped a numerical model of the VTS model using a specific
program (called LMGC90) based on the nonsmooth contact dynam-
ics (NSCD) method ([43]; see also the Appendix ). The latter has
been originally developed to study short contact dynamic prob-
lems, such as divided medium mechanics.

In the NSCD method, the constitutive elements of the tensegrity
structure are considered as a set of material points that mutually
interact. The overall deformation of the tensegrity structure is de-
duced from the resolution of the following system of dynamic
equations equivalent to Eq. (1) (see the Appendix ):



[M(U)NU} = {F} + {r(U)} )

where the column vector {r(U)} of the interactions between the
material nodes satisfies unilateral conditions to the extent that
cables remain stretched.

The interaction laws between two material nodes are defined by

U=0 U=L-L,

R=0 with | = 1 (3)
- U=-U+-R

U-R=0 k

L (respectively, Ly) is the actual length (respectively, the resting
length) of elements, i.e., cable or bar; k (=ES/L,, with S its cross
section) is the rigidity of the element, and R the reaction force
between neighboring nodes. The unknowns of these conditions of

complimentarily (U;R) are taken into account in the problem (Eq.
(2)) to resolve. Algorithms used for unilateral contact problems
can directly resolve this problem, which is written at each incre-
ment of reequilibrium in the form of a system of linear equations
with some constraints. The details of the resolution method of
such problem are presented in [43] (see also the Appendix and
[44]).

It should be noticed that the nodal mass is assumed to be weak
(presently a few grams) and the VTS model is supposed to be not
affected by gravity. These assumptions allow us a dynamical study
of the VTS model by minimizing inertial effects, as inertial effects
can mostly be neglected at micrometric sizes. Obviously, the ri-
gidity and damping matrices of the general dynamic equation (Eq.
(1)) are taken into account by the interaction vector {r(U)} of the
equation rewritten by using the NSCD method (Eq. (2); see the
Appendix and [42)).

Loading and Attachment Conditions of the VTS Model. Ex-
ternal oscillatory forces are applied to the nodes 6 and 11 along
the z axis (traction/compression cycles), while the “opposite”
nodes (1, 2, 4, and 8) are assumed to be linked to a rigid nonpla-
nar substratum via spherical joints (see Fig. 1). The applied oscil-
latory force (F) is then defined by

F(t) = Fysin(2aft) = Fysin(wr) (4)

where F is the “constant” force magnitude and f (or w) is the
forced (angular) frequency.

Equation (Eq. (1)) appears to be a second-order differential
equation with nonconstant second member. The general solution
U(r) is given by

1{C-\NC*—4kM c+lc—akm
U(t) = F, " !

- —_— 2M
K\ 2\C?>-4KM

I —_—

C+VC?—4KM C—\C2—4KMI>

X “jef oM oo
2VC* - 4KM

K- o*M ]
(K — o*M)* + 0?c? sin(wr)

C
_ (K—wz;)lw cos(wt))} (5)

Hence, the global viscoelastic properties of the VTS model (i.e.,
elasticity E and viscosity 7, moduli as well as time constant 7)
were determined by curve fitting of the numerical data using (Eq.
(5)), considering an equivalent global Voigt model, as done in
previous studies [36,39].

Nondimensional Analysis. As in our previous studies on
tensegrity structure [7,18,19,36,39,45], we normalized viscoelas-
tic properties of the overall VTS model by their element proper-
ties, i.e.,

. T
" (ES).

(Ty): elastic tension in each cable at reference state)

(6)

. L
L'=="
rp

(r}: bar radius) (7)

The normalized elastic tension 7° which corresponds to the
elastic strain of cables at reference state, i.e., before loading, ac-
tually quantifies the basal level of internal tension in the VTS
model and is actually equal to the initial strain of elastic elements.
The normalized length L” defines the characteristic scale of the
overall 30-element tensegrity structure. Time constant (7), struc-
tural elasticity modulus (E), and viscosity modulus (7) of the
overall VTS model were normalized using cable properties, mean-
ing that properties of the VTS model remain proportional to indi-
vidual element properties:

F=r (8)
TL‘

. E

E =— 9
B ©)

« 7

g=L (10)
7

Nodal displacement (U) of the loaded nodes (6 and 11) was
normalized by taking into account the characteristic size of the
structure (i.e., the bar length L,) which defines an overall oscilla-
tory deformation of the VTS model (€,.), whereas the applied
frequency (f) was also normalized by taking into account cable
time constant (7,)

U
eosczl: (11)
f=rxs (12)

Results

The amplitude of oscillatory deformation (€,,) of the overall
VTS model calculated at the level of oscillated nodes (Eq. (11)),
as well as the structural viscoelastic properties of the global VTS
model normalized by element properties (i.e., time constant 7
(Eq. (8)), structural elasticity modulus E* (Eq. (9)) and viscosity
modulus %" (Eq. (10)) are presented in Figs. 2—4 as a function of
the normalized forced frequency f* covering the range
[1074—107]. Three zones of interest appear in these double loga-
rithmic graphs (Figs. 2-4): (i) a low frequency zone (f*<0.1)
with an oscillatory amplitude right below 10% (€,.~10%)
where elastic effects predominate; (ii) an intermediate frequency
zone (0.1 =f"=10) called transitional zone with a rapid change in
the amplitude of oscillatory deformation (0.1% < €,,<10%);
where elastic and viscous effects are tightly balanced; and (iii) a
high frequency zone (f*>10) with low amplitudes of oscillatory
deformation (e, ~0.1%) where viscous effects predominate.
Note that the elastic and viscous dominant zones appear sym-
metrically distributed on each side of a value of oscillatory fre-
quency equal to the inverse of the cable time constant (f~1/7,,
see Eq. (12)). Due to the decrease in oscillatory deformation am-
plitude (€.) from low to high frequency, the contribution of spa-
tial rearrangement of structural elements abruptly decreases as
frequency increases (see Figs. 2-4). Noteworthy in the transitional
zone, a satisfactorily curve fitting is given by the power law equa-
tion (i.e., €, ~f 8. By contrast, the two extreme elastic and
viscous dominated zones are characterized by weak changes in
€,sc With frequency. The normalized time constant of the overall
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Fig. 2 Oscillatory deformation of the overall VTS as a function
of the normalized forced frequency f’ in a double logarithmic
scale. Three distinct zones could be distinguished: a low fre-
quency zone (f'<0.1) of roughly constant oscillatory deforma-
tion amplitude where elastic effects are predominant; a transi-
tional zone (0.1<f'<10) of a rapid change in the amplitude of
the deformation (with a negative logarithmic slope (-0.83); and
a satisfactory correlation coefficient R2=0.99) where elastic
and viscous effects are balanced and a high frequency zone
(f">10) of low oscillatory deformation where viscous effects
are predominant. The contribution of the spatial redistribution
of the tensegrity structure appears to decrease when the fre-
quency increases.

tensegrity model shown in Fig. 3, decreases nonlinearly with the
oscillatory frequency within the transitional zone (f*=0.2—10),
following 7 ~ £~042, The frequency decrease in the overall time
constant can be seen as a frequency-dependent solidifyinglike pro-
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Fig. 3 Normalized time constant = of the overall VTS model as
a function of the normalized forced frequency f" in a double
logarithmic scale with the two zones of predominant (i) elastic
(f'<1) and (ii) viscous (f'>10) effects, as well as the transi-
tional zone (0.1<f <10). The normalized time constant of the
overall tensegrity model decreases nonlinearly with the oscil-
latory frequency in the upper part of the transitional zone, fol-
lowing the power law =~ f"-%42 with a correlation coefficient
R?(=0.97). The decreasing contribution of spatial redistribution
of VTS elements contribute to the frequency-dependent solidi-
fyinglike process for the VTS model.
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Fig. 4 Normalized viscosity modulus # and elasticity modu-
lus E” of the overall VTS model as a function of the normalized
forced frequency f* in a double logarithmic scale with the two
zones of predominant elastic (f'<1) and viscous (f'>10) ef-
fects, and the transitional zone (0.1<f <10). The normalized
elasticity modulus E’(+) increases in the transitional zone with
a logarithmic slope (+0.18) and the normalized viscosity modu-
lus 7'(A) decreases with a logarithmic slope (-0.24), the two
with a correlation coefficient R?(=0.99).

cess for the VTS model secondary to the decrease in the contri-
bution of spatial redistribution of VTS elements. Interestingly, the
normalized elasticity (E) and viscosity (#") moduli of the overall
VTS model are, respectively, increased and decreased as oscilla-
tory frequency increases. Noteworthy, frequency-dependent
changes occur essentially within the transitional zone, exhibiting
power laws which are, respectively, E* ~ f+018 and 2"~ =02 in
the frequency range (f*=0.2—-10) (see Fig. 4). It can be said that
as frequency increases, the structure is dominated by two distinct
mechanisms, i.e., a frequency-dependent hardeninglike process
(E" increases with f) and a frequency-dependent wateringlike
process (7" decreases with f*) which both can be related to the
decreasing contribution of spatial redistribution of VTS elements
(€&osc decreases as f* increases as shown in Fig. 2).

Figures 5-9 present the variations of structural viscoelastic
properties of the VTS model as a function of the normalized—and
homogeneous—properties of its constitutive elements, i.e., length
L" and internal tension T" (at reference state). Figure 5 shows the
normalized time constant of the VTS model as a function of the
normalized internal tension (T*) obtained at the characteristic fre-
quency f =1 and for a wide range of normalized elastic length L"
(=100, 1000, 10,000). Whatever the normalized length, the struc-
tural time constant decreases following a mean power law given
by (7 ~T"94). Figures 6 and 7, respectively, show the varia-
tions of structural elasticity and viscosity moduli as a function of
internal tension T still for £*=1. The structural elasticity modulus
E" increases with the internal tension T" following a power law
close to E*~T"*032 for the three tested values of normalized
length L" (=100, 1000, 10,000). By contrast 7" which appears to
be roughly constant in the low range of T" values can be satisfac-
torily fitted by 7"~ T"+008 in the higher range (Fig. 7).

The results in Figs. 8 and 9 show that both normalized elasticity
and viscosity moduli of the VTS model tested at f*=1 are strictly
proportional to the inverse of the square of the normalized length
(E"~L"? and %"~L"?). Accordingly, the structural time con-
stant (7°) remains independent on the normalized element size L
(data not shown). In other terms, when the size of a viscoelastic
tensegrity structure is increased, its mechanical response to oscil-
latory loading is marked by a length-dependent softeninglike pro-
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Fig. 5 Normalized time constant = of the overall VTS as a
function of the normalized internal tension (corresponding to
the initial strain of the elastic cable) T~ for three different nor-
malized element length L (=100, 1000, 10,000) in the transi-
tional zone. 7 decreases following a mean power law given by
(7 ~T™042; R2-0.98) whatever L. The values of = decrease
within a small range of [0.1-1] when T~ increases by two orders
of magnitude, whatever the value of L'.

cess (E" decreases with L") and a length-dependent wateringlike
process (7" decreases with L"), while the time response remains
unaffected.

Discussion

The present study provides new data about the dynamical be-
havior of homogeneous viscoelastic tensegrity structure (VTS
model) aiming to represent the contribution of structural rear-
rangement on the cytoskeleton behavior of adherent cells submit-
ted to cycles of external oscillatory compression/extension. Con-
sistently with previous studies, data are expressed in terms of
nondimensional—universal—laws relating the fundamental pa-
rameters of the VTS model, i.e., dynamic properties of the whole
VTS model (i.e., normalized time constant 7, normalized elastic-
ity modulus E*, normalized viscosity modulus 7°) versus (i) the
imposed frequency normalized using the unique elastic element

LE-02
*LE=100
LE-03 || ®L*=1000
A L* =10 000

*
&
Z LE-04
E
2
g LELS
-
E
< LE06
-
2
2 LE07
H
Z Y

1E-08

1.E-09

0.001 0.01 0.1 1

Normalised internal tension T*

Fig. 6 Normalized elasticity modulus E” of the overall vis-
coelastic tensegrity structure as a function of the normalized
internal tension T~ for three different normalized element
length L" (=100, 1000, 10,000) in the transitional zone. E” in-
creases with T~ following a power law E'~ T'052(R?=0.97)
whatever the value of L’. Note that the values of E” decreases
proportionally to the inverse of (L) in the overall range of T".
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Fig. 7 Normalized viscosity modulus 7" of the overall tenseg-
rity model as a function of the initial internal tension T~ for
three different values of L* (=100, 1000, 10,000) in the transi-
tional zone. Viscosity modulus 7 is shown to increase nonsig-
nificantly (logarithmic slope =+0.1;R?=0.98) with increasing
T’ for the three values of L'.

time constant, as well as (ii) the previously defined normalized
physical properties of the VTS elements, i.e., internal tension T"
and elastic length L* [18,19,36,39]. In a previous study performed
on the same VTS model but during transient loading [36], we
found that spatial rearrangement considered over a wide range of
global strain g; (i.e., from zero up to 60%) was responsible for a
variety of changes in structural dynamic properties, i.e., depend-
ing on the type of loading, 7'; E*; ", varied from a few percent to
several hundred percent in the range €;=0% —60%. In the present
study performed in a lower range of amplitude of deformations
(€0sc < 10%, shown in Fig. 2), the frequency-dependent changes in
elastic and viscous effects constitute a distinct frequency-
dependent mechanism which is responsible for significant changes
in VTS dynamic properties, i.e., 7 (f"); E*(f"); 5°(f"), also vary
significantly although within less than one order of magnitude
(see Figs. 3 and 4). Noteworthy, this frequency-dependent mecha-
nism, especially occurring in the range f*=0.1-10, is also asso-
ciated to a variable contribution of the spatial redistribution of
VTS elements as frequency changes (see Figs. 3 and 4) but it
differs from the ¢; redistribution mechanism previously obtained
(see Figs. 3-5 in [36]). Note that the presently found €, redistri-

Slope -2

/

Nommualised elasticity modulus E*
2

100 1000 10000
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Fig. 8 Normalized elasticity modulus E” as a function of the
normalized length L for five different values of the internal ten-
sion T' (= ¢ 0.005, M0.05, A0.25, 4 0.5, +0.75) in the transi-
tional zone. Note that the curves show a strictly negative loga-
rithmic slope (-2) whatever the value of T".
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Normalised viscosity modulus 1°
=

Table 1 Elasticity and viscosity moduli, hysteresivity and nor-
malized forced frequency power law relationships obtained for
the present theoretical VTS model, compared to those obtained
in oscillatory cell experiments given in the literature [1-3]

Numerical results on the Living cell experiments

VTS model (literature)
®s - g ..
17 = 0005 Elasticity E"~ f018 G’ proportional to f*;
) By =05 modulus 0.15=x=035
LEO . Viscosity I (G"/ w) proportional to f;
=025 modulus —1<y<0
108 * - =050 Hysteresivity h~ 058 Constant up to f~ 10 Hz
® =75 Increase from f~ 10 Hz
1LE-09
100 1000 10000

Normalised length L*

Fig. 9 Normalized viscosity modulus % as a function of the
normalized length L for five different values of the internal ten-
sion T' (= ¢ 0.005, M0.05, A0.25, ¢ 0.5, -0.75) in the transi-
tional zone. Note that the curves show a strictly negative loga-
rithmic slope (-2) whatever the value of T'.

bution mechanism (i) occurs even in the low amplitude range
(€0sc<10%) and (ii) is maximized in a transitional zone of im-
posed frequency extending over one order of magnitude around
the time constant of viscoelastic elements. In cases where the
period of oscillatory loading (=f"!) is significantly greater—at
least one order of magnitude—than the characteristic time con-
stant of VTS elastic elements (f*<<0.1), the VTS model experi-
ments maximum displacement amplitudes at a given force, i.e.,
the spatial redistribution of VTS elements is the highest (Fig. 2),
whereas the speed at which viscoelastic elements change their
length is sufficiently low that VTS elements reach close to their
equilibrium state at each instant, thus going toward a quasistatic
behavior (zone of predominant elastic effects in Figs. 2—4). In the
opposite case (f*>10), i.e., the period of oscillatory loading
(=f"1) is significantly smaller than the characteristic time constant
of VTS elements, the latter do not have enough time to experi-
ment a large change in length (hence the small displacement am-
plitude of the VTS (Fig. 2)) and the energy is mostly spent to
overcome friction instead of overcoming elastic recoil (zone of
predominant viscous effects, Figs. 2-4). The intermediate fre-
quency range (0.1=f"=10) is a transitional zone where the re-
spective weight of elastic and viscous effects rapidly changes with
frequency. This transitional zone has been used to characterize the
frequency-dependent changes of the structural properties. It
should be noticed that the present approach allows us to focus on
the role of spatial redistribution phenomena on &, and mechani-
cal properties of the structure, which is not possible from the
Sultan et al.’s approach [23]. Moreover, present data were ob-
tained on the basis of a full control of viscoelastic properties of
the structural elements of the VTS model whereas in [23] the local
elementary mechanical properties were found secondary to curve
fitting of experimental data by using a different tensegrity model,
that explain why present and Sultan et al. results are quite differ-
ent. Furthermore, both the nodal attachment conditions and the
loading applied differ between the two studies (i.e., three nodes
fixed and an external force applied on the middle of a bar in [23];
four nodes fixed and two forces applied to the end of another bar
in present study) and we have previously shown that similar
tensegrity structures show different mechanical responses when
attachment and loading conditions differ [36].

Following the same idea about frequency dependency of mate-
rial mechanical properties, it is interesting to note that the fre-
quencies applied in cell micromanipulation experiments (i.e., from
1072 Hz to 1000 Hz; [29,30,46-49]) are embedded into the range
of frequencies applied by Palmer et al. [50] on F-actin networks,

with great similarities in the results obtained: Up to a value of
applied frequency ~10 Hz, both the living cells and the F-actin
networks exhibit a roughly constant ratio in between the dissipa-
tive modulus (G”) associated to the viscosity and the storage
modulus (G') associated to the elasticity of the tested materials. In
other terms, that means that both the living cells and the F-actin
networks reveal corresponding time constants, i.e., from fractions
of seconds to several seconds (see below).

Confirming previous results obtained in transient loading con-
ditions on the same VTS model [36], results obtained during os-
cillatory loading conditions reveal that L* (Figs. 8 and 9) and to a
lesser extent T" (Figs. 6 and 7), have a more marked effect—than
f*—on the structural viscoelastic properties. Due to the L™ de-
pendence of oscillatory elasticity (E*) and viscous (#") moduli, it
appears that an increase in L* by a decade would result in a de-
crease in E* and %" by two decades, meaning that L” is a quite
sensitive parameter. By contrast, almost two decades of an in-
crease in T" are necessary to expect a single decade of increase in
E* or of decrease in 7, meaning that the oscillatory viscous
modulus 7" is only very slightly dependent on T7*. Because these
results are expressed in terms of L" and 7* dependencies of elastic
and viscosity moduli and time constant, they can be compared to
previous results obtained by our group (i) on a similar VTS model
submitted to a step of force and responding by a creep function
[36] and (ii) on a geometrically similar but purely elastic tenseg-
rity structure submitted to constant forces [19], corresponding to
zero frequency. This means that power laws found to describe the
T" and L* dependencies in the purely elastic structure should ap-
proach that found at the lowest frequency value tested in the
present study (i.e., f =0.001).

We present below a table of viscoelastic properties exhibiting
the different power law relationships obtained in the present the-
oretical VTS study and compare it with experimental results ob-
tained in oscillatory cell experiments (see Table 1). Note that os-
cillatory cell experiments were mainly performed in a low range
of cell deformation amplitudes (i.e., practically below 500 nm).
Noteworthy, the power-laws established from oscillatory response
of the VTS model, in addition to reinforce previous VTS results
obtained with transient loading [36,39], fall in the range of fre-
quency dependence founded in living cell experiments
[30,46-49,51]. Such a consistency between VTS theory and os-
cillatory cell mechanics suggests that the reported frequency-
dependent effects could actually be associated to the variable
weight of the spatial rearrangement of CSK filaments following a
mechanism similar to the low amplitude mechanism described
above. Another important similarity between the VTS models and
cellular experiments concerns the common assumption that inertia
of nodes, or of CSK elements, is negligible due to the micrometric
size of biological objects. This is why fundamental equations of
the oscillatory VTS motion only consider the rigidity and the
damping matrices.

Present results suggest that the frequency-dependent mecha-
nism of structural reorganization presently described in the low



amplitude range of VTS oscillatory deformations might contribute
to explain the frequency-dependent cell behavior found in living
cell experiments. First, experiments performed on a variety of
adherent cells (e.g., smooth muscle cells; alveolar epithelial cells
A549; bronchiolar epithelial cells BEAS-2B, and C2 myoblasts)
which are submitted to oscillatory loadings imposed by a variety
of micromanipulation methods (e.g., magnetic twisting cytometry
(MTC) [29,30,49], atomic force microscopy (AFM) [46,47], laser
tracking microrheology (LTM) [32], and optical tweezers (OT)
[48] could be reanalyzed on light with the present results.
Maksym et al. [30] and Fabry et al. [29] have investigated the
frequency response of the cytoskeleton in smooth muscle cells
using the classical MTC technique or the optical MTC technique
within very different ranges of imposed frequencies (e.g.,
[0.05-0.4 Hz] for Maksym et al. and [0.01-1000 Hz] for Fabry
et al. These authors have found similar power laws between (i) the
elasticity modulus (G’) and the frequency, i.e., G' ~ %%, (ii) the
viscosity modulus (defined as the ratio G”/(2m7f)), and the fre-
quency (f), i.e., G"/(2mf)"' ~f~! in Maksym et al. [30] and, re-
spectively, G’ ~ %17 and G"/(2mf) ~f° with the power coeffi-
cient x increasing from values above —1 up to below zero as
frequency increases (see Table 1). Noteworthy, these experimental
relationships do not disagree with the results established by Puig-
de-Morales et al. [49] who have used a similar MTC technique to
investigate mechanical properties of bronchial epithelial cell
(BEAS-2B), i.e., G' ~ (%% and G"/(27f) ~ f°7 in the frequency
range (0.03—16 Hz). Furthermore, Alcaraz et al. [47] have found
similar relationships by applying atomic force microscopy to the
study of AS549 and BEAS-2B, within the frequency range
(0.1-100 Hz), i.e., G’ ~f02% for A549 cell lines (respectively,
G’ ~ %20 for BEAS-2B) and G"/(2mf) ~ f* (with x=—0.8 at fre-
quency <10 Hz). Moreover, as f increases, the power coefficient
x decreased toward O but never reached this value, which is simi-
lar to the study by Fabry et al. These results do not contradict
those of Yamada et al. [32] which have used the laser tracking
microrheology method (range of frequency: (0.016—4775 Hz) to
establish that for kidney epithelial cells, the complex modulus
G":|G"| ~ %7, that corresponds also to the results obtained by
Palmer et al. [50] on F-actin networks (see above). Recent mea-
surements performed with optical tweezers by Balland et al. [48]
in C2 myoblasts show power-laws G’ ~f* with 0.15=a=0.35
and G"/(2mrf) ~ f° with —0.65= b =-0.85, in the frequency range
[0.01-50 Hz]. Noteworthy, the present power-law established in
terms of frequency dependence of the structural elasticity proper-
ties from the VTS model (i.e., E* ~ f%!8) fits remarkably with cell
experimental results (i.e., which vary from G'~f% to G’
~ f939), meaning that the frequency-dependent stress-hardening
behavior experimentally observed on adherent cells could advan-
tageously be explained and predicted by spatial rearrangement
predicted by tensegrity model. Furthermore, the frequency-
watering behavior (i.e., decrease in viscosity modulus) found in
these experimental studies might also be described and predicted
by a similar mechanism, with however some difference logically
explainable by the contribution of complementary mechanisms
such as heterogeneity in time constants distributed throughout the
CSK structure or possibly, viscous effects induced by cytosolic
fluid movements whose contribution might be reinforced in the
high frequency zone. Indeed, in all experiments performed in liv-
ing cells as well as in actin solutions, the low frequency global
behavior mostly reflects the structure while, at high frequency, the
global behavior seems to be influenced by a viscous fluid contri-
bution (see for example [29] or also [50]). However, such a fluid
contribution at high frequencies is beyond the present topic since
the VIS model never departs from a pure solid by definition.
Hence, presently found power law relationships might appear in-
sufficient to cover the differences founded in living cells between
low and high frequencies. Nevertheless, due to the unique time
constant used to define the constitutive cables, the present results

are particularly pertinent to describe the structural behavior in the
transitional zone in which the €,.-redistribution mechanism is
maximized. Note that the transitional zone is centered on a pecu-
liar frequency which happens to be the inverse value of the unique
time constant of all cables. Noteworthy, at such a frequency, elas-
tic and viscous behavior were nearly balanced. Note also that in
the transitional zone, normalized frequency f* varies from 0.1 to
10 which corresponds to time constants varying by two orders of
magnitude. Thus, proposed normalized power laws in the transi-
tional region describe the variable contribution of the structure in
a region taking into account that time constants of elements could
be different and vary within a wide range.

In addition, Maksym et al. [30] have observed that depolymer-
izing F-actin with cytochalasin D (a drug whose effect has been
thought to decrease internal tension [18]) produced (i) a decrease
in CSK elasticity modulus and (ii) no significant alteration of the
CSK viscosity modulus (that also means that the time constant
increases when the CSK-tension decreases), that can be related to
the T* dependency of E*, 7", and 7 established for the VTS
model. In particular, the proposed relationships could provide
quantitative predictions of the effect of low concentrations of cy-
tochalasin D which result in a decrease CSK-internal tension [18].
Indeed, Maksym et al. [30] have shown that adding 1 mg/ml of
cytochalasin D—after 16 min+1.8 min of exposure—results in a
mean diminution by about 40% of cell elasticity modulus (see Fig.
10 in [30]). The present VTS model in which the found 7" depen-
dence of E is E* ~T"*052 predicts a diminution by 40% of nor-
malized elasticity E* for a decrease in T" by about 65% (initial
strain). In other terms, present results obtained on the VTS model
suggest that adding 1 mg/ml of cytochalasin D to medium of
living cells would produce (after 16 min of exposure) a diminu-
tion by 65% of CSK internal tension.

Furthermore, it appears from experimental studies that, what-
ever the cell type and more generally whatever the characteristic
size of the CSK substructure considered, living cells exhibit a
common feature expressed by the nondimensional ratio between
the stored and the dissipated energies. This feature is described by
a constant value of a nondimensional parameter (h=G"/G'=1
X w) called hysteresivity, which expresses the interdependence
between stored elastic energy and viscous losses [29,30,47,49,52].
We find in the present study that the VTS model exhibits a non-
negligible frequency dependence of VST hysteresivity, i.e., h
~ 1% (R?=0.99, data not shown), which contrasts with experi-
mental observations in which # is roughly constant for living cells
(h=0.3-0.4). In fact, to exhibit a constant hysteresivity h (=7
X w), a structure or a material should definitely exhibit a time
constant corresponding to each frequency tested, i.e., practically a
quasi infinite number of time constants. This is obviously not the
case of the homogeneous VTS model presently studied. However,
it should be underlined that present data demonstrate that spatial
rearrangement mechanism, herein quantified in an homogeneous
VTS, tends to enhance the number of characteristic time constants
since the VTS time constant is different, actually decreased, from
the time constant of identical VTS elements (see Fig. 3). Extend-
ing this result to the CSK requires to consider that not one, but a
number of CSK substructures have to be taken into account. In a
previous study [24], we found that living adherent epithelial cells
exhibit, at first glance, at least two time constants corresponding
to a cortical and a deep CSK components with, respectively, a fast
and a slow response. Moreover, there are some reasons to believe
that each CSK component behaves as a tensegrity structure with
its own characteristic length, internal tension, and number of ele-
ments, e.g., short, slightly tensed but numerous cortical elements
compared to long, highly tensed and numerously limited deep
elements [7]. All these parameters would have a specific effect on
the normalized elasticity modulus meaning that, depending on the
integrated level at which a CSK substructure is considered, it
should exhibit a specific time constant. Other micromanipulation
studies suggest that an infinite number of time constants is re-



quired to describe the complexity of the multiscale interconnected
CSK network [29,51]. Therefore, it is easy to imagine that oscil-
lating a CSK structure at a unique frequency results in a wide
variety of normalized frequencies through the variety of time con-
stant characterizing each CSK substructure, each normalized fre-
quency corresponding to a specific attenuation of the local time
constant through the mechanism of spatial redistribution actually
predictable by the present theory. Further studies on an improved
VTS model, constituted by several realistic time constants could
bring supplementary arguments on the frequency dependency of
the living cell mechanical responses, at the light of the structural
rearrangement of CSK.
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Appendix

In divided medium mechanics, if it is considered two bodies O
and O' as following:

G )
One may define the so-called candidate to contact (or simply
contact) the unique couple constituted by a candidate object O
associated to its contactor P and an antagonist object O’ associ-
ated to its contactor P’. It can be then defined by the vector PP’
a unitary normal vector N and a unitary tangent vector 7. It can be
also defined (i) the components of the relative speed of P related
to O": U(Uy,Uy), (ii) the components of the reaction force ex-
erted by O’ to O: R(Ry,R7), and (iii) the gap g as the distance

between P and P’. In such a case, the Signorini Conditions can be

written as follow [43]:
g=0 Ry=0 g-Ry=0 (A1)

This condition can also be written in speed terms [53] for an
initial time 7, g(¢y) =0, whatever the time range (¢ € I), the func-
tion Uy(t) is defined by

ifg(t)=0 then Uy()=0 Ry(©)=0 Up(t)-Ry(t)=0

(A2)

The above conditions (A1) and (A2) can be represented in the

following Signorini graph:

Ry

Uy
g

In the case of a cable constituting a tensegrity structure, i.e., a
cable that can only be stretched by applying traction forces while
it is totally slacken if a compression force is applied, we can
define the free length [, and the actual length / when a traction
force is applied. So, the relationships relating the tension (7) to
both the length (/) and the rigidity (k) of the cable are

if —(I-1)=0 then —-T=-k(I-1I)

A3
if —(I-1))=0 then T=0 (A3)

The corresponding Signorini graph is
T

HUR)

Thus, if one wants to replace Eqs. (A3) in a classic Signorini
scheme, one can write

R=T-k(I-1) and U=-(I-1) (A4)

As a result, the Signorini condition and the associated graphic
become

R=0 U=0 U.R=0 (A5)

and

U

This method has been already applied to the study of several
tensegrity structures, differing in terms of number of elements and
we have yet verify the applicability of such en original approach
to the study of the mechanical properties of tensegrity models
[44].
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