
HAL Id: hal-00582946
https://hal.science/hal-00582946

Submitted on 12 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universal triangular spectra in parametrically-driven
systems

N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, J.M. Dudley

To cite this version:
N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, J.M. Dudley. Universal triangular spec-
tra in parametrically-driven systems. Modern Physics Letters A, 2011, 375 (3), pp.775-779.
�10.1016/j.physleta.2010.11.044�. �hal-00582946�

https://hal.science/hal-00582946
https://hal.archives-ouvertes.fr


Universal triangular spectra in parametrically-driven systems

Nail Akhmediev a, Adrian Ankiewicz a,∗, J.M. Soto-Crespo b, John M. Dudley c

a Optical Sciences Group, Research School of Physics and Engineering, Institute of Advanced Studies, The Australian National University, Canberra ACT 0200, Australia
b Instituto de Óptica, C.S.I.C., Serrano 121, 28006 Madrid, Spain
c Institut FEMTO-ST, UMR 6174 CNRS-Université de Franche-Comté, 25030 Besançon, France

We analyse triangular spectra that appear in many branches of physics that deal with parametrically-driven systems, and give a simple theoretical analysis for

them

 

in

 

terms

 

of

 

the

 

nonlinear

 

dynamics

 

of

 

multimode

 

fields.

 

Such

 

spectra

 

appear

 

universally

 

as

 

a

 

result

 

of

 

an

 

exponential

 

decay

 

of

 

the

 

nonlinearly

 

generated

 

frequency

 

modes

 

of

 

many

 

parametrically-driven

 

systems,

 

and

 

have

 

been

 

confirmed

 

by

 

recent

 

observations

 

of

 

noise-driven

 

supercontinuum

 

generation

 

in

 

optical

 

fibers.

 

We

 

demonstrate

 

that

 

such

 

universal

 

triangular

 

spectra

 

(UTS)

 

can

 

be

 

well-described

 

by

 

the

 

analytical

 

expressions

 

for

 

the

 

spectra

 

of

 

Akhmediev

 

breather

 

(AB)

 

solutions

 

at

 

the

 

point

 

of

 

maximal

 

compression.

1. Introduction

A defining feature of parametric systems in physics is the gen-

eration of multiple frequency components as a result of nonlin-

ear energy transfer from an initial single-mode spectral excitation.

In many systems, the spectra of the evolving field are associated

with an exponentially decaying energy transfer from the pump

frequency, leading to a characteristic universal triangular spectral

(UTS) form when, as is usual, the energy content is analyzed or

measured logarithmically.

Examples of such spectra abound in physics, and include spin

waves in ferrites (yttrium iron garnet) (see Fig. 3 of [1]) and

parametrically-generated second sound waves in superfluid He4

(see Fig. 3 of [2]). On the other hand, the explanations that have

been given for the specific spectral broadening in these works are

complicated and not completely satisfactory. A more recent result

comes from the physics of capillary waves [3], where results have

been obtained through careful experiments and are presented in

a significantly clearer way. This has allowed the authors to make

a specific link between the parametrically-driven system and the

nonlinear dynamics of modulation instability and rogue waves that

leads to the appearance of triangular spectra associated with cap-

illary waves on the excited surface of water.

The most recent example of the excitation of triangular spec-

tra is from optics. In fact, the initial stage of supercontinuum

generation in optical fibers, starting with a continuous wave, has

this specific triangular spectrum, with increasing width [4,5]. Un-

til recently, this phenomenon has been explained using ideas of

* Corresponding author.

E-mail address: ana124@rsphysse.anu.edu.au (A. Ankiewicz).

multiple four-wave mixing [4] or soliton fission [6], but a simpler

and more general explanation, based on modulation instability and

parametric frequency conversion, can also be given for this case.

Clearly, parametric processes are the major cause of the transfer

of energy between spectral components. In most cases (including

surface waves [3] and optical fibres [7]), four-wave mixing (FWM)

[8] processes play the major role, and there is no doubt that a

set of coupled equations relating a multiplicity of frequency com-

ponents can describe the above phenomena [4]. However, when

proceeding in such a manner, the analysis can become cumber-

some and difficult to understand in clear physical terms. Fortu-

nately, there is a way to reduce these complications by using a

single (master) equation that intrinsically describes all the fre-

quency transformations and their mutual interactions. For four-

wave mixing, this “master equation” is the well-known nonlinear

Schrödinger equation (NLSE).

For the NLSE, it is possible to show that the self-phase mod-

ulation term adequately describes the interaction between a po-

tentially infinite number of frequency components. This would be

extremely difficult to treat analytically via a coupled mode formal-

ism. While, in some cases, a truncated mode approach, considering

only a limited number of components, can be used [9,10], it has re-

cently been appreciated that there exist (and have indeed existed

in the literature for some years) a number of analytic techniques

that allow the NLSE to be solved more easily, allowing a more

complete description of the underlying physics than that provided

by truncated models.

This is particularly the case for the phenomenon of modula-

tion instability (MI), where a single spectral component in an NLSE

system, together with noise or low amplitude sidebands, under-

goes “instability” during propagation and the energy “drifts” from

the central frequency component to the sidebands. MI and four-
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Fig. 1. (a) Temporal, Eq. (4), and (b) spectral, Eqs. (7), (8), profiles of the AB solution at the point of maximal compression, Z = 0. On a log scale, the spectrum has a distinctive

triangular shape.

wave mixing are, in a sense, different views of the same process,

in which there is a dynamic energy transfer between adjacent side-

bands. A defining feature of the many previous numerical studies

of the process has been the observation of a (logarithmic) triangu-

lar spectrum. Although MI and four wave mixing processes within

the NLSE are often studied via numerical methods, the underlying

dynamics can, in fact, be described by a series of exact solutions

of the NLSE, now often referred to as Akhmediev breathers (AB)

[11–15]. Significantly, the spectra of the AB solutions are logarith-

mically triangular, and, in optics they reflect the evolution dynam-

ics seen in experiments, possessing the tendency to increase in

width from a single frequency to a wide spectrum covering almost

the whole optical range [7].

In the present work, we concentrate on the evolution of spectra

that can be described by the exact and simple analytical expres-

sions described by the AB theory. Although we focus on particu-

lar systems of optics and hydrodynamics, our analysis should be

well-suited to describing results in other fields [1–4] and should

motivate further studies in systems such as cold atoms and con-

densates where NLSE-like dynamics are also observed.

2. Modulation instability theory

The MI theory from the 1986 paper [17] predicts general results

for the distance-dependent evolution of the amplitudes of the AB

spectral sidebands. The results here show this spectral evolution

more clearly than in Ref. [7], and confirm the theoretical predic-

tions explicitly. We start the analysis with the NLSE in dimensional

form [18]

i
∂ A

∂ Z
+

β2

2

∂2A

∂T 2
+ γ |A|2A = 0, (1)

where the coefficients are defined in [18]. Using a simple change

of variables,

Z = zLNL, T = t
√

|β2|LNL, A = u
√

P0, (2)

where LNL = (γ P0)
−1 , Eq. (1) can be converted to its dimension-

less form:

iuz +
1

2
utt + |u|2u = 0. (3)

Thus, any solution of (3) can be easily transformed into a solution

of (1), and vice versa. The parameter P0 in the transformation is

the peak power if we are dealing with pulses and is the average

power if we deal with continuous waves.

Eq. (1) has a solution in the form of the AB given by:

A(Z , T )

=
√

P0 exp

(

i
Z

LNL

)

×
(1− 4a) cosh( bZ

LNL
) + ib sinh( bZ

LNL
) +

√
2a cos(ωmodT )

√
2a cos(ωmodT ) − cosh( bZ

LNL
)

. (4)

This solution shows growth-return evolution over −∞ < Z < ∞
and represents a family of solutions with a variable independent

parameter ωmod , corresponding to a single frequency modulation

on the initial continuous wave (CW) solution. The coefficients a
and b depend on ωmod and are defined by:

a =
1

2

[

1−
(

ωmod

ωc

)2]

, (5)

b =
√

8a(1− 2a) (6)

where

ω2
c = 4γ P0/|β2|

and P0 the power of the CW field at large |Z |. The solution is

valid over the range of modulation frequencies that experience MI

gain, namely 0 < ωmod < ωc . The coefficient a then varies in the

interval 0 < a < 1/2, while the parameter b(> 0) governs the MI

growth. The maximum gain condition, b = 1, occurs for a = 1/4,

i.e. ωmod = ωc/
√
2.

Initially, at z → −∞, the solution is a continuous wave with

a constant amplitude which subsequently develops a small mod-

ulation at ωmod when z becomes finite. The modulation increases

when z → 0 and has maximal compression of the pulses in a train

when Z = 0. The amplitude profile of the solution at Z = 0 for

maximal gain is shown in Fig. 1(a).

In the frequency domain, the AB spectrum consists of discrete

frequency sideband modes with separation ωmod , and amplitudes

that evolve in z according to:

f0(z) = eiz ×
i
√
2 sinh(bz) +

√
2cosh(bz) −

√
cosh(2bz)

√
cosh(2bz)

, (7)

fn(z) = eiz
i
√
2 sinh(bz) +

√
2cosh(bz)

√
cosh(2bz)

×
(
√
2cosh(bz) −

√

cosh(2bz)
)|n|

. (8)

Here f0(z) describes the pump amplitude and the fn(z), where

n = ±1,±2,±3, . . . , are the sideband amplitudes. We have used

the relation cosh(2bz) = 2cosh2(bz) − 1 to simplify the formulae

given in [17]. Using Eq. (2), the spectrum can be converted to di-

mensional units.

A unique feature of the spectrum is that, for |n| > 0,

log

(

fn(0)√
2

)

= −|n| log(1 +
√
2) ≈ −0.88|n|. (9)

Hence, the points plotted in Fig. 1(b) (|n| > 0) form two straight

lines. At z → −∞, the spectrum consists of a single central

nonzero component that contains all the energy. At finite z, the
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nearest sidebands appear at the expense of the central component.

The sidebands grow and create additional sidebands, thus filling

the whole spectrum with equidistant components. The spectrum

given by Eqs. (7), (8) at the point Z = 0 is shown in Fig. 1(b). It

is clearly triangular and represents the result of successive energy

transfer between the spectral components from the central mode

to sidebands due to the four-wave mixing process. On further evo-

lution, when z > 0, the tendency is reversed and energy flows from

the sidebands back to the central mode.

Initially, only the pair of sidebands which is closest to the cen-

tral component is unstable due to MI (see Fig. 2(a)). As soon as this

pair grows, FWM coupling transfers energy to higher frequencies,

generating additional sidebands even at frequencies where ampli-

tudes initially were zero. Describing these dynamics in terms of

a set of coupled equations for this potentially infinite number of

spectral components is difficult [4], but in fact the recent realisa-

tion that this process is described by the AB theory means that

such a multi-mode description is in fact not necessary: the ex-

act AB solution intrinsically and exactly describes the ensemble of

FWM processes that occur in this evolution.

AB solutions are heteroclinic orbits (see Fig. 1 of [17]) that start

from a CW which is a saddle point of the dynamical system. Thus,

a single growth-return evolution will be observed only if the tra-

jectory starts along this heteroclinic one. If we choose a starting

position at another nearby point, we generally will obtain periodic

motion (see Eq. (18) of [17]). For example, the dynamics around

the heteroclinic AB solutions can be studied by numerically solv-

Fig. 2. Spectral and temporal profiles of the AB solution over two periods of evolu-

tion.

ing the NLSE for the evolution of a modulated CW input field of

the form

A(Z = Z0, T ) =
√

P0

[

1+ αmod cos(ωmodT )
]

.

In this case, we obtain the periodic motion shown in Fig. 2. The

period along the z-direction in this motion depends on how much

the initial condition deviates from the heteroclinic orbit, i.e. it de-

pends on the value of αmod . In order to obtain an infinite period,

αmod has to be a complex number.

For waves in an optical fiber, we can estimate the real values of

the magnitudes involved. We use the following values of the fiber

parameters at 1550 nm: β2 = 20 ps2 km−1 , γ = 1.1 W−1 km−1 ,

and P0 = 30 W. Then MI gain is observed for modulation fre-

quencies fm = ωmod/2π in the range [0, fc] where fc = ωc/2π =
408.88 GHz. The maximum gain at a = 0.25 corresponds to a mod-

ulation frequency fm = fc/
√
2 = 289.12 GHz. The spectral and

temporal evolution for this case with αmod = 0.01 are shown in

gray-scale in Fig. 2. We show the temporal intensity |A(Z , T )|2
and spectral intensity | Ã(Z , f )|2 , where A(Z , T ) ↔ Ã(Z , f ) are

a Fourier transform pair. The propagation distance z is scaled

relative to the characteristic nonlinear length LNL = (γ P0)
−1 =

30.3 m.

An alternative and visually more attractive way to view the

spectral evolution is as a surface plot. This is presented in Fig. 3.

Two growth-return cycles of spectral evolution are clearly seen.

The central component f0 is restored in between the cycles

(point B). The initial spectrum is completely restored, i.e. all

higher-order components disappear and the spectrum consists

of only the central component and the pair of nearest side-

bands.

To compare with the AB theory for the spectral amplitudes,

we follow the evolution along the “return phase” of the trajec-

tory from the first point of spectral expansion where there is

maximum conversion into the sidebands to the next point in

the evolution where the energy is transferred back to the pump.

These two points are identified as A and B, respectively, in Fig. 3.

Point A is the location of the maximally-compressed AB pulse

that we can associate with z = 0 in Eqs. (7) and (8). From the

numerical simulations, we can readily determine the intensity of

each sideband and then compare with the predictions of Eqs. (7)

and (8).

The results are shown in Fig. 4. Here the origin, z = 0, corre-

sponds to point A above, the markers represent the numerically-

determined sideband amplitudes and the solid lines are the pre-

dictions of Eqs. (7) and (8). There is excellent agreement.

Fig. 3. Spectrum of periodic AB solution in 3-D format. The arrow A shows the point of maximal compression, while the arrow B is the point of first return (recurrence) to

the starting conditions.
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Fig. 4. Comparison of spectral components, fn , for the pump n = 0 and sidebands

n = ±1 . . .±6 obtained numerically (dots), and from exact solutions (7) and (8). The

range of z here is chosen between the points A and B in Fig. 3.

More accurate spectra for a higher-valued αmod should be

based on exact solution in terms of elliptic Jacobi functions

given in the paper [17] (see Eq. (18) therein when κ → 1).

These may have direct application in analytic approaches to un-

derstanding beat signal reshaping and frequency comb genera-

tion.

3. Multi-frequency initial modulation

When the initial modulation consists of only a single pair of

sidebands, the analysis is reasonably simple, as it was shown in

the previous section. The case of two or more sidebands can also

be analyzed using the nonlinear superposition of AB solutions.

There is a well-developed technique for constructing higher-order

solutions that start with modulation instability [16,19]. The re-

sults are cumbersome and will not be reproduced here. Another

difficulty is calculating Fourier spectra for higher-order solutions

as there is no technique for deriving analytic spectra in those

cases.

Despite the absence of analytical solutions, we can still use

the fact that the system described by the NLSE is integrable to

present a qualitative analysis for triangular spectra in this case.

Indeed, each AB component in the nonlinear superposition de-

fined by the NLSE is independent of the others, in the sense

that it can be used to construct a nonlinear superposition. Then,

for every additional pair of sidebands, the spectra are triangu-

lar and evolve periodically, just as in Fig. 3. An important point

here is that we do not have to deal with the frequency that pro-

vides us with the highest growth rate. As the growth rate de-

pends on the frequency within the instability band, each com-

ponent grows at its own rate. Their corresponding points A for

the components with small growth rate may move infinitely far

from the beginning. The periods of evolution for different side-

bands also vary, depending on the amplitude of each compo-

nent. Thus, for two or more sidebands, at every z there will be

a triangular spectrum related to one of the components. Thus,

dealing with nonlinear superposition, we cannot expect a com-

plete recurrence to the original mode. Moreover, if the initial

modulation is chaotic, i.e. it contains all frequency components

within the gain bandwidth, there will be a continuous spectrum

at any z.
The qualitative behaviour described above is confirmed using

numerical simulations starting from a CW with multiple frequency

modulation. One example is shown in Fig. 5. Ten initial small spec-

tral components within the instability band used for this simula-

Fig. 5. (Color online.) The spectra of the field with initial modulation given by

Eq. (10) at distances of propagation Z = 10LNL (red solid line), 20LNL (blue dot-

ted line), and 30LNL (green dashed line). Inset: MI gain curve with vertical bars that

show the spectral components within the gain curve relating to the initial condi-

tions (10).

tion are shown in the inset of Fig. 5. Specifically, we choose the

initial condition in the form:

A(0, T ) =
√
30

[

1+ 0.001

10
∑

k=1

cos(πkT wc/40)

]

. (10)

Its spectrum consists of the central component containing almost

all energy and ten small equal sidebands at each side. Each side-

band pair grows according to its particular growth rate and, after

the initial stage, the spectrum assumes a steady triangular shape.

If we ignore small deviations, the spectrum hardly changes dur-

ing further propagation. The different curves shown in Fig. 5 for

various distances of propagation demonstrate the convergence to a

steady triangular spectrum.

Convergence takes place for random initial modulation as well.

Suppose, we take all spectral components with small average am-

plitudes, namely we choose as the initial condition:

A(0, T ) =
√
30

[

1+ 0.0001a(T )
]

, (11)

where a(T ) is a stochastic Gaussian-distributed variable with unit

variance and Gaussian correlation function. The resulting spectra

for this case, after the initial stage of evolution has passed, are

shown in Fig. 6. The function a(T ) has been chosen as purely

real (red solid curve) or imaginary (blue dashed curve). Although

initially the spectra may develop with different speeds, the final

result is always the same, as we can see from Fig. 6. After reaching

the “steady” state, around Z = 20LNL , the width of the triangular

spectrum, on average, does not change.

Comparing the spectra in Fig. 6 with those in Fig. 5 shows

that random and regular perturbations lead to triangular spec-

tra with the same width. Moreover, the width coincides with the

width of the triangular spectra given by the analytical expressions

of Eqs. (7), (8), and shown in Fig. 1. This is a result of indepen-

dent evolution of a multiplicity of ABs in the complex field that

have their points of maximum compression (B) distributed homo-

geneously along the z-axis. This means that Eqs. (7), (8) provide

analytic results for universal triangular spectra in systems gov-

erned by the NLSE.

Clearly, any additional term in the NLSE that lifts integrability

results in deviations from the triangular spectra. This can be seen

in Fig. 3 of [7]. The spectra that develop at the initial stages of MI

are triangular. However, the influence of Raman and higher-order
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Fig. 6. (Color online.) The spectra of the field that starts with random initial modulation, Eq. (10), at distances of propagation (a) Z = 50LNL and (b) Z = 200LNL . Red (solid)

curves are calculated for purely real initial perturbation while blue (dashed) curves are for purely imaginary one.

Fig. 7. (Color online.) (a) The spectra of the field with random initial modulation (10), taking into account TOD, at a distance of propagation Z = 20LNL (red solid line) and

Z = 30LNL (dashed blue line). (b) Evolution of spectral width in z with (blue dashed curve) and without (red solid curve) TOD.

dispersion terms create asymmetry and result in a wide supercon-

tinuum. One more example is shown in Fig. 7(a). Here we use the

initial conditions given by Eq. (11), but the NLSE has been modi-

fied with an additional third-order dispersion (TOD) term, β3
∂3 A
∂T 3 ,

with a small coefficient, β3 = 1.557 ps3/km. At small z, triangu-
lar spectra are generated (not shown). However, by Z = 20LNL ,
the asymmetry has developed, and later on during the propaga-

tion (Z = 30LNL), it creates a wide supercontinuum spectrum, as

shown in Fig. 7(a). The widths of the spectral curve with, and with-

out, TOD evolve differently, as can be seen from Fig. 7(b). With the

pure NLSE, the width reaches a steady value around 0.2 THz, while,

with TOD, it increases approximately as
√
z.

4. Conclusion

Ubiquitous triangular spectra in parametrically-driven systems

described by the NLSE can find a simple explanation in terms of

exact AB solutions of the nonlinear Schrödinger equation. In par-

ticular, the spectra of the AB solutions that start from noise-driven

modulation instability demonstrate the triangular shape with vary-

ing width. The maximum spectral width is reached at the point of

maximal compression of the AB. Modulation instability that starts

from a noisy background, with all the frequencies being present,

also develops a triangular spectrum whose width is also approxi-

mately the same as for the spectrum of a single AB at its widest

part.

It is clear that analytic AB solutions of the NLSE provide an

exact description of the cascaded parametric interactions that un-

derlie the dynamics of MI, and their use and interpretation elimi-

nates the necessity of using multiple coupled equations. Certainly

for some cases, numerical simulations must be used to obtain ex-

act quantitative predictions, but the qualitative dynamics predicted

by the AB theory that yield logarithmic triangular spectra appear

universal.
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