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We study the spectra of the Peregrine soliton and higher-order rational solutions of the nonlinear Schrödinger equation (NLSE), which we use as a model of the 
rogue waves in optics and in the deep ocean. We show that these solutions have specific triangular spectra that are certainly easily measurable in optical 
systems and which may be amenable to characterisation in ocean environments. As the triangular feature of the solutions appears at an early stage of their 
evolution, this raises the possibility of early detection and possible localized warning of the appearance of rogue waves. We anticipate that studying the 
characteristics of “early warning spectra” of rogue waves may become an important future field of research.

1. Introduction

Rogue waves in the ocean are well known to have disastrous

consequences [1,2]. They appear both in the deep ocean and in

shallow waters [3]. In contrast to tsunamis and storms associ-

ated with typhoons that can be predicted hours (sometimes days)

in advance, the particular danger of oceanic rogue waves is their

sudden appearance as “waves that appear from nowhere” only sec-

onds before they hit a ship. The grim reality, however, is that

although their existence has now been confirmed by multiple dif-

ferent means, there remains uncertainty about their fundamental

origins which hinders systematic attempts to study their charac-

teristics and perhaps predict their appearance [4].

Clearly, large waves in the ocean can arise from multiple causes,

but there is an increasing consensus that nonlinear wave shaping

effects play a central role under many conditions to increase the

wave amplitude. This idea has recently received much attention

motivated by studies in optical fiber [5,6] where the dynamics are

described by the same nonlinear Schrödinger equation (NLSE) as

proposed to describe the group envelope of deep water waves. As

a basis, if we take the model where rogue waves are described

by the NLSE, then one of the prototypes of the rogue wave is the

Peregrine soliton [7–12]. Higher-order rational solutions also exist

[13–15] and they can also be associated with extreme amplitudes

and rogue wave characteristics [16,17]; indeed, they possess higher

amplitudes than the Peregrine soliton.
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Despite the importance of these rational solutions in NLSE the-

ory and in studies of rogue waves, they have surprisingly been the

subject of limited attention. Recently, however, optical experiments

have studied the excitation conditions of the Peregrine soliton in

detail, confirmed its existence experimentally, and explicitly char-

acterised its two-dimensional localisation [18]. Of course, previous

experiments in wave tanks have studied related nonlinear wave

propagation mechanisms [19–22], but the experiments in optics

have enabled the measurement of unambiguous signatures of the

defining features of the Peregrine soliton.

A particular aspect of experiments in optics is the ease of mea-

suring optical spectra of pulse envelopes using readily-available

instruments such as grating spectrometers. This has led naturally

to renewed interest into the frequency-domain characteristics of

the Peregrine soliton, and spectral measurements of the soliton

pulse envelope have revealed a characteristic triangular form when

plotted on a log scale. Significantly, theory predicts that the de-

velopment of the triangular form of the envelope spectrum is an

important and universal feature of parametric nonlinear spectral

broadening, and indeed experiments studying the emergence of

spontaneous nonlinear breather pulses from modulation instabil-

ity in optics have also exhibited triangular spectra in agreement

with theory [23].

These results from optics have naturally raised the question

whether such spectral measurements would be possible in the

ocean, and also whether such observations could provide impor-

tant signatures of nonlinear effects favoring rogue wave formation.

In fact, analysis of the spectral content of the full spectrum of

waves on the surface of the ocean has already been studied in

the context of the nonlinear wave propagation, and the Benjamin–
Feir Index has been introduced as a measure of how the frequency
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content of the wave spectrum relates to the frequency band of in-

stability gain [22,24,25]. This can indeed be applied in a significant

forecasting context to identify sea state conditions that may be as-

sociated with an elevated probability for rogue wave appearance,

providing important information allowing avoidance of particular

ocean regions when mapping navigation routes.

This approach, however, is based on analysis of the spectral

characteristics of the sea-state as a whole. Motivated by the exper-

iments in optics discussed above, however, we focus here on how

the spectral characteristics of the envelope of propagating waves

could be used to reveal the presence of nonlinearity and rogue

waves a short time before the appearance of a particular rogue

wave event. That is, we are interested in particular signatures of

the ocean wave dynamics that can be used as “early warning”

indicators in all already agitated sea. Specifically, by considering

real-rime spectral analysis of the wave envelope, the appearance of

characteristic triangular spectral decay of the wings could provide

valuable advance and immediate warning of nonlinear amplifica-

tion conditions and the emergence of rogue waves. If such spectral

signatures were apparent before visual observation, then this could

be extremely important in allowing appropriate evasive action to

be taken.

Significantly, there is already important evidence linking such

spectral decay and rogue wave formation on a smaller scale with

capillary waves [26]. The open ocean, of course, presents addi-

tional difficulties, and precisely how spectral measurements could

be accomplished in practice through sensing and time-series mea-

surements of ship displacement is beyond the scope of this Letter.

However, it is clearly an important question to address, and our

goal here is to make the first steps in this direction. In particular,

we review the properties of the characteristic triangular spectrum

for rational soliton solutions of the NLSE and demonstrate that

such characteristics are universal, also being observed for higher-

order rogue wave solutions. By showing how these spectral charac-

teristics appear at an early stage of evolution, our analysis supports

the idea that analysing the shape of propagating waves in the

frequency domain may provide important information about the

emergence phase of nonlinear wave shaping mechanisms.

2. Spectra of rogue waves

There are several models for the description of rogue waves,

both in optics and marine studies. In the lowest-order approxi-

mation, waves in the deep ocean are described by the nonlinear

Schrödinger equation (NLSE). Here we start the analysis with the

NLSE in dimensionless form:

iuz +
1

2
utt + |u|2u = 0, (1)

where z is the longitudinal distance, t is the retarded time in the

frame moving with the group velocity of the waves and |u(x, t)| is
the wave envelope. This notation is valid for both fibre optics and

ocean wave theory.

One of the NLSE solutions is the Peregrine soliton, suggested as

a prototype of rogue wave as early as 1983 [7]. In our scaling, it is

given by:

u(z, t) =
[

4
1+ 2it

1+ 4t2 + 4z2
− 1

]

eiz. (2)

It is a solution that is localised both along z and t directions (see

upper left panel in Fig. 1). There is no periodicity and the spectrum

must be a continuous function of frequency, rather than having a

comb structure.

The Fourier transform of Eq. (2) can be easily calculated:

Fig. 1. (Color online.) (Upper left panel): Fundamental ( j = 1) rogue wave (Peregrine

soliton). (Bottom right panel): The spectrum of the fundamental rogue wave, plot-

ted on a log scale i.e. log |F1(ω, z)|. The always-present delta function at ω = 0 is

omitted here.
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(3)

where the Dirac delta function, δ(ω), appears due to the finite

background level. The modulus of this spectrum is given by:

F1(ω, z)
∣

=
√
2π exp

(

−
|ω|
2

√

1 + 4z2
)

. (4)

The delta function is omitted here, so Eq. (4) represents the spec-

trum of the variable part of the solution. This spectrum is shown

in Fig. 1 on a log scale. The width of the spectrum evolves from

zero at z → −∞ to a finite value at z = 0 and decreases again at

z → ∞. Remarkably, at any particular z, the spectrum has a trian-

gular shape and the experiments in optics referred to previously

have now confirmed this prediction quantitatively [18].

3. The spectra of higher-order rogue waves

A second order rogue wave solution was first presented in [13]

(see also [16]). This solution can be considered as a nonlinear su-

perposition of two Peregrine solitons. There is a whole hierarchy

of these solutions, with increasing order, which can be constructed

using various tools. In principle, the hierarchy of higher-order poly-

nomial solutions of the NLSE can be written in terms of Wron-

skians [14]. Although quite general, solutions in this form still need

to be simplified, because the determinants generally contain extra

factors in the form of polynomials that have to be separated and

cancelled, and this is not a trivial task, even for the second order

solutions. On the other hand, for any order j, the most convenient

explicit way to write the polynomial solutions is the following

[16]:

u j(z, t) =
[

G j(z, t) + izH j(z, t)

D j(z, t)
+ (−1) j

]

eiz, (5)

where G2(z, t), H2(z, t) and D2(z, t) are polynomials in the 2 vari-

ables z and t = T /
√

|β2|LNL:
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Fig. 2. (Color online.) (Above left panel): second-order ( j = 2) rogue wave. (Bottom

panel): spectrum of second order ( j = 2) rogue wave on log scale, log |F2|, during
evolution along the z-axis. (Above right panel): same spectrum on the central line,

z = 0.
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With the usual Fourier transform [FT] definition, Eq. (3), we can

obtain the spectra of higher-order rogue waves, Eq. (5). Each spec-

trum contains a delta-function due to the constant background

part of the solution. We can eliminate the delta-function by tak-

ing the Fourier transform of the varying part. Hence, we take the

spectrum of

ψ(z, t) = u j(z, t)exp[−iz] − (−1) j

=
[

G j(z, t) + izH j(z, t)

D j(z, t)

]

. (6)

In contrast to u(z, t), the function ψ(z, t) approaches zero for large

|z| and |t|.
We define F j(ω, z) as the FT of the j-th rogue wave, i.e. the FT

of the function given in Eq. (6). It is easy to find that the central

value at ω = 0 and z = 0 is:

F j(0,0) =
1

√
2π

∞
∫

−∞

G j(0, t)

D j(0, t)
dt =

N j√
2π

, (7)

Fig. 3. (Color online.) (Above left panel): third-order ( j = 3) rogue wave [17]. (Bot-

tom panel): spectrum of the third order ( j = 3) rogue wave on a log scale, log |F3|,
showing evolution along the z-axis. (Above right panel): same spectrum on the cen-

tral line, z = 0.

using the definition of [17] for N j . The above integral can be found

using zeros in the upper half plane of complex t [15]. Using this,

we find that
F j(0,0)√

2π
is equal to ( j + 1)/2 when j is odd, and equal

to − j/2 when j is even. Thus, for the lowest-order cases,
F j(0,0)√

2π
equals (1,−1,2) when j = (1,2,3), respectively.

For j higher than one, general analytic expressions are compli-

cated, but we can readily illustrate the results graphically. Fig. 2

shows the spectrum for the 2nd order rogue wave, along with the

original profile of |u(z, t)|. The spectrum initially (z = −4) has a

shape close to being triangular. It appears to have a dip at z = 0,

but the details in the above right panel of Fig. 2 show that it has a

more complicated structure at this point. Indeed, the second-order

rogue wave itself has a more involved shape, and therefore so does

its spectrum. On a log-scale, the spectrum has two dips, due to the

fact that F2(ω,0) is zero at two values of ω. Other than that the

general structure of the spectrum is roughly triangular.

Explicit results for the amplitudes of higher-order rogue wave

solutions have been presented in [17]. The expressions for the

third-order solution are complicated and are not repeated here. In-

stead, we directly plot the spectrum for the 3rd order rogue wave

in Fig. 3. It has a structure which is, in a way similar to, but more

complicated than, the second-order result.

The results presented in this section may become useful as the

study of rogue waves continues to develop. When direct measure-

ments of wave profiles are difficult, measuring the spectral profiles

can help in identifying the presence of rogue waves. As rogue

waves tend to appear in various branches of physics [3,26], we

anticipate that developing a unified approach to their study may

become extremely useful.

4. Conclusion

We have shown that the Peregrine soliton, which can serve as

a prototype of rogue waves in the ocean has a triangular spec-

trum at every stage of its development. The spectra of higher order

rogue waves are more complicated but can also be calculated, and

we have presented spectra for the three lowest order solutions.

Although more structured than the spectra for the Peregrine soli-
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ton, these higher-order solutions present characteristics that are

approximately triangular when away from the zero frequency po-

sition.

A particular consequence of the results we present here re-

lates to the insight we provide into the evolution of the spectra of

these solutions. This is because, within an oceanographic context,

our results suggest the potentially extremely important prospect

of identifying spectral signatures of the early emergence of rogue

waves resulting from nonlinear wave shaping. By linking the ap-

pearance of triangular spectra to the generation of high ampli-

tude localised rogue wave structures, our results may provide a

fruitful direction for further research aiming to identify character-

istic signatures of the conditions from which rogue waves might

emerge.
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