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Wavelets techniques for pointwise anti-Hölderian

irregularity

Marianne Clausel∗and Samuel Nicolay†

Université Paris Est and Université de Liège

Abstract: In this paper, we introduce a notion of weak pointwise Hölder reg-
ularity, starting from the definition of the pointwise anti-Hölder irregularity.
Using this concept, a weak spectrum of singularities can be defined as for the
usual pointwise Hölder regularity. We build a class of wavelet series satisfying
the multifractal formalism and thus show the optimality of the upper bound.
We also show that the weak spectrum of singularities is disconnected from the
casual one (denoted here strong spectrum of singularities) by exhibiting a mul-
tifractal function made of Davenport series whose weak spectrum differs from
the strong one.
Keywords Pointwise Hölder regularity, Wavelets, Spectrum of singularities,
Multifractal formalism.
Mathematics Subject Classification 26A16, 42C40.

1 Introduction

The concept of Hölderian regularity has been introduced to study nowhere dif-
ferentiable functions (several examples are given in [33, 44]). An archetype of
such functions is maybe the Weierstraß function

WH(x) =

+∞∑

n=0

a−nH cos(2πanx) (0 < H < 1)

exhaustively studied by Hardy in [24]. He proved that for every a > 1, this
function is nowhere differentiable. More precisely, the function WH satisfies the
two following conditions on [0, 1]2,

|WH(y)−WH(x)| ≤ C1|x− y|H
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clausel@univ-paris12.fr
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and
sup

(u,v)∈[x,y]2
|WH(u)−WH(v)| ≥ C2|x− y|H

for two constants C1, C2 that do not depend on x or y. The first inequality
gives the regularity of WH , which is said uniformly Hölder with exponent H
on [0, 1]. The second one reflects the irregularity of the function; in particular,
WH is nowhere differentiable. One says, following [49], that WH is uniformly
anti-Hölder with exponent H on (0, 1).

An increasing interest has been paid to functions f that are both uniform
Hölder and uniformly anti-Hölder with exponent H , since these two properties
ensure that the box-counting dimension of the graph of f is equal to 2−H (see
e.g. [22]). Canonical Weierstraß functions, i.e. functions of the form

f(x) =
∑

n

b−nαg(bnx)

where g is 1-periodic, 1 < b <∞ and 0 < α < 1, have been extensively studied
from the irregularity point of view by many authors (see [34, 43, 47, 12, 13,
26, 27, 21, 33]). Other well-known examples of such functions are provided by
sample paths of Gaussian fields, generalizing the fractional Brownian motion.
Irregularity properties, such as law of the iterated logarithm, are established
using fine results concerning the regularity of the local time of the studied fields
(see [10, 23, 2]). In particular, in this class of examples are included the so-called
index-αGaussian fields studied in [2], or more generally non locally deterministic
Gaussian fields (see e.g. [11, 46]) and strongly non locally deterministic Gaussian
fields (see [50, 51, 52]).

In this paper, we focus on the pointwise anti-Hölderian irregularity, which is
the pointwise counterpart of the concept of uniform anti-Hölderian irregularity.
Our main goal is to answer quite natural questions: Can we overstep the usual
framework of functions both uniform Hölder and uniformly anti-Hölder? More
precisely, can we give some explicit examples of functions for which the pointwise
anti-Hölderian behavior is different from point to point? What are the main
characteristics of such a behavior?

In the case of the usual pointwise regularity, multifractal functions provide
examples of functions for which the Hölder exponent vary from point to point.
So, we naturally tend to be interested in defining some multifractal functions for
this notion of pointwise anti-Hölderian irregularity. We also need suitable tools
to describe the multifractal behavior of such functions. It raises the problem
of the related multifractal formalism. Indeed, let us recall that, in general
settings, it is not possible to estimate the regularity index (which will be defined
hereafter) of a function at a given point. The relevant information is then
the ”size” of the sets of points where the regularity is the same. This ”size”
is mathematically formalized as the Hausdorff dimension. The function that
associates the dimension of the set of points sharing the same regularity index
with this index is referred to as the spectrum of singularities. The goal of any
multifractal formalism is to provide a method which allows to estimate this
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spectrum of singularities from numerically computable quantities derived from
the signal. The same problem arises when dealing with pointwise anti-Hölderian
irregularity.

Section 2 is devoted to the definitions related to the Hölder regularity. In
Section 3 we investigate the structure of the irregularity exponent and define,
by means of wavelet series, functions with prescribed irregularity exponent. In
Section 4, we recall already known results about the multifractal formalism for
the pointwise anti-Hölderian irregularity. Section 5 is devoted to the question
of the validity of this multifractal formalism: Using multifractal measures, we
define a class of wavelet series for which the multifractal formalism holds. In
the last section, we compare the two concepts of multifractal functions: The
usual one and this new one related to anti-Hölderianity. We show that the two
notions are clearly disconnected. Indeed, we exhibit an example of Davenport
series which is multifractal for the usual pointwise regularity but monofractal
for the pointwise irregularity.

2 Pointwise Hölderian regularity

We start by giving the definitions of the pointwise Hölderian regularity and anti-
Hölderian irregularity. The concept of anti-Hölderian functions with exponent
H has been introduced by C.Tricot in [49]; he formalized a notion already used
for investigating Weierstraß-type functions or sample paths properties of locally
non deterministic Gaussian fields. Anti-Hölderian functions with exponent H
were only defined in the case H ∈ (0, 1). A consistent definition is given here
for H larger than 1. Since the anti-Hölderian condition is stronger than just
negating the Hölderian condition, a weaker Hölderian regularity is obtained by
negating the anti-Hölderian condition. Finally, discrete wavelet transform and
multiresolution analysis are particularly efficient tools to study the Hölderian
regularity of a function (see e.g. [31]). The main results binding the regularity
of a function and its wavelet coefficients are briefly reviewed at the end of this
section.

Let us point out that the anti-Hölderian irregularity condition has also been
considered in the measure setting (see e.g. [15]); a review of this measure-based
irregularity framework is presented in Section 5.1.

2.1 Weak and strong pointwise Hölderian regularity

We recall first the definition of the Hölderian regularity; this definition naturally
leads to a notion of Hölderian irregularity. One will talk about Hölderian and
anti-Hölderian functions. Finally, a weaker definition of pointwise smoothness
is obtained by negating the condition related to the anti-Hölderian functions.

Definition 1 Let f : Rd → Rd′

be a locally bounded function, let x0 ∈ Rd

and α ≥ 0; f ∈ Cα(x0) if there exist C,R > 0 and a polynomial P of degree
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less than α such that

‖f(x)− P (x)‖L∞(B(x0,r)) ≤ Crα, ∀r ≤ R. (1)

Such a function is said Hölderian of exponent α at x0. The lower Hölder expo-
nent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.

A function f is uniformly Hölderian of exponent α (f ∈ Cα(Rd)) if there exists
C > 0 such that (1) is satisfied for any x0 ∈ Rd and R = ∞; f is uniformly
Hölderian if there exists ε > 0 such that f ∈ Cε(Rd).

Recall that the lower Hölder exponent is simply denoted Hölder exponent in the
literature. Since we are interested in introducing another concept of pointwise
Hölderian regularity, the accustomed notation h is replaced here by h

The irregularity of a function can be studied through the notion of anti-
Hölderianity. Recall that the finite differences of arbitrary order are defined as
follows,

∆1
hf(x) = f(x+ h)− f(x), ∆n+1

h f(x) = ∆n
hf(x+ h)−∆n

hf(x).

We use the following notation,

Bh(x0, r) = {x : [x, x+ ([α] + 1)h] ⊂ B(x0, r)}.

Since condition (1) is equivalent to

sup
|h|≤r

‖∆
[α]+1
h f‖L∞(Bh(x0,r)) ≤ Crα, ∀r ≤ R (2)

(see e.g. [20, 18, 35]), the next definition is intuitive.

Definition 2 Let f : Rd → Rd′

be a locally bounded function, let x0 ∈ Rd

and α ≥ 0; f ∈ Iα(x0) if there exist C,R > 0 such that

sup
|h|≤r

‖∆
[α]+1
h f‖L∞(Bh(x0,r)) ≥ Crα, ∀r ≤ R. (3)

Such a function is said anti-Hölderian of exponent α at x0. Let us notice that
the Whitney theorem asserts that Iα1(x0) ⊂ Iα2(x0) if α1 ≤ α2 (more precisely,
it is a direct consequence of Proposition 1 of [17]). The upper Hölder exponent
(or irregularity exponent) of f at x0 is

hf (x0) = inf{α : f ∈ Iα(x0)}.

We will say that f is strongly Hölderian of exponent α at x0 (f ∈ Cα
s (x0)) if

f ∈ Cα(x0) ∩ Iα(x0).
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It follows from the definitions that if a function f is anti-Hölderian with
exponent α, it cannot be Hölderian with exponent β if β > α. We thus have
the following relation between the lower and upper exponents of f : hf ≤ hf .

The statement (3) is stronger than just negating the Hölderian regularity
since such a negation only yields the existence, for any C > 0, of a subsequence
(rn)n (depending on C) for which

sup
|h|≤rn

‖∆
[α]+1
h f‖L∞(Bh(x0,rn)) ≥ Crαn .

We are naturally led to the following definition.

Definition 3 Let f : Rd → Rd′

be a locally bounded function, let x0 ∈ Rd and
α ≥ 0; f ∈ Cα

w(x0) if f /∈ Iα(x0), i.e. for any C > 0 there exists a decreasing
sequence (rn)n such that

sup
|h|≤rn

‖∆
[α]+1
h f‖L∞(Bh(x0,rn)) ≤ Crαn , ∀n ∈ N. (4)

Such a function is said weakly Hölderian of exponent α at x0.

Roughly speaking, a function is weakly Hölderian of exponent α at x0 if for any
C > 0, one can bound the oscillation of f overB(x0, rn) by Cr

α
n for a remarkable

decreasing subsequence (rn)n of scales, whereas for an Hölderian function, the
oscillation of f over B(x0, r) has to be bounded at each scale r > 0 by Crα, for
some C > 0.

2.2 Hölderian regularity and wavelet coefficients

Here, we review the wavelet criterion for strong Hölderian regularity and irreg-
ularity.

Let us briefly recall some definitions and notations (for more precisions, see
e.g. [19, 39, 37]). Under some general assumptions, there exists a function φ
and 2d − 1 functions (ψ(i))1≤i<2d , called wavelets, such that {φ(x − k)}k∈Zd ∪

{ψ(i)(2jx− k) : 1 ≤ i < 2d, k ∈ Zd, j ∈ Z} form an orthogonal basis of L2(Rd).
Any function f ∈ L2(Rd) can be decomposed as follows,

f(x) =
∑

k∈Zd

Ckφ(x − k) +
+∞∑

j=1

∑

k∈Zd

∑

1≤i<2d

c
(i)
j,kψ

(i)(2jx− k),

where

c
(i)
j,k = 2dj

∫

Rd

f(x)ψ(i)(2jx− k) dx,

and

Ck =

∫

Rd

f(x)φ(x − k) dx.

Let us remark that we do not choose the L2 normalization for the wavelets, but
rather an L∞ normalization, which is better fitted to the study of the Hölderian
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regularity. Hereafter, the wavelets are always supposed to belong to Cr with
r > α and the functions {∂sφ}|s|≤r, {∂sψ(i)}|s|≤r are assumed to have fast
decay.

A dyadic cube of scale j is a cube of the form

λ = [
k1
2j
,
k1 + 1

2j
)× · · · × [

kd
2j
,
kd + 1

2j
),

where k = (k1, . . . , kd) ∈ Zd. In the sequel, we denote |λ| the scale of a dyadic
cube |λ|. From now on, wavelets and wavelet coefficients will be indexed with
dyadic cubes λ. Since i takes 2d − 1 values, we can assume that it takes values
in {0, 1}d − (0, . . . , 0); we will use the following notations:

• λ = λ(i, j, k) = k
2j + i

2j+1 + [0, 1
2j+1 )

d,

• cλ = c
(i)
j,k,

• ψλ = ψ(i)(2jx− k),

• eλ = k/2j.

The pointwise Hölderian regularity of a function is closely related to the decay
rate of its wavelet leaders.

Definition 4 The wavelet leaders are defined by

dλ = sup
λ′⊂λ

|cλ|.

Two dyadic cubes λ and λ′ are adjacent if they are at the same scale and if
dist(λ, λ′) = 0. We denote by 3λ the set of 3d dyadic cubes adjacent to λ and
by λj(x0) the dyadic cube of side 2−j containing x0. Then

dj(x0) = sup
λ⊂3λj(x0)

dλ.

The following theorem (Theorem 1 of [31]) allows to “nearly” characterize the
Hölderian regularity by a decay condition on dj as j goes to infinity.

Theorem 1 Let α > 0; if f ∈ Cα(x0), then there exists C > 0 such that

dj(x0) ≤ C2−αj , ∀j ≥ 0. (5)

Conversely, if (5) holds and if f is uniformly Hölder, then there exist C,R > 0
and a polynomial P of degree less than α such that

‖f(x)− P (x)‖L∞(B(x0,r)) ≤ Crα log
1

r
, ∀r ≤ R.

To give necessary and sufficient conditions concerning the irregularity, we
suppose that the wavelets are compactly supported and belong to C [α]+1(Rd);
such wavelets are constructed in [19]. The result relies on the following lemma.
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Lemma 1 Let f ∈ L∞
loc(R

d); the two following assertions are then equivalent:

1. there exists some β > 1 such that, for any C > 0, there exists a non
decreasing sequence of integers (jn) such that

sup
j≤jn

{2j([α]+1)dj(x0)} ≤ C
2jn([α]+1−α)

jβn
, (6)

2. there exists some β > 1 such that, for any C > 0, there exists a strictly
increasing sequence of integers (jn) such that, for any λ,

|cλ| ≤ C(θ(2−|λ|) + θ(|x0 − eλ|)), (7)

where θ is a non decreasing function such that, if j ∈ {jn, . . . , jn+1 − 1}
for some n ∈ N,

θ(2−j) = inf(
2jn+1([α]+1−α)2−j([α]+1)

jβn+1

,
2−jnα

jβn
).

Proof. Let us suppose that Property (7) holds. For any j, we have θ(2 · 2−j) ≤
2[α]+1θ(2−j). Moreover, if λ′ ⊂ 3λj(x0), one has |x0 − eλ′ | ≤ 4d2−|λ′| =

2−(|λ′|−2−log2 d). Therefore,

2j([α]+1)dj(x0) = 2j([α]+1) sup
λ′⊂3λj(x0)

|cλ′ |

≤ C2j([α]+1) sup
λ′⊂3λj(x0)

θ(2−|λ′|)(1 + 2(2+log2 d)([α]+1))

≤ C2j([α]+1)2[α]+1(1 + 2(2+log2 d)([α]+1))θ(2−j),

Since 2([α]+1)jθ(2−j) ≤ 2jn([α]+1−α)/jβn for any j ≤ jn, inequality (6) is satisfied.
Conversely, if inequality (6) holds, we have djn(x0) ≤ C2−jnα/jβn and there-

fore, since the sequence (dj(x0)) is non increasing, dj(x0) ≤ C2−jnα/jβn for any
n ∈ N and any j ≥ jn. Moreover, we have

dj(x0) ≤ 2−j([α]+1) sup
j′≤jn+1

{2j
′([α]+1)dj′(x0)} ≤ C

2jn+1([α]+1−α)

jβn
2−j([α]+1)

for any n ∈ N, and any j ≤ jn+1. These relations imply that the inequality
dj(x0) ≤ Cθ(2−j) is valid for any n ∈ N and any j ∈ {jn · · · , jn+1 − 1}. Let
us now fix λ′ and set j = sup{m : λ′ ⊂ 3λm(x0)}. By definition of j, one has
|cλ′ | ≤ dj(x0) ≤ Cθ(2−j).

If j = |λ′| or if j = |λ′|+ 1, using the fact that θ is non decreasing, one gets

|cλ′ | ≤ Cθ(2 · 2−j) ≤ C2[α]+1θ(2−|λ′|) ≤ C2[α]+1(θ(2−|λ′|) + θ(|x0 − eλ′ |)).

If j < |λ′|, θ(2−j) is larger than θ(2−|λ′|). Nevertheless, one has 2−j−1 ≤
|x0 − eλ′ | and thus

|cλ′ | ≤ dj(x0) ≤ Cθ(2−j) ≤ Cθ(|x0 − eλ′ |)

≤ C2[α]+1(θ(2−|λ′|) + θ(|x0 − eλ′ |)).
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In any case, property (7) is recovered.
This Lemma is indeed a two-microlocal characterization of Property (6). We
need it to prove the following wavelet characterization of pointwise irregularity:

Theorem 2 Let α > 0 and f ∈ L∞
loc(R

d);

1. if there exists C > 0 such that

dj(x0) ≥ C2−jα, (8)

for any j ≥ 0, then f ∈ Iα(x0),

2. conversely, suppose that f is uniformly Hölder; if f ∈ Iα(x0) then, for
any β > 1, there exists C > 0 such that

sup
j′≤j

2j
′([α]+1)dj′(x0) ≥ C

2j([α]+1−α)

jβ
, (9)

for any j ≥ 0.

Proof. The first statement is a direct consequence of Theorem 4 of [17]. Let us
prove the second statement by contrapositive. Assume that Property (9) does
not hold, which is equivalent to assume that Property (6) is satisfied. We use
Lemma 1 to prove that inequality (4) is satisfied for rn = C2−jn . Let x ∈ Rd

such that [x, x+ ([α] + 1)h] ⊂ B(x0, 2
−jn). We have

∆M
h f(x) =

∑

k

Ck∆
M
h φk(x) +

∑

λ

cλ∆
M
h ψλ(x) =

∑

j≥0

∆M
h fj,

where f0(x) =
∑

k Ckφk(x) and fj(x) =
∑

i,k c
(i)
j,kψ

(i)(2jx− k) if j ≥ 1. Since f
is assumed to be uniformly Hölder, there exists some ε > 0 such that

max(sup
k

|Ck|, sup
j
(2jε sup

λ
|cλ|)) <∞.

Let α′ > α and define Jn = [
α′jn
ε

] + 1. The proof of Theorem 1 of [31] yields

the following inequality
∣∣∣∣∣∣

∑

j≥Jn

∆
[α]+1
h fj(x)

∣∣∣∣∣∣
≤ C2−Jnε0 ≤ C2−jnα

′

for n sufficiently large.
Since the wavelets are assumed to be compactly supported, there exists ℓ0

such that supp(ψ(i)) ⊂ (−2ℓ0 , 2ℓ0). Let us give an upper bound of
∑jn+ℓ0

j=0 ∆
[α]+1
h fj(x).

If |x0 − eλ| ≥ 2−j+ℓ0+1 then |x− eλ| ≥ 2−j+ℓ0 and ψλ(x) = 0. Therefore

jn+ℓ0∑

j=0

∆
[α]+1
h fj(x) =

jn+ℓ0∑

j=0

∑

λ, |x0−eλ|≤2−j+ℓ0+1

cλ∆
[α]+1
h ψλ(x).
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The regularity of the wavelets implies that
∑jn+ℓ0

j=0

∑
λ, |x0−µλ|≤2−j+ℓ0+1 cλψλ(x)

belongs to C [α]+1(Rd). Hence

|

jn+ℓ0∑

j=0

∑

λ, |x0−eλ|≤2−j+ℓ0+1

cλ∆
[α]+1
h ψλ(x)|

≤ |h|[α]+1

jn+ℓ0∑

j=0

‖
∑

λ, |x0−eλ|≤2−j+ℓ0+1

cλψλ(x)‖C[α]+1(Rd)

We now use Lemma 1 and the wavelet characterization of the spaces C [α]+1(Rd)
to deduce that

‖
∑

λ, |x0−eλ|≤2−j+ℓ0+1

cλψλ(x)‖C[α]+1(Rd)

≤ sup
λ, |x0−eλ|≤2−j+ℓ0+1

(2j[α]+1|cλ|)

≤ C2j[α]+1(1 + 2(ℓ0+1)([α]+1))θ(2−j)).

This leads to the following upper bound,

|

jn+ℓ0∑

j=0

∆
[α]+1
h fj(x)| ≤ |h|[α]+1C(1 + 2(ℓ0+1)([α]+1))

jn∑

j=0

2j([α]+1)θ(2−j)

= |h|[α]+1C(1 + 2(ℓ0+1)([α]+1))2jn([α]+1−α)

≤ C(1 + 2(ℓ0+1)([α]+1))2−jnα.

Let us now give an upper bound of
∑Jn

j=jn+ℓ0
∆

[α]+1
h fj(x). In that case, let

us remark that if |x0 − eλ| ≥ 2−jn+1 then |x − eλ| ≥ 2−j+ℓ0+1 and ψλ(x) = 0.
We have

|
Jn∑

j=jn+ℓ0

∆
[α]+1
h fj(x)|

= |
∑

j=jn+ℓ0+1

∑

λ, |x0−eλ|≤2−jn+1

cλ∆
[α]+1
h ψλ(x)|

≤ ([α] + 1)

Jn∑

j=jn+ℓ0+1

∑

λ, |x0−eλ|≤2−jn+1

|cλ| sup
j

sup
x∈Rd

∑

|λ|=2−j

|ψλ(x)|

≤ C([α] + 1)



sup
j

sup
x∈Rd

∑

|λ|=2−j

|ψλ(x)|




Jn∑

j=jn+ℓ0+1

∑

λ, |x0−eλ|≤2−jn+1

θ(2−jn)

≤ C([α] + 1)



sup
j

sup
x∈Rd

∑

|λ|=2−j

|ψλ(x)|



 Jn
2−jnα

jβn
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≤ C([α] + 1)



sup
j

sup
x∈Rd

∑

|λ|=2−j

|ψλ(x)|



 2−jnα

for n sufficiently large. Gathering these relations, we obtain f ∈ Cα
w(x0).

Note that we do not have a wavelet characterization of the property hf (x0) =
α. Indeed, it is proved in [18] that, even up to a logarithmic correction, neither
condition (8) is necessary, nor condition (9) is sufficient. Nevertheless, one can
characterize the stronger property hf (x0) = hf (x0) = α using wavelets. Indeed,
Theorems 1 and 2 lead to the following corollary that we will use in the sequel.

Corollary 1 Let α > 0 and suppose that f is uniformly Hölder. We have
hf (x0) = hf (x0) = α if and only if

lim
j→∞

log dj(x0)

−j log 2
= α.

Proof. The first point of Theorem 2 implies that if limj log dj(x0)/− j log 2 = α,
we have hf (x0) = hf (x0) = α. Let us prove the converse result. Assume
that for any ε > 0, we have f ∈ Cα−ε(x0) ∩ Iα+ε(x0). For any β > 1, the
preceding Theorems imply the existence of a constant C > 0 such that dj(x0) ≤

C2−j(α−ε) and supj′≤j 2
j′([α]+1)dj′(x0) ≥ 2j([α]+1−α−ε)j−β/C, for any j ≥ 0.

Let a > ε+2ε/([α] + 1−α+ ε) and b = (β+ ε)/([α] + 1−α+ ε). The previous
relations lead to

sup
j′≤j(1−a)−b log2 j

2j
′([α]+1)dj′ (x0) < C

2j([α]+1−α−ε) − jε

jβ
< C−1 2

j([α]+1−α−ε)

jβ

and

sup
j(1−a)−b log2 j≤j′≤j

2j
′([α]+1)dj′(x0) ≥ C−1 2

j([α]+1−α−ε)

jβ
≥ C−1 2

j([α]+1−α−ε)

jβ
,

for any j ≥ 2 log2(C)/ε . Since the sequence (dj(x0)) is non increasing, we have

2j([α]+1)dj(1−a)−b log2 j(x0) ≥ C−1 2
j([α]+1−α−ε)

jβ
,

for any j ≥ 2 log2(C)/ε. By setting ℓ = j(1−a)−b log2 j, the preceding relation
can be rewritten

2
1

1−a
(ℓ+2b log2 ℓ)([α]+1)dℓ(x0) ≥ C−1 2

j([α]+1−α−ε)

jβ
≥ C−1 2

ℓ
1−a

([α]+1−α−ε)

( ℓ
1−a )

β
.

for any ℓ ≥ 2 log2(C)(1− a)/ε. Using the relation dj(x0) ≤ C2−j(α−ε), we then
obtain

α− ε ≤ lim inf
j→∞

log dj(x0)

−j log 2
≤ lim sup

j→∞

log dj(x0)

−j log 2
< α+ ε.

Since this inequality holds for any ε > 0, the required result follows.
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3 Construction of functions with prescribed lower

and upper Hölder exponents

In this Section, we investigate in detail the structure of the irregularity ex-
ponent of a continuous function. In Section 3.1, we first prove, considering a
Weierstrass-type function, that it is possible to construct a continuous function
with prescribed pointwise Hölder exponent H provided that H satisfies “good
properties”. In Section 3.2 we focus on describing all the functions which are
both the classical Hölder exponent and irregularity exponent of a continuous
function. Finally, we study the case where classical pointwise Hölder exponent
and irregularity exponent may differ. In this special case, we give a sufficient
condition and a necessary condition for a couple of functions (H,H) to be re-
spectively the pointwise Hölder exponent and the irregularity exponent of a
continuous function.

3.1 A generic Weierstraß function with prescribed Hölder

exponents

In the same spirit as in [1], we consider the Weierstraß-type function

W (t) =

+∞∑

j=0

λ−jH(t) sin(2πλjt). (10)

and study its pointwise regularity.

Proposition 1 Let H be a β-Hölderian function from [0, 1] to [a, b] ⊂ (0, 1],
satisfying supt∈[0,1] |H(t)| < β. If W is a function of the form (10), where λ is
an integer larger than 1, then

W ∈ CH(t)
s (t) = CH(t)(t) ∩ IH(t)(t), ∀t ∈ [0, 1].

The proof of this proposition relies on the two following lemma, analogous to
Lemma 14 and Proposition 15 of [33].

Lemma 2 Let λ > 1 and (fj)j∈N a sequence of bounded and Lipschitz functions
on R for which there exists C > 0 such that

‖fj‖∞ + ‖f ′
j‖∞ ≤ C.

The function f(t) =
+∞∑
j=0

λ−jH(t)fj(λ
jt) belongs to CH(t)(t), for any t ∈ [0, 1].

Proof. Let t ∈ [0, 1]. For any j, |fj(t)− fj(s)| is bounded by C|s− t| or C. Let
j0(t) = [− log |s− t|/(H(t) logλ)]. We have

|f(t)− f(s)| ≤ C

j0−1∑

j=0

|λjt− λjs|λ−jH(t) + C
∑

j≥j0

λ−jH(t)

11



+C

+∞∑

j=0

|λ−jH(t) − λ−jH(s) |

≤ C|t− s|Cλj0(1−H(t)) + Cλ−j0H(t)

+C| logλ||t− s|β
+∞∑

j=0

jλ−ja

≤ C|t− s|H(t)

using the mean value theorem, β-Hölderianity ofH and the fact that H([0, 1]) ⊂
(0, 1].

Lemma 3 Let (fj)j∈N be a sequence of 1-periodic C-Lipschitz functions from
R to R and

f(t) =
∞∑

j=0

λ−jH(t)fj(λ
jt),

where λ is an integer larger than 1. Assume that there exists ℓ ∈ {−λ−1, · · · , λ−
1} and an integer J such that

D = inf
j≥J

|fj(
ℓ

λ
)− fj(0)| > 0.

If
Cℓ

λ(λ− 1)
≤ D then

f ∈ IH(t)(t), ∀t ∈ [0, 1].

Proof. Since

f(t)− f(s) =

∞∑

j=0

λ−jH(t)(fj(λ
jt)− fj(λ

js)) +

∞∑

j=0

(λ−jH(t) − λ−jH(s))fj(s)

Proposition 15 of [33] yields that for some C0 > 0,

|
∞∑

j=0

λ−jH(t)(fj(λ
jt)− fj(λ

js))| ≥ C0|t− s|H(t).

Moreover

|
∞∑

j=0

(λ−jH(t) − λ−jH(s))fj(s)| ≤ |t− s|β

with β > H(t). It provides the required conclusion.
By applying Lemma 2 and Lemma 3 to fj = sin(2π·), C = 1, ℓ = [λ/4] and
D = | sin(ℓ/λ)|, Proposition 1 is then straightforward.
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3.2 Wavelet series-defined functions with similar lower and

upper Hölder exponents at any point

The aim of this section is to prove a result analogous to Theorem 1 of [1]. Here
we extend the results stated in [1] since we give a characterization of functions
which are both the lower and the upper exponent of a continuous function and
thus satisfy a stronger property than in Theorem 1 of [1].

Theorem 3 Let f a continuous nowhere differentiable function defined on [0, 1]
with similar lower and upper Hölder exponent at any point. There exists a
sequence of continuous functions (Hj)j∈N from [0, 1] to [0, 1] such that

h(t) = h(t) = lim
j→∞

Hj(t) ∀t.

Conversely, if H is a function from [0, 1] to [0, 1] such that

H(t) = lim
j→∞

Hj(t),

where the (Hj)j∈N are continuous functions, then there exists a continuous func-
tion f defined on [0, 1] such that

h(t) = h(t) = H(t), ∀t.

The first part of Theorem 3 is straightforward. If one sets

ωx(t) = sup
|h|≤t

|f(x+ h)− f(x)|,

the sequence (Hj)j∈N defined by

Hj(t) =
log(ωt(2

−j) + 2−2j)

−j log 2

satisfies the required conditions, since

h(t) = h(t) = lim
j→∞

logωt(2
−j)

−j log 2
.

Let us prove the converse assertion by means of wavelet series. We will need
the following wavelet criterium for the pointwise regularity (see [1, 31]):

Proposition 2 Let α > 0 and assume that there exists C > 0 such that for any
j ∈ N,

sup
k

|cj,k| ≤ C2−
j

log j , (11)

and
dj(t) ≤ C2−jα.

Then for any ε > 0, f ∈ Cα−ε(t).

13



Remark 1 This Proposition is a reformulation of Proposition 4 of [1] in terms
of wavelet coefficients. Let us point out that in [1], f is expanded in the Schauder
basis. Then for any J (Lemma 1 of [1]),

∑

j≤J

∑

k

cj,kΛj,k

is a continuous piecewise affine function coinciding with f on dyadic numbers.
In the case of wavelet basis, this property does not hold. In order to prove
Proposition 2, we thus need to assume (11) and use different arguments.

Proof. Since supk |cj,k| ≤ C2−
j

log j , the wavelet series converge uniformly on any
compact. Let (fj)j≥−1 be defined as follows,

f−1(x) =
∑

k

Ckϕ(x− k), fj(x) =
∑

k

cj,kψj,k(x) (∀j ≥ 0)

As in [31], if |β| ≤ [α], the series
∑

j ∂
βfj converges absolutely. Now, for any

j ≥ −1, let us define

Pj,t(x) =
∑

β≤[α]

(x − t)β

β!
∂fj(t).

If j0 is the number such that

2−j0−1 ≤ |x− t| ≤ 2−j0 ,

and j1 satisfies 2−
j1

log j1 ≤ 2−αj0 , then as proved in [31],

∑

j≤j0

|fj(x)− Pj,t(x)| ≤ Cj0|x− t|α

and ∑

j≥j0

|Pj,t(x)| ≤ C|x− t|α.

Moreover,
j1∑

j=j0

|fj(x)| ≤ Cj1|x− t|α.

Since for any ε and j0 sufficiently large,

j1 ≤ Cε2
εj0 ,

one has
j1∑

j=j0

|fj(x)| ≤ Cε|x− t|α−ε.

14



Since

∑

j≥j1

|fj(x)| ≤ C
∑

j≥j1

2−
j

log j ≤ C log2(j1)2
−

j1
log j1 ≤ |x− t|α−ε,

the proposition follows.
We will also use a slightly modified version of Lemma 2 of [1]:

Proposition 3 Let H a function from [0, 1] to [0, 1] such that H(t) = limj Hj(t),
where (Hj)j∈N is a sequence of continuous functions. There exists a sequence
(Pj)j∈N of polynomials such that

{
H(t) = lim

j→∞
Pj(t), ∀t ∈ [0, 1],

‖P ′
j‖∞ ≤ j, ∀j ∈ N.

(12)

We can now define a wavelet series with the desired properties:

Proposition 4 Let H be a function from [0, 1] to [0, 1] such that H(t) =
limj Hj(t), where the (Hj)j∈N is a sequence of continuous functions. Let (Pj)j∈N

be a sequence of polynomials satisfying the relations (12). For any (j, k) ∈
N× {0, · · · , 2j − 1}, set

Hj,k = max(
1

log j
, Pj(

k

2j
)).

The function f defined as

f(x) =
∑

j∈N

2j−1∑

k=0

2−jHj,kψj,k(x). (13)

satisfies the following relations,

h(t) = h(t) = H(t), ∀t ∈ [0, 1].

Let us look at a particular case.

Remark 2 If H is a continuous function, the wavelet series

∑

j∈N

2j−1∑

k=0

2−jHj,kψj,k(x),

with Hj,k = max(1/ log j,H(2−jk)) has H both as lower and upper Hölder
exponents.
Proof. If λ′ = λ′(j′, k′) ⊂ 3λj(t), then

|
k′

2j′
− t| ≤ C12

−j.
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Since the sequence (Pj)j∈N satisfies equalities (12), for any ε > 0, there exists
an integer j0 such that for any j ≥ j0 and λ′ ⊂ 3λj(t),

|Hj′,k′ −H(t)| ≤ |P ′
j(t)− P ′

j(
k′

2j′
)|+ |H(t)−P ′

j(t)| ≤ j2−j + |H(t)− P ′
j(t)| ≤ ε.

Then for any j ≥ j0,

max(2
− j′

log j′ , 2−j′ε2−j′H(t)) ≤ |c′λ| ≤ max(2
− j′

log j′ , 2j
′ε2−j′H(t)).

We deduce that

lim
j

log dj(t)

−j log 2
= H(t), ∀t ∈ [0, 1]

and therefore
h(t) = h(t) = H(t), ∀t ∈ [0, 1].

3.3 Wavelet series-defined functions with different lower

and upper Hölder exponents

Our main goal is to prove the following Theorem.

Theorem 4 Let f a continuous nowhere differentiable function defined on [0, 1].
There exists a sequence of continuous functions (Hj)j∈N such that

h(t) = lim inf
j→∞

Hj(t), h(t) = lim sup
j→∞

Hj(t), ∀t ∈ [0, 1].

Conversely, let (H,H) a couple of functions from [0, 1] to [a, b] ⊂ (0, 1) such
that

H(t) = lim inf
j→∞

Hj(t), H(t) = lim sup
j→∞

Hj(t),

where the (Hj)j∈N is a sequence of continuous functions. There exists a uniform
Hölder function f from [0, 1] to R such that

h(t) = H(t) ≤ H(t) = h(t), ∀t ∈ [0, 1].

Remark 3 The second assertion of Theorem 4 is much weaker than the cor-
responding one of Theorem 3. In order to ensure the existence of a function
f with prescribed lower and upper exponents at any point, we need stronger
assumptions on H and H: indeed we assume that these functions take values
in [a, b] ⊂ (0, 1) (and not in (0, 1)).

Remark 4 LetH andH be two continuous functions from [0, 1] to [a, b] ⊂ (0, 1)
satisfying

∀t ∈ [0, 1], H(t) ≤ H(t).
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Define the sequence (Hj)j∈N as

H2j = H, H2j+1 = H, ∀j ∈ N.

Theorem 4 provides the existence of a function f with lower and upper exponent
H and H at any point.

The proof of the direct part of Theorem 4 is exactly similar to this of Theorem
3 and is left to the reader. In order to prove the converse assertion we first need
the following lemma.

Lemma 4 Let (H,H) a couple of functions defined from [0, 1] to [a, b] ⊂ (0, 1)
such that

H(t) = lim inf
j→∞

Hj(t), H(t) = lim sup
j→∞

Hj(t),

where the Hj are continuous functions from [0, 1] to [0, 1]. For any (a′, b′) ∈
(0, 1)2 such that a′ < a < b < b′, there exists a sequence (Pj)j∈N of polynomials
from [0, 1] to [a′, b′] and for any t ∈ [0, 1], there exists a strictly increasing
sequence of integers (jn(t))n∈N depending on t such that the three following
properties hold simultaneously

• ∀t ∈ [0, 1],

H(t) = lim inf
j→∞

Pj(t), H(t) = lim sup
j→∞

Pj(t), (14)

• ∀j ∈ N,
‖P ′

j‖∞ ≤ j, (15)

• ∀t ∈ [0, 1] ∀n ∈ N, ∀j ∈ {jn(t), · · · , jn+1(t)− 1},

jPj(t) ≥ sup(jn(t)(H(t)− ε), j + jn+1(t)(H(t)− ε− 1)). (16)

Proof. Lemma 2 of [1] implies that there exists a sequence of polynomials
(Qℓ)j∈N such that Conditions (14) and (15) both hold. Moreover in the con-
struction of [1], one may assume

‖Qℓ −Hℓ‖∞ ≤
1

ℓ
.

Then, for ℓ sufficiently large, Qℓ is onto [a′, b′] ⊂ (0, 1). Set β1 = [b′/a′] + 1,
β2 = [(1−a′)/(1− b′)]+1, β = β1β2 and define the sequence (Pj)j∈N as follows

∀ℓ ∈ N, ∀βℓ + 1 ≤ j ≤ βℓ+1, Pj = Qℓ.

We now prove that the sequence (Pj)j∈N satisfies the required properties. Let
ε > 0, t ∈ [0, 1], (ℓn(t))n∈N a sequence such that

Qℓn(t) ≥ H(t)− ε

and set jn(t) = βℓn(t)β2. For any integer j we distinguish three cases.
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• If there exists n ∈ N such that jn ≤ ℓ ≤ β1jn, then Pj = Qℓn ≥ H − ε.
Hence

jPj ≥ j(H − ε) ≥ jn(H − ε),

and

j(1− Pj) ≤ j(1 −H + ε) ≤ jβ1(1−H + ε)jn+1(1−H + ε).

• If there exists n ∈ N such that β1jn ≤ j ≤ jn+1/β2, then Pj = Qℓ with
ℓn + 1 ≤ ℓ ≤ ℓn+1 − 1. Then

jPj ≥ ja′ ≥
j

β1
H ≥ jnH,

and
j(1− Pj) ≤ j(1− a′) ≤ jβ2(1−H) ≤ jn+1(1−H).

• If there exists n ∈ N such that jn+1/β2 ≤ j ≤ jn+1, then Pj = Qjn+1 ≥

H − ε. Hence
jPj ≥ j(H − ε) ≥ jn(H − ε),

and
j(1 − Pj) ≤ j(1−H + ε) ≤ jn+1(1 −H + ε).

Thus, in any case we obtain the required property.
Now we prove the following proposition

Proposition 5 Let (H,H) a couple of functions from [0, 1] to [a, b] ⊂ (0, 1)
such that

H(t) = lim inf
j→∞

Hj(t), H(t) = lim sup
j→∞

Hj(t),

where the (Hj)j∈N is a sequence of continuous functions. Let (Pj)j∈N a se-
quence of polynomials satisfying Properties (14),(15) and (16) and consider the
wavelet series defined by

f(x) =
∑

j∈N

2j−1∑

k=0

2−jPj(
k

2j
).

Then for any t ∈ [0, 1],

h(t) = H(t) < h(t) = H(t).

Proof. The assumption Pj([0, 1]) ⊂ [a′, b′] ⊂ (0, 1) implies that f is uniform
Hölder. Since for any j, Pj satisfies Properties (14), (15) and (16), for any
λ ∈ 3λj(x0), we have

2−jPj(t)2−j22−j

≤ |cλ| ≤ 2−jPj(t)2j
22−j

.
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Thus, for any ε > 0, there exists j0 sufficiently large such that

∀j ≥ j0, 2
−jPj(t)2−εj ≤ dj(x0) ≤ 2−jPj(t)2εj .

By definition of H,

lim inf
j→∞

log dj(t)

− log 2
= lim inf

j→∞
Pj(t) = H(t).

Hence,
h(t) = H(t).

In the same way,
h(t) ≤ H(t).

We now use Properties (14), (15) and (16). There exists a strictly increasing
sequence of integers (jn)n∈N such that (14), (15) and (16) hold. Then, ∀n ∈ N,
∀j ∈ {jn, · · · , jn+1},

dj(t) ≤ 2−jPj(t)2εj ≤ inf(2−jn(H(t)−ε), 2−jn+1(H(t)−ε−1)−j).

The wavelet criteria then provides

h(t) ≥ H(t).

4 Weak multifractal formalism

The aim of the multifractal analysis is to study “irregularly irregular” func-
tions, i.e. functions whose Hölder exponent can jump from point to point. From
a practical point of view, the numerical computation of the pointwise Hölder
exponent of a signal is completely instable, and is indeed quite meaningless,
especially for signals whose pointwise Hölder exponent can take very different
values. Leaving this utopian view, one rather wishes to get global informations
about the pointwise regularity: What are the values taken by the Hölder ex-
ponent? What is the “size” of the set of points Eh where the Hölder exponent
takes a given value h? First of all, one has to define this notion of size. Since
the sets under consideration can be dense or negligible, by “size”, we cannot
mean “Lebesgue measure”. The “fractal dimensions” are more fitted for this
purpose. Once the right definition of dimension has been chosen, one still has
to determine the spectrum of singularities of the function, i.e. the dimension of
the sets Eh. This is the purpose of the multifractal formalism. Naturally, all
these definitions can be transposed for the upper Hölder exponent.
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4.1 A notion of dimension

In multifractal analysis, the notion of dimension which is mainly used is the
Hausdorff dimension. We recall here its definition.

The Hausdorff dimension is defined through the Hausdorff measure (see [22]
for more details). The best covering of a set E ⊂ Rd with sets subordinated to
a diameter ε can be estimated as follows,

Hδ
ε(E) = inf{

∞∑

i=1

|Ei|
δ : E ⊂

∞⋃

i=1

Ei, |Ei| ≤ ε},

where for any i, |Ei| denotes the diameter of Ei.
Clearly, Hδ

ε is an outer measure. The Hausdorff measure is defined from Hδ
ε as

ε goes to 0.

Definition 5 The outer measure Hδ defined as

Hδ(E) = sup
ε>0

Hδ
ε(E)

is a metric outer measure. Its restriction to the σ-algebra of the Hδ-measurable
sets defines the Hausdorff measure of dimension δ.

Since the outer measure Hδ is metric, the algebra includes the Borelian sets.
The Hausdorff measure is decreasing as δ goes to infinity. Moreover, Hδ(E) > 0
implies Hδ′(E) = ∞ if δ′ < δ. The following definition is thus meaningful.

Definition 6 The Hausdorff dimension dimH(E) of a set E ⊂ Rd is defined as
follows

dimH(E) = sup{δ : Hδ(E) = ∞}.

With this definition, dimH(∅) = −∞.

4.2 From the strong multifractal formalism to the weak

multifractal formalism

We first review the wavelet leaders based multifractal formalism as defined by
Jaffard [31], which is one of the two methods allowing to recover, in some par-
ticular cases, the entire spectrum of singularities (the second one is the wavelet
transform of the maxima of the modulus method, introduced by Arneodo and
his collaborators [6]). Other multifractal formalisms only give, at best, the in-
creasing part of the spectrum (see [30]). These considerations on the strong
Hölderian regularity can be transposed to the weak one.

The lower spectrum of singularities allows to characterize globally the regu-
larity of a function through the lower Hölder exponents.

Definition 7 Let f be a locally bounded function; its lower isoHölder sets are
the sets

EH = {x : h(x) = H}.
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The lower spectrum of singularities of f is the function

d : R+ ∪ {∞} → R+ ∪ {−∞} H 7→ dimH(EH),

It is not always possible to compute the lower spectrum of singularities of
a function. A multifractal formalism is a method that is expected to yield
the function d through the use of a Legendre transform. These formalisms
are variants of a seminal derivation which was proposed by Parisi and Frisch
[45]. The wavelet leaders method (WLM) uses wavelet coefficients instead of Lp

norms, which are meaningless for negative values of p. The partition function
is defined as follows

S(j, p) = 2−j
∑

λ:|λ|=2−dj

dpλ.

By setting,

ω(p) = lim inf
j→∞

logS(j, p)

log 2−j
, (17)

the spectrum of singularities d(h) is expected to be equal to

inf
p
{hp− ω(p) + d}. (18)

The heuristic argument leading to the previous method is the following.
The contribution of the dyadic cubes of side 2−j containing a point whose lower
Hölder exponent is h to the sum

∑
dpλ can be estimated as follows. By Theo-

rem 1, the lower Hölder exponent h(x) of a function at x is

h(x) = lim inf
j→∞

λ′⊂3λj(x)

log dλ′

log 2−j
,

which allows us to write dλ ∼ 2−hj. Moreover, the number of these dyadic
intervals should be about 2d(h)j, each of volume 2−dj. Hence, the contribution
is 2(d(h)−d−hp)j. The dominating contribution is the one corresponding to the
value h associated with the biggest exponent; by writing the equality (17) as∑
dpλ ∼ 2−ω(p)j, one can expect the following relation, −ω(p) = suph{d(h)−d−

hp}. As −ω is a convex function, if d is concave, then −ω and −d are convex
conjugate functions, so that d(h) = infp{hp−ω(p)+d}. Let us remark that the
preceding argument is far from being a mathematical proof; see [3] and [33] for
a comparison between the WLM and other multifractal formalisms.

Although it can be shown that formula (18) allows to recover the spectrum
of singularities under additional assumptions (see [29, 30, 5] for instance), the
validity does not hold in complete generality. Indeed, the only result valid in
the general case is the following inequality [30, 31],

d(h) ≤ inf
p∈R∗

{hp− ω(p) + d}. (19)

Once the lower spectrum of singularities has been introduced, the upper
spectrum of singularities can be defined in a totally analogous way. A relation
similar to the inequality (19) holds.

The weak multifractal formalism is defined as follows.
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Definition 8 Let f be a locally bounded function; its upper isoHölder sets are
the sets

EH = {x : h(x) = H}.

The upper spectrum of singularities of f is the function

d : R+ ∪ {∞} → R+ ∪ {−∞} H 7→ dimH(EH).

The following theorem which can be found in [4] gives an upper bound for
the upper spectrum of singularities.

Theorem 5 Let f a uniform Hölder function. The following inequality holds

d(h) ≤ inf
p∈R∗

{hp− ω(p) + d}. (20)

Definition 9 Let f a uniform Hölder function and h > 0; if (20) is an equality,
i.e.

∀h > 0, d(h) = inf
p∈R∗

{hp− ω(p) + d}

then function f is said to obey the weak multifractal formalism.

5 Construction of a class of wavelet series obey-

ing the weak multifractal formalism

The aim of this Section is to exhibit a class of multifractal functions for pointwise
irregularity. This question is in fact a non trivial one. A quite natural approach
to solve this problem is to consider multifractal functions for the usual pointwise
regularity.

Let us point out that if we want to define wavelet series that are multifractal
both for the strong and weak Hölderian regularity point of views, we have to
take into account that, except in the case where the lower and upper exponents
coincide, there is no wavelet criteria for the pointwise irregularity.

In the same spirit as Barral and Seuret in [14], we will define wavelets series
built from a multifractal measure µ on [0, 1[d in the following way,

Fµ(x) =
∑

j≥0

∑

|λ|=2−j ,

λ⊂[0,1]d

2
−j(s0−

d
p0

)
µ(λ)

1
p0 ψλ(x), (21)

∀x ∈ [0, 1]d, where the wavelets ψi belongs to the Schwartz class on Rd with
all moments vanishing. This class of examples also proves that upper and lower
spectra may coincide: Under specific assumptions detailed in section 5.3, we can
obtain a class of functions obeying both the strong and the weak multifractal
formalisms.

We begin by recalling some basic facts about the multifractal analysis of
measures.
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5.1 Some results about multifractal analysis of measures

Following Barral and Seuret, we adapt here the usual multifractal formalism of
[15]. The main difference lies in the definition of the isoHölder sets, since we
just need a multifractal formalism associated with a dyadic grid.
We first give some slightly modified versions of the usual definitions of lower
and upper exponents of a given Borel measure µ at a point x0. For any σ ∈
{−1, 0, 1}d and any dyadic cube λ =

∏
ℓ[

kℓ

2j ,
kℓ

2j+1 [, let us set

λσ =
∏

ℓ

[
kℓ + σℓ

2j
,
kℓ + 1 + σℓ

2j
[ and µσ(λ) = µ(λσ).

We also define the quantities

ασ
µ(x0) = lim inf

j→∞

logµσ(λj(x0))

−j log(2)
, ασ

µ(x0) = lim sup
j→∞

logµσ(λj(x0))

−j log(2)
,

and, in case of existence,

ασ
µ(x0) = lim

j→∞

logµσ(λj(x0))

−j log(2)
.

We will be concerned by the estimate of the Hausdorff dimension of the following
isoHölder sets

Ẽα(µ) = {x ∈ [0, 1[d, αµ(x) = min
σ∈{−1,0,1}d

{ασ
µ(x)} = α}.

The mapping
dµ : α ≥ 0 7→ dimH(Ẽα(µ)),

will be called the multifractal spectrum of the Borel measure µ. Recall that in
the framework of [15], the following isoHölder sets are used

Eα(µ) = {x ∈ [0, 1[d, lim
j→+∞

logµ(λj(x))

−j log(2)
= α}.

Unfortunately, these isoHölder sets are not adapted to the study of the point-
wise regularity of wavelet series Fµ. Indeed, starting from limj log µ(λj(x))/ −
j log(2), we cannot deduce the value of the upper pointwise Hölder exponent of
the function Fµ at x using wavelet criteria.

We now recall well known results about upper bound of the upper multifrac-
tal spectrum, which can be found in [15]. For any q in R, set

τ(q) = lim inf
j→+∞

1

log |λ|
log

∗∑

|λ|=2−j

µ(λ)q,

where
∗∑

means that the sum is taken over those λ such that µ(λ) > 0.
As usual, τ∗ denotes the Legendre transform of the function τ , that is

∀α ≥ 0, τ∗(α) = inf
q∈R

{αq − τ(q)}.
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Remark that, since α > 0,
Ẽα(µ) ⊂ Eα(µ).

Using this inclusion, an upper bound for the multifractal spectrum of any Borel
measure can be obtained from [15]:

Proposition 6 Let α ≥ 0 and µ a Borel measure. One has

dimH(Ẽα(µ)) ≤ τ∗(α).

Moreover, if τ∗(α) < 0 then Ẽα(µ) = ∅.

Definition 10 Let α0 ≥ 0. One says that the Borel measure µ obeys the
multifractal formalism at α = α0 for the sets Ẽα(µ) if dimH(Ẽα0 (µ)) = τ∗(α0).

5.2 Wavelet series and multifractal measures

We want to define a wavelet series of the form (21) obeying the weak multifractal
formalism for functions. First, we give an explicit relationship between the
wavelet series Fµ and the measure µ from the multifractal point of view.

5.2.1 A transference theorem

Theorem 6 Let µ a Borel measure and s0, p0 two positive real numbers. Let
Fµ be the wavelet series defined by equality (21). If the measure µ obeys the

multifractal formalism at α0 ≥ 0 for the sets Ẽα(µ), then Fµ obeys both the
strong and weak multifractal formalisms at

H = s0 −
d

p0
+
α0d

p0
,

and
d(H) = d(H) = dµ(α0).

Remark 5 Let us notice, as in [14], that if x0 6∈ supp(µ), there exists some j0
such that,

∀j ≥ j0, dj(x0) = 0.

Thus, in this special case, hFµ
(x0) = +∞.

Proof. The proof mimics the one of Theorem 1 of [14]. It relies on the following
Lemma:

Lemma 5 For any α ≥ 0, the following inclusion holds:

Ẽα(µ) ⊂ EH(Fµ) ∩EH(Fµ),

where H = s0 −
d

p0
+
αd

p0
.
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Proof. Remark that, for all λ

dλ = 2−j(s0−
d
p0

)µ(λ)
1
p0 .

where j = − log(|λ|)/ log(2).
For any given x0,

dj(x0) = 2
−j(s0−

d
p0

)
max

σ∈{−1,0,1}d
{µσ(λj(x0))}

1
p0 .

Assume that x0 ∈ Ẽα(µ). Since for any σ ∈ {−1, 0, 1}d, ασ(x0) ≥ α, for all
ε > 0 there exists an integer j0(ε, σ) such that

∀j ≥ j0(ε, σ), µσ(λj(x0)) ≤ 2
−j d

p0
(α−ε)

.

Hence,

∀j ≥ max
σ

{j0(ε, σ)}, dj(x0) ≤ 2−j(s0−
d
p0

)2−j d
p0

(α−ε) ≤ 2−j(H−ε)

and

lim inf
j→+∞

log dj(x0)

log 2−j
≥ H.

Furthermore, since for some σ0 ∈ {−1, 0, 1}d we have ασ0(x0) ≤ α, for all ε > 0
there exists an integer j0(ε) such that

∀j ≥ j0(ε), µσ0(λj(x0)) ≥ 2−jd(α+ε).

Then,
∀j ≥ j0(ε), dj(x0) ≥ 2−j(H+ε)

and

lim sup
j→+∞

log dj(x0)

log 2−j
≤ H.

Hence, using Corollary 1,

Ẽα(µ) ⊂ {x ∈ [0, 1]d, hFµ
(x) = hFµ

(x) = H} = EH(Fµ) ∩ EH(Fµ).

Since µ obeys the multifractal formalism at α = α0 for the sets Ẽα(µ),

dimH(Ẽα0(µ)) = τ∗(α0) ≤ dimH(EH(Fµ))

with H = s0 −
d

p0
+
α0d

p0
.

Remark then that for any p ∈ R,

ω∗
f(p) = p(s0 −

d

p0
)− τ(

p

p0
).
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Since for any 0 < H <∞ and any locally bounded function one has

dimH(EH(Fµ)) ≤ inf
p∈R

{pH − ω∗
f(p) + d} = τ∗(α0) = dimH(Ẽα0 (µ)),

one can conclude that Fµ obeys the weak multifractal formalism. A similar
approach proves that Fµ also obeys the strong multifractal formalism.

5.3 A class of wavelet series obeying both the strong and

the weak multifractal formalisms

The aim of this section is to exhibit a class of multifractal measures obeying
the multifractal formalism at any α ≥ 0 for the sets Ẽα(µ), yielding an example
of wavelet series satisfying both the strong and weak multifractal formalisms.
To this end we first give some examples of multifractal measures obeying the
multifractal formalism for sets Ẽα using Theorem 2 of [14] for sets Ẽα. Indeed,
even if we consider slightly different iso–Hölder sets Theorem 2 still holds : the
proof is exactly the same that this of [14].
We give two canonical examples of measures satisfying the conditions above.

5.3.1 Quasi-Bernoulli measures

Let b an integer larger than 2. Let us recall that a Borel positive measure on
[0, 1]d µ is said quasi-Bernoulli if for some C > 0 and for any v, w ∈ (Ad)∗,

1

C
µ(Iv)µ(Iw) ≤ µ(Ivw) ≤ Cµ(Iv)µ(Iw).

A classical example of quasi-Bernoulli measures is the well-known example of
multinomial measures:

Example 1 Let b an integer larger than 2 and let (m0, · · · ,mb−1) ∈ (0, 1)b such
that,

b−1∑

i=0

mi = 1;

we can construct a sequence of probability measures (µn)n∈N on [0, 1)d as fol-
lows. For any integer n, define a probability measure µn on [0, 1)d such that for
any w ∈ And,

µn(Iw) =

nd∏

ℓ=1

mwℓ
.

This sequence has a weak limit µ called multinomial measure of base b with
weight (m0, · · · ,mb−1).
By construction, any multinomial measure is quasi-Bernoulli.
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In the following, we consider only continuous quasi-Bernoulli measure, that is
without atom. Recall that any continuous quasi-Bernoulli measure satisfies the
assumptions of Theorem 2 of [14] and thus obeys the multifractal formalism at

any α > 0 for the sets Ẽα.

Hence we have the following Theorem.

Theorem 7 If µ is a continuous quasi-Bernoulli measure, then the wavelet
series Fµ defined by (21) obeys both the strong and the weak multifractal for-
malisms at any H > s0 − d/p0.

5.3.2 The case of b-adic random multiplicatives cascades

Let b an integer larger than 2 and d = 1. Canonical random cascades were
introduced by Mandelbrot in [38] and their multifractal properties have been
widely studied, mainly in the setting of b-adic grid (see e.g. [36, 28, 16, 42, 7, 8]).
We first recall the construction of these measures. LetW a non negative random
variable, not almost surely constant, satisfying E(W ) = 1/b. We thus consider
(Ww)w∈A∗ a sequence of independent copies of W and µn the random measure
whose density with respect to the Lebesgue measure on any dyadic interval is
constant and equals

bnWw1 · · ·Ww1···wn
.

Almost surely, this sequence of measures converges weakly to a measure µ as
n goes to infinity. Recall that if µ is a b-adic random multiplicative cascade,
then almost surely on J , µ satisfies the assumptions of Theorem 2 of [14] and

thus obeys the multifractal formalism for any q ∈ J at α = τ̃ ′(q) for the sets Ẽα.

Then similarly, to the case of quasi-Bernoulli measure, we have the following
result,

Theorem 8 LetW be an almost surely positive random variable. Let µ a b-adic
random multiplicative cascade such that τ̃ ′(1) = −1 − logb(E(W )) > 0. Then
the wavelet series Fµ defined by (21) obeys almost surely both the strong and the
weak multifractal formalisms at any H > 0.

6 A multifractal function whose lower and up-

per spectra of singularities differ

Although similar results hold for both the strong and the weak multifractal
formalisms, there is no direct relation between d and d. We introduce here a
function defined as p-adic Davenport series whose upper multifractal spectrum
is reduced to two single points, while its lower multifractal spectrum is linear
on an interval.
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A p-adic Davenport series (p ≥ 2) is a series of the form

f(x) =

∞∑

j=0

aj{p
jt},

where {x} is the sawtooth function

{x} = x− [x]−
1

2
.

We will assume here that (aj)j ∈ l1, so that the series is normally convergent.
The function f is thus continuous at every non p-adic rational number and has
left and right limit at every p-adic rational kp−l (k ∧ p = 1) with a jump of
amplitude

∑
m≥l am. Recent results on Davenport series can be found in [32].

Let β > 1; the functions fβ we will study is defined by

fβ(x) =
∑

l∈N

{2lx}

2lβ
.

6.1 The lower spectrum of singularities of fβ

The functions fβ are derived from the famous Lévy’s function (which can be
seen as a special case, where β = 1). The properties of the lower spectrum
of singularities of this function have already been investigated in [30]; Proposi-
tions 8 and 9 together can be seen as a generalization of Proposition 4 of [30].
Proposition 12 of [32] implies that d is linear on [0, β].

To determine explicitly the lower isoHölder sets of fβ , we will use the fol-
lowing notations. Let p ∈ N, p > 1; for a sequence of integers (xl)l∈N satisfying
0 ≤ xj < p, we will write

(0;x1, . . . , xl, . . .)p (22)

to denote one expansion in basis p of the real number

x =
∑

l∈N

xl
pl
.

If there is no k such that xl = p − 1 for all l ≥ k, (22) is the proper expansion
of x in basis p. If (0;x1, . . .)p is the proper expansion of x, we define

θp(x) = inf{l : xl 6= 0} − 1.

Let δ(k) = sup{l : ∀l′ ≤ l, xk+l′ = xk} and let (ml)l∈N be the sequence defined
recursively, m1 = inf{l : xl = 0 or xl = p− 1}, mk = inf{l ≥ mk−1 + δ(mk−1) :
xl = 0 or xl = p − 1} (k > 1). One also defines the sequence (δk)k∈N by
δk = δ(mk). Finally, ρp(x) = lim supk→∞ δk/mk; if x is a p-adic rational,
one sets ρp(x) = ∞. The number ρp(x) defines, in some way, the rate of
approximation of the number x by p-adic rationals, since we have the following
obvious result.
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Proposition 7 If x is not a p-adic rational, the equation (depending on k and
l)

|x−
k

pl
| ≤ (

1

pl
)φ (k ∧ p = 1)

has an infinity of solutions if and only if φ ≤ ρp(x) + 1.

We will denote by φ(x) the critical exponent φ(x) = ρ2(x)+1. The lower Hölder
exponents of fβ only depend on φ.

Proposition 8 The lower Hölder exponents of fβ are given by

h(x) =
β

φ(x)
.

Proof. As a corollary of Theorem 21 of [33], we have the following equalities: if
x is not a dyadic rational,

h(x) = lim inf
j→∞

−βj

log2 dist(x, 2
−jZ)

; (23)

otherwise, h(x) = 0. We can suppose that x ∈ (0, 1) is not a dyadic rational.
For a given j ∈ N, let εj = dist(x, 2−jZ). One has θ2(εj) = j+1+ δ(j+1) and
thus εj ∼ 2−(j+δ(j+1)+1). Then (23) can be rewritten

h(x) = lim inf
j→∞

βj

j + 1 + δ(j + 1)
=

β

1 + ρ2(x)
.

The lower isoHölder sets are now characterized.

Corollary 2 The lower isoHölder sets of the function fβ are the sets

EH = {x : φ(x) =
β

H
} (0 < H ≤ β).

The set E0 is the set of the dyadic rationals.

To conclude this study on the strong Hölder regularity, we have the following
result.

Proposition 9 The lower spectrum of singularities of fβ is

d(h) =

{
h
β if h ∈ [0, β]

−∞ otherwise
.

Proof. The main idea is the same as in Proposition 4 of [30]. If α ≥ 1/β, let

Fα = lim sup
j→∞

⋃

k

[k2−j − 2−jαβ , k2−j + 2−jαβ ].
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Using (23), h(x) = H means

x ∈
⋂

γ>H

F1/γ −
⋃

γ<H

F1/γ . (24)

Clearly, dimH(Fα) ≤ 1/αβ; let us show that the converse inequality holds.
Let (jl)l∈N be a sequence satisfying jl = 2jl−1 , let

Ik(l) = [k2−jl − 2−jlαβ , k2−jl + 2−jlαβ ]

and
Gα =

⋂

l

⋃

k

Ik(l).

A probability measure µ supported by Gα can be obtained as follows. If l = 1,
we put on each interval Ik(1) the same mass 2−j1 . If each of these intervals
contains n intervals of type Ik(2), on each of these intervals, we put the measure
2−j1/n. This construction can be iterated to obtain, at the limit, a probability
measure µ supported by Gα. One easily checks that

µ([x− h, x+ h]) ≤ Ch1/αβ ∀x ∈ Gα.

Moreover, Proposition 4.9 of [22] implies that

H1/αβ(Gα) > 0

and thus, since Gα ⊂ Fα,
dimH(Fα) = 1/αβ,

which, thanks to (24), is sufficient to conclude.

6.2 The upper spectrum of singularities of fβ

We show here that from the weak Hölder regularity point of view, the function
fβ only displays two kinds of singularities: it is discontinuous at dyadic rationals
and has an upper Hölder exponent equal to β at non dyadic rationals.

Let

Ωα = lim inf
j→∞

{x ∈ R : ∃k ∈ Z such that |x−
k

2j
| ≤ 2−αj}.

We have the following relation between the sets Ωα and h(x0).

Proposition 10 If α > 1, then

x0 /∈ Ωα ⇒ h(x0) ≥
β

α
.
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Proof. Let ε > 0 be a given real number. We want to prove that for any C > 0,
there exists a strictly decreasing sequence (rn)n of real positive numbers, such
that

sup
h>0

‖∆
[β/α]+1
h fβ(x)‖L∞(Bh(x0,rn)) ≤ Crβ/αn .

One has

∆
[β/α]+1
h fβ(x) =

∑

l∈N0

1

2lβ

M∑

m=0

(−1)m
(
M

m

)
{2l(x+mh)}. (25)

If x0 /∈ Ωα, then there exists a strictly increasing sequence of integers (jn)n such
that

|x0 −
k

2jn
| ≥ 2−αjn , ∀n ∈ N, k ∈ Z.

Let rn = 2−αjn ; the interval [x, x + ([β/α] + 1)h] ⊂ B(x0, rn) does not contain
any dyadic rational of the form k2−l, with l ≤ jn − 1. This implies

jn−1∑

l=0

1

2lβ

M∑

m=0

(−1)m
(
M

m

)
{2l(x+mh)} = 0.

Relation (25) leads to the following inequality,

|∆
[β/α]+1
h fβ(x)| = |

∞∑

l=jn

1

2lβ

M∑

m=0

(−1)m
(
M

m

)
{2l(x+mh)}|

≤ C′
∞∑

l=jn

1

2lβ
≤ C′rβ/αn .

Let now n0 be an integer such that C′r
β/α
n ≤ Cr

β/α−ε
n for all n ≥ n0. We have

h(x0) ≥ β/α− ε, which is sufficient to conclude.
The sets Ωα are explicitly known whenever α ≥ 1.

Proposition 11 If α > 1, then

Ωα = {
k

2j
: (k, j) ∈ Z×N}.

Moreover, Ω1 = R.

Proof. The case α = 1 is trivial. Let α > 1 and let x ∈ (0, 1) be a non dyadic
rational. If x = (0;x1, . . .)2, one has, for j sufficiently large,

min
k∈Z

|x−
k

2j
| ≥ 2−n(j)+1,

where n(j) is the first index greater or equal to j such that xn(j) = 1. We then
have, for j = n(j)− 1 sufficiently large,

min
k∈Z

|x−
k

2j
| ≥ 2−j > 2−αj .
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Therefore, x /∈ Ωα.
Thus, we have a lower bound for the upper Hölder exponent.

Corollary 3 If x0 is not a dyadic rational, then

h(x0) ≥ β.

Let us now prove the converse inequality. The following proposition is similar
to Lemma 1 of [30].

Proposition 12 Let f be a function defined on R, continuous everywhere ex-
cept on a dense countable set of points and admitting a left and a right limit at
every point. Let also x0 ∈ R be a point of continuity of f and (rn)n a sequence
of points of discontinuity converging to x0. Finally, let sn (n ∈ N) be the jump
of f at rn. If there exists a strictly increasing function ψ satisfying ψ(0) = 0
such that

∃r0 :
(
∀r ≤ r0, ∃rn :

(
|rn − x0| ≤ r, |sn| ≥ ψ(r)

))
,

then

h(x0) ≤ lim sup
r→0

logψ(r)

log r
.

Proof. Let α > 1; if f ∈ Cα
w(x0), for any C > 0 there exists a sequence (tn)n

such that
sup
h>0

‖∆
[α]+1
h f(x)‖L∞(Bh(x0,tn)) ≤ Ctαn.

Let (rn)n a sequence such that, for any integer n sufficiently large,

|rn − x0| < t, |sn| ≥ ψ(tn).

Let Fn be the function defined on R by

Fn(h) = (f(rn + h), . . . , f(rn + ([α] + 1)h)).

Since Fn has only a countable set of discontinuities, one can find h arbitrarily
close to zero such that [rn, rn + ([α] + 1)h] ⊂ B(x0, tn) and such that Fn is
continuous at h. Therefore,

ψ(tn) ≤ sn = |f(r+n )− f(r−n )|

≤ |

[α]+1∑

k=1

(−1)k
(
[α] + 1

k

)
f(rn + kh) + f(r−n )|

+|

[α]+1∑

k=1

(−1)k
(
[α] + 1

k

)
f(rn + kh) + f(r+n )|

≤ 2(|∆
[α]+1
h f(r−n )|+ |∆

[α]+1
h f(r+n )|) ≤ 4Ctαn.

This inequality implies
logψ(tn)

log tn
≥ α+

log 4C

log tn
.
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As tn tends to zero,

lim sup
r→0

logψ(r)

log r
≥ α,

and the result follows.
Since fβ is continuous except at dyadic rationals and since Ω1 = R, Proposi-
tion 12 and Corollary 3 imply the following result.

Theorem 9 If x0 is not a dyadic rational,

h(x0) = β,

if x0 is a dyadic rational, h(x0) = 0.
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