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Abstract

In this paper, a new class of Gaussian field is introduced called Lacunary Frac-
tional Brownian Motion. Surprisingly we show that usually their tangent fields
are not unique at every point. We also investigate the smoothness of the sample
paths of Lacunary Fractional Brownian Motion using wavelet analysis.
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1. Introduction

In [Falc02] and [Falc03], Falconer generalized the concept of tangent field
previously defined in [BJR97] by Benassi, Jaffard and Roux to study the local
structure of Multifractional Brownian Motion. A field Y is a weak tangent field
of the random field X at x0, if there exists two decreasing sequences of non
negative real numbers converging to zero ρn,1 and ρn,2 such that,

{
X(x0 + ρn,1t) −X(x0)

ρn,2
} → {Y (t)}

where convergence is defined in an appropriate sense.

In many specific cases, such as Fractional Brownian Motion (FBM) or Mul-
tifractional Brownian Motion, the tangent field is essentially unique. More pre-
cisely, there exists a field Y such that the collection of all tangent fields of X at
x0, called the tangent space of X at x0, equals < Y >, the family of non negative
scalar multiple of Y . In that specific case, Y is called the tangent field ofX at x0.

Furthermore, under the assumption of the uniqueness of the tangent field,
Falconer proves that tangent fields must be self-similar at the origin and must
have stationary increments almost everywhere. In the special case of Gaussian
fields for which tangent field is unique at every point, it implies that almost ev-
erywhere either the tangent field is ”smooth” or it is locally ”fractal” like a FBM.
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Natural questions appear : Can we define a Gaussian field for which there
is no uniqueness of the tangent field at any point? What is the structure of the
tangent space of such a field at every point? The Lacunary Fractional Brownian
Motion (LBFM) provides a simple answer to these questions. At every point,
LFBM admits several tangent fields. In addition, although LBFM is a Gaussian
field, we can give two explicit examples of tangent fields unlike a FBM at ev-
ery point. This last property results from asymptotic self-similarity properties
thoroughly described in the following pages. Additionally, the sample paths of
LFBM satisfy some specific regularity properties that we study using wavelets
techniques.

Our plan will be as follows : In Section 2, we first briefly recall some defini-
tions concerning FBM and Multi–scale FBM. Thereafter, we introduce two new
classes of Gaussian fields : Infinite Scale Fractional Brownian Motion (ISFBM
in short) and a special case of ISFBM : Lacunary Fractional Brownian Motion
which satisfies paradoxical self–similarity properties. In Section 4 we review
some well–known facts about tangent fields. Then we prove that LFBM is a
Gaussian field admitting several tangent fields at every point. In this case, our
main theorem describes the structure of tangent space at every point and the
related asymptotic self-similarity properties according to the different scales. In
Section 5 we investigate the sample paths properties of ISFBM. More precisely,
we will see that different situations can appear : The sample paths regularity
associated with a sequence of scales can be all the same for every sequence or
on the opposite, can depend on the chosen sequence. In the example of LFBM,
this field presents different regularity properties of the sample paths according
to the different sequences of scales. Section 6 is devoted to the proofs of the
results stated in Section 4 and Section 5.

2. Some multi–scale Gaussian models

The aim of this Section (see Section 2.1) is firstly to recall basic facts about
an already known multi–scale Gaussian model : The Multi–scale Fractional
Brownian Motion. This field was recently introduced in [BarBer07] by Bardet
and Bertrand and generalizes in some sense FBM. In Section 2.2, we introduce
two new classes of multi–scale Gaussian fields derived from Multiscale Fractional
Brownian Motion : Infinite Scale Fractional Brownian Motion and Lacunary
Fractional Brownian Motion whose definition is the main purpose of this paper.

2.1. The Multi–scale Fractional Brownian Motion

The Multi–scale Fractional Brownian Motion is one of the numerous general-
izations of Fractional Brownian Motion. Let us recall that Fractional Brownian
Motion, introduced by Kolmogorov in [Kolm40] and studied by B.Mandelbrot
and J.Van Ness in [MVN68], is the continuous mean-zero Gaussian process
{BH(t)}t∈R depending on a parameter H ∈ (0, 1), called the Hurst index, with
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covariance kernel

E(BH(t)BH(s)) = |s|2H + |t|2H − |s− t|2H .

This process has important applications in modelling (see [Ber94]), for exam-
ple in hydrology or in finance. Its main properties are all related to its Hurst
index H. More precisely, since FBM is self-similar, the sample paths regularity
(related to the high frequency behavior) and the long memory properties of the
increments (related to the low frequency behavior) are all driven by the same
Hurst index H .

In some applications, one needs more flexibility and two Hurst indices are
required in order to describe the low and the high frequency behavior of the
process. Let us quote an example in finance given by Bardet and Bertrand
in in [BarBer07]. If we are interested in the price process, statistical studies
show that this process satisfies long memory properties (see [WTT99]). Thus,
at low frequencies, the Hurst index should be larger than 1/2. But financial
theory assumes it is not possible to make profit without any risk. This implies
that the price process is a semi-martingale and that the Hurst index should be
H = 1/2 at high frequencies. So in that case one must introduce two different
Hurst indices to describe the behavior of the process at high and low frequen-
cies. Others examples can also be found in turbulence or in biomechanics (see
[Fri95] or [Col93]).

For this reason, new models of Gaussian fields with a Hurst index varying as
a piecewise function of frequencies have been introduced implicitely by Collins
and al. ([Col93]) or explicitely by Benassi and Deguy (see [BenDeg99]). Both
Collins and al. and Benassi and Deguy defined a process with two Hurst in-
dices : One related to high frequencies, another related to low frequencies.

To study precisely the probabilistic properties of this class of processes, in
[BarBer07] Bardet and Bertrand introduced a much more general model called
Multi–scale Fractional Brownian Motion where the Hurst index is a piecewise
function of frequency. They pick a finite number of frequencies,

ω0 = 0 < · · · < ωJ+1 = +∞,

a finite number of Hurst indices H0, · · · , HJ+1, and a finite number of ampli-
tudes σ0, · · · , σJ+1. The Multi–scale Fractional Brownian motion {Bω,H,σ(t)}t∈Rd

is then defined by its harmonisable representation

Bω,H,σ(t) =

J∑

ℓ=0

σℓ

∫

ωℓ<|ξ|<ωℓ+1

eit.ξ − 1

|ξ|Hℓ+
d
2

dŴ (ξ).

Then, they study the main properties of Multi–scale Fractional Brownian
Motion : Regularity of the sample paths and long memory properties.
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Let us be more precise about the distinction between the model proposed by
Benassi and Deguy in [BenDeg99] and this proposed by Bardet and Bertrand
in [BarBer07]. Following the literature on change point detection (see for e.g.
[CH88] or[BN93]), the model proposed by Benassi and Deguy is At Most One
Change (AMOC), whether this of Bardet and Bertrand admits a spectral den-
sity with More Than One Change. It is well known in the statistical community
working on abrupt change detection that there is a gap between AMOC and
More Than One Change problems.

The main goal of this paper is to generalize the Multi–scale model of Bardet
and Bertrand in order to recover specific properties as non uniqueness of the
tangent field. To this end we introduce a new model called Infinite Scale Frac-
tional Brownian Motion (ISFBM). Thereafter, we focus on a special case of
ISFBM : Lacunary Fractional Brownian Motion (LFBM) which satisfy the re-
quired property of non-uniqueness of tangent fields at any point.

2.2. Infinite Scale Fractional Brownian Motion and Lacunary Fractional Brow-
nian Motion

Our first model, Infinite Scale Fractional Brownian Motion, is a refinement of
Multi–scale Fractional Brownian Motion. Our aim is to define a field presenting
different behaviors according to different family of scales. For this reason, we
need to consider not a finite number of band of frequencies but an infinite one.
This leads us to introduce ISFBM :

Definition 2.1. Let H = (Hj)j be a sequence of reals numbers satisfying si-
multaneously the two following conditions :





0 < lim inf
j→+∞

Hj ,

lim sup
j→+∞

Hj < 1, (2.1)

and σ = (σj)j be a bounded sequence of positive real numbers. The Infinity Scale
Fractional Brownian Motion {BH,σ(t)}t∈Rd with Hurst indices H = (Hj)j and
amplitudes σ = (σj)j is the real valued Gaussian field with stationary increments
whose harmonizable representation is given by

BH,σ(t) =

+∞∑

ℓ=0

σℓ

∫

Dℓ

eitξ − 1

|ξ|Hℓ+
d
2

dŴ (ξ), (2.2)

where D0 = Bd(0, 1) = {ξ, |ξ| < 1} and for all ℓ ≥ 1, Dℓ = {ξ, 2ℓ−1 < |ξ| < 2ℓ}.

Remark 2.1. One can wonder if more general model than ISFBM defined above
can be considered. A natural extension could be Gaussian fields of the form

BH,σ(ξ)

∫
σ(|ξ|)

eitξ − 1

|ξ|H(|ξ|)+ d
2

dŴ (ξ) , (2.3)
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where σ is a bounded function on R+ and H a bounded function on R+ with
values in (0, 1). Nevertheless, all our regularity results on ISFBM (see Section
5) are based on an estimate of the correlation of wavelet coefficients (see Lemma
6.2) and we encounter technical difficulties to extend this Lemma. Much work
has to be done to extend our results to the more general case of fields of the
form (2.3). It will be the subject of a forthcoming paper.

Remark 2.2. Remark that the two conditions
{

H0 > 0,
lim sup
j→+∞

Hj < 1,

are necessary to prove the existence of the ISFBM with Hurst indices H = (Hj)j
and amplitudes σ = (σj)j. Moreover, the additional assumption

lim inf
j→+∞

Hj < 1,

ensures the almost sure uniform Hölderian regularity of the sample paths of the
ISFBM defined by Equation (2.2) (see Section 5).

Figure 1 just below represents an example of the spectral density of an ISFBM.
Let us point out that despite our figure ISFBM is not a finite band Gaussian
field.
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Figure 1: An example of spectral density of ISFBM as function of the frequencies

In some specific cases, the ISFBM coincides with already known Gaussian
fields. We give some examples below :
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Example 2.1. The Infinity Scale Fractional Brownian Motion {BH,σ(t)}t∈Rd

with Hurst indices H ≡ H and amplitudes σ ≡ 1 is the classical Fractional
Brownian Motion.

Example 2.2. If there exists an integer J such that, for all j ≥ J , σj = σJ and
Hj = HJ then the Infinity Scale Fractional Brownian Motion {BH,σ(t)}t∈Rd with
Hurst indices H = (Hj)j and amplitudes σ = (σj)j is a Multi–scale Fractional
Brownian Motion as defined in [BarBer07].

Example 2.3. If for all integer j, σj = 1, ISFBM is a special case of the
Generalized Multifractional Brownian Motion introduced by Ayache et Lévy-
Véhel in [ALV99]. Let us recall that, if λ > 1 is an arbitrary fixed real and
h = (hℓ(·))ℓ is a sequence of Hölder functions with values in [a, b] ⊂ (0, 1), then
the GMBM with parameters λ and H is the continuous Gaussian process YH,λ

defined as

YH,λ(t) =

∫

0≤|ξ|<1

eitξ − 1

|ξ|hℓ(t)+
d
2

dŴ (ξ) +

+∞∑

ℓ=0

∫

λℓ≤|ξ|<λℓ+1

eitξ − 1

|ξ|hℓ(t)+
d
2

dŴ (ξ).

If λ = 2 and for all ℓ, hℓ(·) ≡ Hℓ, we recover the Infinity Scale Fractional
Brownian Motion {BH,σ(t)}t∈Rd with Hurst indices H = (Hj)j and amplitudes
σ ≡ 1.

In the following, we will not focus on the case σ ≡ 1. On the opposite, we
will be especially interested in another special case : The LFBM. In that case,
we allow some values of the amplitude sequence σ = (σj)j to vanish. Thus we
recover some very special properties, as non unicity of tangent fields, reflecting
that the behavior of LFBM is different according to the different families of
scales. Our aim is to introduce a Gaussian field admitting different behaviors
according two different families of scales related to two different Hurst indices.
We are given a first Hurst indexH ∈ (0, 1). Our approach consists in introducing
a first family of frequencies (denoted 2ℓn in the following) and a first Gaussian
field

X1(x) =

+∞∑

n=0

∫

Dℓn

eixξ − 1

|ξ|H+ d
2

dŴξ .

At frequencies 2ℓn , the behavior of this field is clearly driven by H. If the
sequence 2ℓn is sufficiently lacunary, we will prove that there exists a sequence
of intermediary frequencies 2jn–depending both on the lacunarity degree τ of
the sequence 2ℓn and on H–where the influence of frequencies located at the
scale 2ℓn is minimal. We thus can add to the previous Gaussian field another
Gaussian part :

X2(x) =

+∞∑

n=0

∫

Djn

eixξ − 1

|ξ|H+ d
2

dŴξ .

The Hurst index H is well–chosen to ensure that X2 is always negligible with
respect to X1 except at scales 2−jn and is related to H, τ . We then define a new
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model–Lacunary Fractional Brownian Motion–which satisfies all the required
properties. Let us be more precise :

Definition 2.2. Let τ > 1 and H ∈ (0, 1). Define H as

H =
τH

1 −H + τH
. (2.4)

Define the two following sequences (jn)n∈N et (ℓn)n∈N by j0 = 1 and for all
integer n ≥ 1 as

ℓn =
H

H
jn + τ log(jn), jn+1 =

1 −H

1 −H
ℓn + τ log(ℓn). (2.5)

The Lacunary Fractional Brownian Motion with lower Hurst index H and lacu-
nary index τ is the real valued Gaussian field with stationary increments whose
harmonizable representation is given by :

BH,τ (x) =
+∞∑

n=0

∫

Djn

eixξ − 1

|ξ|H+ d
2

dŴξ +
+∞∑

n=0

∫

Dℓn

eixξ − 1

|ξ|H+ d
2

dŴξ. (2.6)

Figure 2 just below represents an example of the spectral density of an LFBM
with Hurst index H = 0.5 and lacunarity index τ = 1.6.
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Figure 2: An example of spectral density of LFBM as function of the frequencies
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3. Numerical simulations

We now illustrate through numerical simulations the multiscale behavior of
LFBM. To this end, let X be a LFBM with lower Hurst index H = 0.3 and
lacunary index τ = 2. A discretized trajectory (X(∆N ), · · · , X(N∆N)) is nu-
merically obtained (see Figure 3) for N = 2000, ∆N = 1/2000 using the explicit
expression of the covariance and the circulant matrix embedding method .
Recall that this method consists of embedding the covariance matrix of the
Gaussian vector (X(∆N ), · · · , X(N∆N )) in a non-negative definite matrix R
of size M ≥ 2(N − 1) which is a circulant one (see Dietrich and Newsam
[DN97], Wood and Chan [WC94], Beran [Ber94], Davies and Harte [DH87]).
We also refer to the survey of Bardet, Lang, Oppenheim, Phillipe and Taqqu
(see [BLOPT03]) for an overview about numerical simulations of Gaussian pro-
cesses.
Our code is a slight adaptation of the generator of Multi–scale Fractional Brow-
nian Motion furnished to us by Jean–Marc Bardet.
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Figure 3: A discretized path (X(∆N ), · · · , X(N∆N )) with H = 0.3 and τ = 2

In Figure 4, in order to vizualize the two different behaviors related to the
two characteristic family of scales 2−jn and 2−ℓn involved in the definition of
the LFBM X , we represent for different values of h, a discretized trajectory
(X(h∆N ), · · · , X(hN∆N ) − X(h(N − 1)∆N )) of the increments of the Gaus-
sian process X .

In this case, N = 2000, H = 0.5, τ = 1.5 and then H = 0.6. The increments
h take the values 2−j1 , 2−ℓ1, 2−j2 , 2−ℓ2 and are linked to the two families of
characteristic scales. We see that two regimes begin to appear (compare the
first and the third figure and then the second and fourth figure) related to the
two different characteristic families of scales and the different Hurst indices H
and H .
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Figure 4: A discretized path of the Gaussian process x 7→ X(x+h)−X(x) for different values
of h

In this paper, our aim is to state and to prove in a proper way the special
self–similarity and sample paths properties satisfied by LFBM. In next Section
we investigate the self–similarity properties of LFBM.

4. Self–similarity properties of Lacunary Fractional Brownian Motion

The aim of this Section is to state the main result of this paper : LFBM
admits several tangent fields at any point (see Section 4.2). To this end we need
some prerequisites about tangent fields and tangent spaces of a Gaussian field
(see Section 4.1).
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4.1. Tangent spaces and tangent fields

Here, we provide the reader with some material about tangent fields and
tangent spaces of a Gaussian field. All that follows can be found with more
details in [Falc02, Falc03]. The notion of tangent field was initially introduced
in [BJR97] by Benassi, Jaffard, Roux related to this of local asymptotic self-
similarity. In [Falc02] and [Falc03], Falconer generalizes this concept and gives
the following general definition :

Definition 4.1. Let {X(t)}t∈Rd be a random field with continuous sample paths.
The random field {Y (t)}t∈Rd vanishing almost surely at t = 0 is a tangent field
at x0 to the random field {X(t)}t∈Rd if there exist two decreasing sequences of
non negative real numbers converging to 0, (ρ1,n)n and (ρ2,n)n such that

lim
n→+∞

{
X(x0 + ρ1,nt) −X(x0)

ρ2,n

}

t∈Rd

= {Y (t)}t∈Rd . (4.1)

where lim means the convergence in distribution on the space of continuous func-
tions endowed with the topology of the uniform convergence on compact sets.

In the special case where ρ2,n = ρH1,n for H ∈ (0, 1), we recover a weak notion
of local asymptotic self-similarity :

Definition 4.2. Let (ρn)n∈N be a decreasing sequence of non negative real num-
bers converging to zero. A random field {X(x)}x∈R is locally asymptotically
self-similar with exponent H at x0 according the family of scales (ρn)n∈N if the

random field

{
X(x0 + ρnu) −X(x0)

ρHn

}

u∈R

has a non trivial limit when n tends

to +∞.

To define formally the concept of uniqueness of tangent field, Falconer needs
to use the notion of tangent space. The tangent space of a random field
{X(t)}t∈Rd, written Tan(X,x0), is the aggregate of all the tangent fields of
{X(t)}t∈Rd at x0.

One can remark that if λ is a positive constant and if {Y (t)}t∈Rd is a tangent
field to the random field {X(t)}t∈Rd then {λY (t)}t∈Rd is also a tangent field to
the random field {X(t)}t∈Rd . The tangent field to X at x0 is said to be unique
if

Tan(X,x0) = {λY ′, Y ′ (L)
= Y },

for some random field Y .

One can also say that {Y (t)}t∈Rd is the unique tangent field to the ran-
dom field {X(t)}t∈Rd . The random field X admits several tangent fields at
x0 if there is no uniqueness of the tangent field to X at x0.
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In the special case of Gaussian fields, Falconer proved the following result
(Corollary 3.10 of [Falc03]) which enables to describe the local structure of the
tangent space at almost every point :

Theorem 4.1. Let X be a Gaussian field with continuous sample paths. For
almost all x0 in R

d at which X has a unique tangent field Yx0
then the following

alternative holds :

1. Either there exists a d-dimensional Gaussian random variable Zx0
such

that almost surely,
Yx0

(t) = t.Zx0

for all t in R
d.

2. Or there exists H ∈ (0, 1) such that for all t 6= 0, {Yx0
(rt)}r∈R is a

constant multiple of index H Fractional Brownian Motion.

In short, in the case of a Gaussian field admitting at each point a unique
tangent field, this tangent field is either ’smooth’ or ’fractal’ like a FBM. This
result comes from two properties of tangent spaces proved in [Falc02, Falc03]
: the tangent space of a random field is a.e. shift invariant and always scaling
invariant.

One can wonder what kind of behavior can be expected if these assumptions
are not satisfied. Using LFBM defined above, we will prove in next section
that we can define a Gaussian field admitting several tangent fields at each
point and that in that case the tangent fields could be unlike a FBM. Further,
we also prove–since we exhibit two tangent fields of LFBM which are not self
similar–that in the general case tangent fields are not self–similar.

4.2. Tangent fields of Lacunary Fractional Brownian Motion

Now, we state the two central results of this paper concerning the non unique-
ness at any point of the tangent field of the LFBM defined by Equation (2.6).

Proposition 4.2. 1. The LFBM {BH,τ (x)}x∈Rd defined by Equation (2.6)
is asymptotically locally self-similar with exponent H at every point x0

according to the family of scales (ρn,1)n∈N = (2−ℓn)n. Moreover, for all
x0 ∈ R

d

lim
n→+∞

{
BH,τ (x0 + ρn,1t) −BH,τ (x0)

ρ
H
n,1

}

t∈Rd

= {B̃H(t)}t∈Rd ,

where lim means the convergence in distribution on the space of contin-
uous functions endowed with the topology of the uniform convergence on
compact sets and

B̃H(t) =

∫

1
2
<|ξ|<1

eitξ − 1

|ξ|H+ d
2

dŴ (ξ). (4.2)
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2. The LFBM {BH,τ (x)}x∈Rd defined by Equation (2.6) is asymptotically

locally self-similar with exponent H at every point x0 according to the
family of scales (ρn,2)n∈N = (2−jn)n. Moreover, for all x0 ∈ R

d

lim
n→+∞

{
BH,τ (x0 + ρn,2t) −BH,τ (x0)

ρHn,2

}

t∈Rd

= {B̃H(t)}t∈Rd ,

where lim means the convergence in distribution on the space of contin-
uous functions endowed with the topology of the uniform convergence on
compact sets and

B̃H(t) =

∫

1
2
<|ξ|<1

eitξ − 1

|ξ|H+ d
2

dŴ (ξ). (4.3)

Remark 4.1. Remark that the two Gaussian fields B̃H and B̃H are not self–
similar. The uniqueness assumption is thus necessary to recover the results of
Falconer about self–similarity of tangent fields. Since the LFBM admits sta-
tionary increments, its tangent fields also admits stationary increments. Hence
our model does not yield an example of Gaussian fields with unstationary tan-
gent fields. In [Clau08] the case of a modified version of Generalized Fractional
Brownian Motion has been studied. Unfortunately, in this case the tangent fields
remains with stationary increments. The question of defining a Gaussian field
with unstationary tangent fields remains still open.

We thus obtain our main result about the structure of tangent space of the
LFBM defined by Equation (2.6) :

Theorem 4.3. For all x0 ∈ R
d, the two Gaussian fields {B̃H(t)}t∈Rd and

{B̃H(t)}t∈Rd defined by Equation (4.2) and (4.3) are two tangent fields at x0

to the LFBM {BH,τ (x)}x∈Rd defined by Equation (2.6). Hence, {BH,τ (x)}x∈Rd

admits at every point several tangent fields unlike a FBM.

Let us make some comments about these self–similarity properties of LFBM.
Roughly speaking, LFBM ’looks like’ the Gaussian field {B̃H(t)}t∈Rd when being
considered at the scales (ρn,1)n∈N = (2−ℓn)n whereas it ’looks like’ the Gaussian

field {B̃H(t)}t∈Rd when being considered at the scales (ρn,2)n∈N = (2−jn)n.
From the regularity point of view, this non uniform behavior of LFBM according
to the different scales is reflected in its sample paths properties studied in next
Section.

5. Sample paths properties of Lacunary Fractional Brownian Motion

Hereafter we investigate the sample paths properties of LFBM. In Section
5.1, we first give a result about uniform Hölderian regularity of a more general
model : ISFBM. Then, in Section 5.2 we focus on the special case of LFBM.
We illustrate the non–uniformity in scales of sample paths of LFBM stating our
results in terms of uniform irregularity.
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5.1. Regularity of the sample paths of the Infinite Scale Fractional Brownian
Motion

We first study the regularity of the sample paths of LFBM. In fact, our
result can be stated for a more general model than LFBM : ISFBM. But before
an accurate study of uniform regularity of the sample paths of ISFBM, we first
precise the regularity concept we used. This is done in Section 5.1.1.

5.1.1. Uniform Hölderian regularity

The usual concept for uniform regularity is uniform Hölderian regularity.
Uniform Hölderian regularity of a function can be characterized by its belongness
to classical Hölder spaces Cα(Rd) :

Definition 5.1. A bounded function f belongs to Cα(Rd) with α ∈ (0, 1) if there
exists a real positive number r0 and a positive constant C0 such that for every
scale 0 < r ≤ r0,

sup
|h|≤r

sup
x∈Rd

|f(x+ h) − f(x)| ≤ C0r
α.

A bounded function f is said to be uniformly Hölder if for some ε0 > 0, f ∈
Cε0(Rd).

In the following, we will be interested in local sample paths properties of ISFBM.
To state our result, we need a notion of locally uniform Hölder regularity.

Definition 5.2. The locally bounded function f belongs to Cαloc(R
d) with α ∈

(0, 1), if for any ϕ ∈ D(Rd), the function ϕf belongs to Cα(Rd). One can define
the local uniform Hölder exponent of function f as :

Hloc(f) = sup{α > 0, f ∈ Cαloc(R
d)}.

Our result of local uniform Hölder regularity of the sample paths of ISFBM
is based on wavelets technics. Indeed, discrete wavelet transform and multires-
olution analysis are particularly efficient tools to study the uniform Hölderian
regularity of a function (see e.g. [Mey90]). Hereafter, we review a result bind-
ing the regularity of a function and its wavelet coefficients. We first review
some definitions and notations about wavelets (see for more details for example
[Mal98, Mey90]).

Under some general assumptions, there exists 2d − 1 functions (ψ(i))1≤i<2d ,

called wavelets, such that {ψ(i)(2jx − j) : 1 ≤ i < 2d, k ∈ Z
d, j ∈ Z} is an

orthogonal basis of L2(Rd). Any function f ∈ L2(Rd) can be decomposed as
follows

f(x) =
∑

j∈Z

∑

k∈Zd

∑

1≤i<2d

c
(i)
j,kψ

(i)(2jx− k),

where

c
(i)
j,k = 2dj

∫

Rd

f(x)ψ(i)(2jx− k) dx.

Let us remark that we do not choose the L2 normalization for the wavelets,
but rather an L∞ normalization, which is better fitted to the study of Hölder
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regularity. If (ψ(i))i ∈ Cr(Rd) and if (∂αψ(i))i (|α| ≤ r) have fast decay, the
multiresolution analysis is said to be r-smooth. We always suppose that the
multiresolution analysis is r-smooth with r > α.

A dyadic cube of scale j is a cube of the form

λ = [
k1

2j
,
k1 + 1

2j
) × · · · × [

kd
2j
,
kd + 1

2j
),

where k = (k1, . . . , kd) ∈ Z
d. From now on, wavelets and wavelet coefficients

will be indexed with dyadic cubes. Since i takes 2d − 1 values, we can assume
that it takes values in {0, 1}d − (0, . . . , 0). In the sequel we use the following
notations

• λ = λ(i, j, k) = k
2j + i

2j+1 + [0, 1
2j+1 )d,

• cλ = c
(i)
j,k,

• ψλ = ψ(i)(2j − k).

We state the usual wavelet criterium for uniform Hölderian regularity (see
[Mey90]).

Theorem 5.1. Let α ∈ (0, 1), f ∈ Cα(Rd), if and only if there exists C0 > 0
such that

∀j ≥ 0, sup
|λ|=2−j

|cλ| ≤ C02
−αj . (5.1)

We now take an interest in the sample paths properties of ISFBM. Next Section
is devoted to the statement of our regularity result.

5.1.2. Sample paths Hölderian regularity of Infinite Scale Fractional Brownian
Motion

Now, we consider the local Hölderian regularity properties of the sample
paths of ISFBM. When σ ≡ 1, ISFBM is a special case of GMBM. Therefore
we could expect that, as in the case of GMBM (see [ALV99]), the local proper-
ties of the sample paths are given by the high frequencies of the harmonizable
representation. The following proposition shows that this property is satisfied.

Proposition 5.2. For any integer j, let τj = −
log2(σj)

j
with τj = +∞ if

σj = 0. Set
H = lim inf

j→+∞
(Hj + τj).

The local uniform Hölder exponent Hloc of the Infinite Scale Fractional Brow-
nian Motion {BH,σ(x)}x∈Rd with Hurst indices H = (Hj)j and amplitudes
σ = (σj)j satisfies almost surely

Hloc(BH,σ) = H. (5.2)

14



This Proposition is proved in Section 6.2 using wavelets technics and the
wavelet criterion stated in Theorem 5.1 above. Now we focus on the special
case of LFBM. Our aim is to understand how the non–uniform behavior of
LFBM according to the different scales is reflected in its sample paths properties.
To this end we need to complete our study and investigate the irregularity
properties of LFBM.

5.2. Study of the uniform irregularity of the sample paths in the special case of
Lacunary Fractional Brownian Motion

Here our aim is to illustrate in a relevant way the specific sample paths
properties of LFBM using adapted concepts of uniform regularity. In a classical
way, we are interested in the behavior of the so–called modulus of continuity of
LFBM

r 7→ sup
|h|≤r

sup
x∈K

|BH,τ (x+ h) −BH,τ (x)|

near r = 0 on any compact K. So we are lead to estimate the two following
exponents

α = lim inf
r→0

log( sup
|h|≤r

sup
x∈K

|BH,τ (x+ h) −BH,τ (x)|)

log(r)
,

and

α = lim sup
r→0

log( sup
|h|≤r

sup
x∈K

|BH,τ (x+ h) −BH,τ (x)|)

log(r)
.

on any compact K.

Remark that α coincides with the uniform exponent of the LFBM on the
compact K and has already been estimated in Section 5.1. The exponent α is
related to another concept of uniform regularity than the classical one : Weak
uniform Hölderian regularity defined in Section 5.2.1. The estimation of α (see
Section 5.2.2) uses the wavelet criterion for weak uniform irregularity stated in
Section 5.2.1.

5.2.1. Alternative definitions of uniform regularity

We refer to [Clau08] for all the material of this Section. We first introduce
the concept of uniform irregularity :

Definition 5.3. A bounded function f is said to be uniformly irregular with
exponent β if there exists a positive constant C0 and a positive real number r0
such that for every scale r in (0, r0)

sup
|h|≤r

sup
x∈Rd

|f(x+ h) − f(x)| ≥ C0r
β .

A weak notion for uniform regularity can be associated with the concept of
uniform irregularity :
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Definition 5.4. A bounded function f is said to be weakly uniformly Hölder of

exponent β in (0, 1) written f ∈ C
β
(Rd) if f 6∈ Iβ(Rd) i.e. if for any C > 0, there

exists some decreasing sequence (rn)n∈N of real positive numbers converging to
zero such that

∀n ∈ N, sup
|h|≤rn

sup
x∈Rd

|f(x+ h) − f(x)| ≤ Crβn .

The uniform irregular exponent of function f is defined as

I(f) = inf{β > 0, f ∈ Iβ(Rd)} = sup{β > 0, f ∈ C
β
(Rd)}.

Remark then that

I(f) = lim sup
r→0

log( sup
|h|≤r

sup
x∈Rd

(|f(x+ h) − f(x)|)

log(r)
.

whereas

H(f) = lim inf
r→0

log( sup
|h|≤r

sup
x∈Rd

(|f(x+ h) − f(x)|)

log(r)
.

The simultaneous knowledge of the uniform Hölder exponent and the uniform
irregular exponent of a bounded function f gives us a lower and an upper bound
at r = 0 of the modulus of continuity of f , ωf , defined as

ωf (r) = sup
|h|≤r

sup
x∈Rd

(|f(x+ h) − f(x)|).

Since we are interested in the local behavior of sample paths, we need the
following definitions :

Definition 5.5. The locally bounded function f is said to be locally weak uni-

formly Hölder with exponent β ∈ (0, 1), written f ∈ C
β

loc(R
d), if for any ϕ ∈

D(Rd), the function ϕf is C
β
(Rd).

The function f is said to be locally uniformly irregular with exponent expo-

nent β ∈ (0, 1), written f ∈ Iβloc(R
d), if f 6∈ C

β

loc(R
d).

The local irregularity exponent is defined as

Iloc(f) = sup{β, f ∈ C
β

loc(R
d)}.

To study the irregularity properties of the sample paths of LFBM, we need to
use a wavelet criterion for weak uniform Hölder regularity. In [Clau08] is proved
the following result

Theorem 5.3. Let β ∈ (0, 1).

16



1. If f ∈ C
β
(Rd) then :

For every C > 0, there exists a strictly increasing sequence of integers
(jn)n ∈ N such that :

{
∀ n ≥ 0, ∀ j ∈ {jn, · · · , jn+1 − 1},

sup
|λ|=2−j

(|cλ|) ≤ C inf(2−jn β , 2(1−β)jn+12−j), (5.3)

2. Conversely, if f is uniformly Hölder and if for any C > 0, there exists
a strictly increasing sequence of integers (jn)n ∈ N such that (5.3) holds,
then

{
∀ n ≥ 0, ∀ j ∈ {jn, · · · , jn+1 − 1},
sup
x∈Rd

sup
|h|≤2−j

(|f(x+ h) − f(x)|) ≤ C0C inf(2−jn βjγn, 2
(1−β)jn+12−jjγ),

(5.4)
where C0 > 0 depends only on multi resolution analysis and (jn)n denotes

the sequence given by (5.3). In particular, f ∈ C
β

| log |γ (Rd) for all γ > 1.

Remark 5.1. Remark that, if

∀ j ∈ N, sup
|λ|=2−j

(|cλ|) ≥ C02
−jβ , (5.5)

then (5.3) cannot hold and f belongs to Iβ(Rd). Of course (5.5) is sufficient to
prove the uniform irregularity of f but not necessary.

By contraposition of Theorem 5.3, we get a wavelet criterium for uniform irreg-
ularity :

Theorem 5.4. Let β ∈ (0, 1) and f be a bounded function on R
d.

1. Assume there exists C0 > 0 such that for any integer j ≥ 0 :

max( sup
|λ|≤2−j

(|cλ|), 2
−j sup

|λ|≥2−j

(
|cλ|

|λ|
)) ≥ C02

−jβ , (5.6)

then f ∈ Iβ(Rd).

2. If for any γ > 1, f is uniformly Hölder and belongs to Iβ| log |γ (Rd) then

there exists C0 > 0 such that for any integer j ≥ 0 then (5.6) holds.

Now, we will apply these two wavelet criteria to the study of the uniform
irregularity of the sample paths of LFBM defined above.

5.2.2. Smoothness of the sample paths of LFBM

Let us consider the LFBM defined by Equation (2.6). The study of the weak
uniform regularity properties will be based on the fact that in short, the large
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wavelets coefficients of LFBM are located on scales 2−ℓn and on the scales 2−jn

and that, at these scales, the wavelets coefficients satisfy

sup
|λ|=2−ℓn

|cλ| ≈ 2−ℓnH , sup
|λ|=2−jn

|cλ| ≈ 2−jnH .

Thus in Section 6.3 we will prove that,

Iloc(BH,τ ) = H,

showing that we are nearly in the case of a lacunary wavelet series of the form

∑

n∈N

∑

|λ|=2−ℓn

2−ℓnHψλ +
∑

n∈N

∑

|λ|=2−jn

2−jnHψλ.

The proof is detailed in Section 6.3. Here, we give some heuristic arguments
to explain what happens and state our main result about the weak uniform
irregularity of LFBM.

The example of LFBM is complicated because there is no lower bound of
the wavelets coefficients at every scale of the form

∀j ≥ 0, sup
|λ|=2−j

|cλ| ≥ C02
−jα.

To estimate the uniform irregularity exponent of LFBM, the wavelets crite-
ria recalled in Theorems 5.3 and 5.4 will be needed. Contrary on the uniform
Hölder exponent, the uniform irregularity exponent of LFBM will depend on
the lacunarity index of the field.

Let us first consider the wavelet series
∑
n∈N

∑
|λ|=2−ℓn

2−ℓnHψλ. Indeed, the

wavelets criterium for weak uniform regularity, asserts that the wavelets coeffi-
cients at scale (2−ℓn)n∈N have an effect on scales below and above the scale
2−ℓn . This influence is decreasing as far as we get from the scale 2−ℓn .

This implies that when the band of intermediary scales between the scale
2−ℓn is wide, there exists a sequence of intermediary scale (2−tn)n for which
the wavelet coefficients located at the scale 2−ℓn have little weight. Thus, the
higher the lacunarity index is, the higher the uniform irregularity exponent of
this wavelet series and thus of LFBM is.

To prove this, there will be two main difficulties to overcome. Firstly, the
sequence (2−tn)n of intermediate scales has to be defined. This sequence will be
defined such that for all n, the competitive influence of the large wavelets coef-
ficients located at the scale 2−ℓn−1 and at the scale 2−ℓn are balanced exactly
at the scale 2−tn . Furthermore, the index of uniform irregularity α has to be
estimated.
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We want the uniform irregularity exponent to be larger than an index α to
estimate. If we suppose that for any n, tn ≤ ℓn ≤ tn+1 −1, we will require that,

2−ℓnH ≤ inf(2−tnα, 2tn+1(1−α)−ℓn).

In the limit case, the relationship above becomes

2−ℓnH = 2−tnα = 2tn+1(1−α)−ℓn .

This means that the influence of wavelets coefficients located at the scale 2−ℓn

is exactly the same at the intermediary scale just below 2−tn and just above
2−tn+1.
Thus, this leads us to define the following sequence of integer (tn)n∈N by,

tn = [
H

α
ℓn] + 1. (5.7)

Now, we can express α as a function of the lacunarity index τ . By definition of
the sequence (tn)n∈N

lim
n

ℓn
tn

=
α

H
and lim

n

ℓn
tn+1

=
1 − α

1 −H
.

Thus

lim
n

ℓn+1

ℓn
=
α

H
×

1 −H

1 − α
.

Since lim
n

(ℓn+1/ℓn) = τ , it implies that

α =
τH

1 −H + τH
.

We then obtain that α = H and thus the sequence (tn)n∈N coincide more or
less with the sequence (jn)n∈N involved in the definition of LFBM. The uniform

irregularity exponent of the wavelet series
∑

|λ|=2−ℓn

cλψλ should be equal to H .

Moreover, the sequence (jn)n∈N has been chosen such that the additional wavelet

series
∑

|λ|=2−jn

cλψλ has not enough large wavelet coefficients to have an influence

on the uniform irregularity properties of LFBM whereas it has enough large
wavelet coefficients to influence the self–similarity properties of LFBM. This
heuristic argument leads us to state the Proposition below proved in Section
6.3 :

Proposition 5.5. The sample paths of LFBM defined by Equation (2.6) satisfy
the following properties :

1. Almost surely
Hloc(BH,τ ) = H.
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Furthermore there exists C1, C2 almost surely positive such that for any
n ∈ N

C12
−Hℓn

|ℓn|
1
2
+ε

≤ sup
{(x,y)∈K2,|x−y|≤2−ℓn}

|BH,τ (x) −BH,τ (y)| ≤ C22
−Hℓn |ℓn|

τ+ 1
2 .

(5.8)

2. Almost surely
Iloc(BH,τ ) = H.

Furthermore there exists C3, C4 almost surely positive such that for any
n ∈ N

C32
−jnH

j
1
2
+ε

n

≤ sup
{(x,y)∈K2,|x−y|≤2−jn}

|BH,τ (x) −BH,τ (y)| ≤ C42
−jnHj

τ+ 1
2

n .

(5.9)

Next Section is devoted to the proofs of the results stated in the previous Sec-
tions.

6. Proofs

6.1. Proof of Proposition 4.2

The proof of Proposition 4.2 relies on the following Lemma :

Lemma 6.1. For all x, h in R
d,

lim
n0→+∞

E(|BH,τ (x+ 2−jn0h) −BH,τ (x)|
2)

2−2jn0
H

=

∫

1
2
<|ζ|<1

|eihζ − 1|2

|ζ|2H+1
dζ = E(|B̃H(h)|2),

(6.1)
and

lim
n0→+∞

E(|BH,τ (x+ 2−jn0,1h) −BH,τ (x)|
2)

2−2jn0
H

=

∫

1
2
<|ξ|<1

|eihζ − 1|2

|ζ|2H+1
dζ = E(|B̃H(h)|2).

(6.2)

Proof. Since the field {BH,τ (x)}x∈Rd has stationary increments

E(|BH,τ (x+ 2−jn0h) −BH,τ (x)|
2) − 2−2jn0

H

∫

1
2
<|ξ|<1

|eihζ − 1|2

|ζ|2H+1
dζ

= E(|BH,τ (2
−jn0h)|2) − 2−2jn0

H

∫

1
2
<|ξ|<1

|eihζ − 1|2

|ζ|2H+1
dζ

20



Moreover, performing the change of variables ζ = 2−jn0 ξ in equation (2.6) leads
to

E(|BH,τ (x+ 2−jn0h) −BH,τ (x)|
2) − 2−2jn0

H

∫

1
2
<|ξ|<1

|eihζ − 1|2

|ζ|2H+1
dζ

=

+∞∑

n=0

2−2jn0
H

∫

2−jn0Dℓn

|eihζ − 1|2

|ζ|2H+1
dζ +

+∞∑

n=0

2−2jn0
H

∫

2−jn0Djn

|eihζ − 1|2

|ζ|2H+1
dζ

−

∫

1
2
<|ξ|<1

|eihζ − 1|2

|ζ|2H+1
dζ

Hence

E(|BH,τ (x+ 2−jn0h) −BH,τ (x)|
2) − 2−2jn0

H

=

n0−1∑

n=0

2−2jn0
H

∫

2−jn0Dℓn

|eihζ − 1|2

|ζ|2H+1
dζ +

+∞∑

n=n0

2−2jn0
H

∫

2−jn0Dℓn

|eihζ − 1|2

|ζ|2H+1
dζ

+

n0−1∑

n=0

2−2jn0
H

∫

2−jn0Djn

|eihζ − 1|2

|ζ|2H+1
dζ +

+∞∑

n=n0+1

2−2jn0
H

∫

2−jn0Djn

|eihζ − 1|2

|ζ|2H+1
dζ

We will give upper bounds for each sum above. We bound the first sum in the
following way :

n0−1∑

n=0

2−jn0
H

∫

2−jn0Dℓn

|eihζ − 1|2

|ζ|2H+1
dζ ≤

n0−1∑

n=0

2−2jn0
H

∫

2−jn0Dℓn

|h|2|ζ|1−2Hdζ

≤ |h|22−2jn0
H
n0−1∑
n=0

22(ℓn−jn0
)(1−H)

≤ |h|22−2jn0
H22(jn0−1,1−jn0

)(1−H)

≤ |h|22−2jn022jn0
(1−H)−α1 log(jn0

)

≤ |h|2
2−2jn0

(1−H)2−2Hjn0

jα1
n0

for some α1 > 0 depending on γ and H .
We then bound the second sum :

+∞∑

n=n0

2−2jn0
H

∫

2−jn0Dℓn

|eihζ − 1|2

|ζ|2H+1
dζ ≤ 2−2jn0

H

+∞∑

n0

∫

2−jn0Dℓn

dζ

|ζ|2H+1

≤ 2−2jn0
H

+∞∑

n=n0

∫

2−jn0Dℓn

dζ

|ζ|2H+1

≤ 2−2jn0
H

+∞∑

n=n0

2−2(ℓn−jn0
)H

≤ 2−2ℓn0
H =

2−2jn0
Hλ

jHγn0
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using the definition of ℓn0
.

The third sum can be bounded in the same way as the first one

n0−1∑

n=0

2−2jn0
H

∫

2−jn0Djn

|eihζ − 1|2

|ζ|2H+1
dζ ≤ 2−2jn0

H

n0−1∑

n=0

22(jn−jn0
)(1−H)

≤ 2−2jn0
H22(jn0−1−jn0

)(1−H)

≤ 2−2jn0
Hj

2(1−H)
n0

2−2jn0
(1− 1

β
)(1−H)

using (2.5).
The fourth sum can be bounded in the same way as the second one,

+∞∑

n=n0+1

2−2jn0
H

∫

2−jn0Djn

|eihζ − 1|2

|ζ|2H+1
dζ ≤ 2−2jn0

H
+∞∑

n=n0+1
2−2(jn−jn0

)H

≤ 2−2jn0
H2−2(jn0+1−jn0

)H

≤ 2−2jn0
Hjγn0

2−2jn0
(β−1)H

Thus we proved (6.1). The proof of (6.2) is similar.
The above lemma yields the convergence of the finite dimensional distribu-

tion of the field

{
BH,τ (x+ 2−jnu) −BH,τ (x)

2−jnH

}

u∈Rd

to those of {B̃H(t)}t∈Rd .

We also proved the convergence of the finite dimensional distribution of the field{
BH,τ (x+ 2−ℓnu) − BH,τ (x)

2−ℓnH

}

u∈Rd

to those of {B̃H(t)}t∈Rd .

In order to prove the convergence in distribution for the topology of the uniform
convergence on compact sets the following tightness result is required (see for
e.g. the Kolmogorov criterium recalled in [KarShr88]) :

Proposition 6.1. Let (Zn)n∈N a sequence of continuous random fields on R
d

vanishing at the origin. Suppose that for all T > 0,

∀(s, t) ∈ [−T, T ]d, sup
n∈N

E(|Zn(t) − Zn(s)|
α) ≤ C0(T )|t− s|1+β,

for some positive constant C0(T ) which may depend on T and α, β which are
universal positive constants. If, moreover, for any compact K the finite dimen-
sional distributions of sequence (Zn)n∈N converge on K then the convergence is
in distribution on K.

Using Proposition 6.1 above and a method similar to the prove of Lemma
6.1, we apply this tightness criterium to the family,

{
Z1
n(u)

}
u∈Rd =

{
BH,τ (x+ 2−jnu) −BH,τ (x)

2−jnH

}

u∈Rd

and to the family

{
Z2
n(u)

}
u∈Rd =

{
BH,τ (x + 2−ℓnu) −BH,τ (x)

2−ℓnH

}

u∈Rd

So we can conclude.
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6.2. Proof of Proposition 5.2

The proof uses several technics introduced in [CKR93]; (5.2) will be obtained
through a serie expansion of BH,σ in the orthonormal basis of L2(Rd) given by
the Lemarié-Meyer wavelets (see [Mey90]).
The proof of Proposition 5.2 relies on a key lemma that we state and prove in
next section.

6.2.1. Estimates on the wavelet coefficients of the field

Lemma 6.2. Let j ≥ 1, (k, k′) ∈ (Zd)2.

1. The following estimates of the covariance of the wavelets coefficients of
the field {BH,σ(x)}x∈Rd hold

∃C0 > 0, |E(cj,kcj,k′ )| ≤ C0

max(σ2
j 2

−jHj , σ2
j+12

−jHj+1 , σ2
j+22

−jHj+2 )

1 + |k − k′|
.

2. If k = k′ then

∃C1, C2 > 0 C1 max
ℓ∈{j,j+1,j+2}

(σ2
ℓ 2

−2jHℓ) ≤ E(c2j,k) ≤ C2 max
ℓ∈{j,j+1,j+2}

(σ2
ℓ 2

−2jHℓ).

Proof.

1. We use the Meyer wavelet basis which satisfies for any i, supp(ψ̂(i)) ⊂
[−4π/3,−2π/3] ∪ [2π/3, 4π/3]. The proof is based on the harmonisable
representation of wavelet coefficients of ISFBM. For any Gaussian field
with stationary increments admitting a spectral density f , one has

∀j ≥ 1, ∀k ∈ Z
d, cij,k =

∫

Rd

ei2
−jkξψ̂(i)(2−jξ)f(ξ)1/2dŴ (ξ).

Hence, in the special case of ISFBM, one deduces that

∀j ≥ 1, ∀k ∈ Zd, cij,k =
+∞∑

ℓ=0

σℓ

∫

Dℓ

eik2
−jξψ̂(i)(2−jξ)

|ξ|Hℓ+d/2
dŴ (ξ).

Then for any i ∈ {1, · · · , 2d − 1}, j ≥ 1 and any (k, k′) ∈ (Zd)2

E(cij,kc
i
j,k′) =

+∞∑

ℓ=0

σ2
ℓ

∫

Dℓ

ei2
−j(k−k′)ξ|ψ̂(i)(2−jξ)|2

|ξ|2Hℓ+d
dξ

Perform the change of variable ζ = 2−jξ :

E(cij,kc
i
j,k′) = σ2

j 2
−2jHj

∫

1<|ζ|<2

ei(k−k
′)ζ |ψ̂(i)(ζ)|2

|ζ|2Hj+d
dζ

+σ2
j+12

−2jHj+1

∫

2<|ζ|<4

ei(k−k
′)ζ |ψ̂(i)(ζ)|2

|ζ|2Hj+1+d
dζ

+σ2
j+22

−2jHj+2

∫

4<|ζ|<8

ei(k−k
′)ζ |ψ̂(i)(ζ)|2

|ζ|2Hj+2+d
dζ.
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Let j a given integer and p ∈ {1, 2, 3}, we define F pj as

F pj (x) =

∫

2p<|ζ|<2p+1

eixζ |ψ̂(i)(ζ)|2

|ζ|2Hj+d
dζ,

We want to bound
sup
x∈Rd

((1 + |x|)|F pj (x)|).

Remark that

‖F pj ‖L∞(Rd) ≤

∫

2p<|ζ|<2p+1

|ψ̂(ζ)|2

|ζ|2Hj+d
dζ ≤

∫

1<|ζ|<8

|ψ̂(ζ)|2

|ζ|2H+d
dζ = C(H).

Furthermore, for all ℓ and p (perform an integral by parts) :

xℓF
p
j = eixℓ2

p+1 |ψ̂(2p+1)|2

|2p+1|2Hj+d
−eixℓ2

p |ψ̂(2p)|2

|2p|2Hj+d
−

∫

2p<|ζ|<2p+1

eixζ
∂ℓ(|ψ̂(i)(ζ)|2/|ζ|2Hj+d)

∂ζℓ
dζ

which can be bounded in a similar way than ‖F pj ‖L∞(Rd) since 0 6∈ supp(ψ̂).
If we set x = k − k′, we thus obtain the required result.

2. If k = k′ then,

E(|cij,k|
2) = σ2

j 2
−2jHj

∫

1<|ζ|<2

|ψ̂(ζ)|2

|ζ|2Hj+d
dζ + σ2

j+12
−2jHj+1

∫

2<|ζ|<4

|ψ̂(ζ)|2

|ζ|2Hj+1+d
dζ

+σ2
j+22

−2jHj+2

∫

4<|ζ|<8

|ψ̂(ζ)|2

|ζ|2Hj+2+d
dζ

≥ σ2
j 2

−2jHj

∫

1<|ζ|<2

|ψ̂(ζ)|2

|ζ|2H+d
dζ + σ2

j+12
−2jHj+1

∫

2<|ζ|<4

|ψ̂(ζ)|2

|ζ|2H+d
dζ

+σ2
j+22

−2jHj+2

∫

4<|ζ|<8

|ψ̂(ζ)|2

|ζ|2H+d
dζ.

The result follows.

6.2.2. Determination of the local uniform Hölder exponent

Let
B1

H,σ(x) =
∑

j≥0

∑

|k|<j2jd

cij,k(ω)ψij,k(x),
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and
B2

H,σ(x) =
∑

k∈Zd

Ck(ω)φk(x) +
∑

j≥0

∑

|k|>j2jd

cij,k(ω)ψij,k(x).

We will focus on the estimate of the uniform regularity exponent of field {B1
H,σ(x)}x∈Rd .

We first prove that
H ≥ Hloc(B

1
H,σ). (6.3)

For any integer j, let us set τj = −
log2(σj)

j
with τj = +∞ if σj = 0.

By assumption, for any positive real ε, there exists an integer j0 such that,

∀j ≥ j0, Hj + τj ≥ H − ε.

Then, by a classical lemma (see lemma 3 of [MST99]) and lemma 6.2 we deduce
that there exists a almost surely positive constant C0(ω) and an integer j0(ω)
such that for any j ≥ j0(ω) and any k ∈ Z

d

|cij,k| ≤ C0

√
log(k)

√
log(j) max(2−j(Hj+τj), 2−j(Hj+1+τj+1), 2−j(Hj+2+τj+2))

≤ C0j
√

log(j)max(2−j(Hj+τj), 2−j(Hj+1+τj+1), 2−j(Hj+2+τj+2))

≤ C0j
√

log(j)2−j(H−ε).
(6.4)

Hence, if |k| ≤ j2jd

|cij,k| ≤ C0jd
√

log(j) max(2−j(Hj+τj), 2−j(Hj+1+τj+1), 2−j(Hj+2+τj+2))

≤ C0j
√

log(j)2−j(H−ε).

Thus, by the usual wavelet criterium for uniform Hölder regularity (see Theo-
rem 5.1 above) we deduce the required upper bound of uniform Hölder exponent
of the random field B1

H,σ.

Theorem II.7 of [CKR93] applied to the sequence (gn,k,i) =
ciℓn,k

E(|ciℓn,k|
2)

1
2

yields the converse inequality

H ≤ Hloc(B
1
H,σ), (6.5)

by using the first point of lemma 6.2. The conclusion is then straightforward
using the following lemma :

Lemma 6.3. Almost surely, the sample paths of the field {B2
H,σ(x)}x∈Rd are

CH
′

loc(R
d) for any

0 < H < H ′ < 1.

Then, the uniform regularity and irregularity exponents of the sample paths of
ISFBM are those of the field {B1

H,σ(x)}x∈Rd .

25



Proof. Let 0 < H < H ′ < 1, ε > 0 and ϕ ∈ D(Rd). We may assume that
supp(ϕ) ⊂ Bd(0, 1) = {x, |x| ≤ 1} and 0 ≤ ϕ ≤ 1. We denote by Y the random
field ϕB2

H,σ. We want to give an upper bound of |Y (x+h)−Y (x)| for any given
x, h in Bd(0, 1).
Here Ψi

j,k, Φk will denote respectively ϕψij,k and ϕφk. Remark that if

fj,k = Ψj,k(2
−j·)

then
|fj,k| ≤ ψ(· − k), (6.6)

and
Ψj,k(x+ h) − Ψj,k(x) = fj,k(2

jx+ 2jh) − fj,k(2
jx).

Using (6.4)

|Y (x+ h) − Y (x)|

= |
+∞∑
j=1

∑
|k|>j2jd

cij,k(fj,k(2
jx+ 2jh) − fj,k(2

jx))

+
∑
k∈Zd

Ck(Φk(x+ h) − Φk(x))|

≤
+∞∑
j=1

sup
y∈[2jx,2jx+2jh]

∑
|γ|=1

∑
|k|>j2jd

2−j(H−ε) log(2 + |k|) log(2 + j)|2jh|

(1 + |y − k|)M

+|h| sup
y∈[x,x+h]

∑
k∈Zd

(

√
log(2 + |k|)

(1 + |y − k|M )
)|

using (6.6) and the fast decay of φ and ψ.
Then

|Y (x+ h) − Y (x)| ≤ |h|(

+∞∑

j=1

(
C2j(1−H−ε)j log(2 + j)

(1 + j2j)M
) + C)

The lemma follows if we choose M suficiently large.

6.3. Proof of Proposition 5.5

We will use the wavelets criterium recalled in section 5. By definition of the
two sequences (jn)n, (ℓn)n and by Lemma 6.2 :
For any integer n, and all j ∈ {jn, · · · , jn+1 − 1}





maxj∈{ℓn−2,··· ,ℓn+2}(E(|cij,k|
2)) ≤ C02

−2ℓnH ,

maxj∈{jn,jn+1,jn+2}(E(|cij,k|
2)) ≤ C02

−2jnH ,

maxj∈{jn+1−2,jn+1−1}(E(|cij,k|
2)) ≤ C02

−2jn+1H

and if j 6∈ {ℓn − 2, · · · , ℓn+2} ∪ {jn, jn + 1, jn + 2} ∪ {jn+1 − 2, jn+1 − 1},
E(|cij,k|

2) = 0.

Then, for any integer n, and all j ∈ {jn, · · · , jn+1 − 1}

E(|cij,k|
2) ≤ C2

0 inf(2−jnH , 2jn+1(1−H), 2−j)2,
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and by the same method as above it follows that for any γ > 1

sup
x∈Rd

sup
|h|≤2−j

|f(x+ h) − f(x)| ≤ C0 inf(2−jnH , 2jn+1(1−H), 2−j)jγ+ 1
2 .

We then deduce almost surely the two upper bounds in equations (5.8), (5.9)
and

H ≥ Iloc(B
1
H,σ) = Iloc(BH,σ).

We now want to bound the local uniform irregularity exponent of LFBM.

By the same proof as in the previous section we obtain that almost surely
there exists a constant almost surely positive C0(ω) and an integer n0(ω) such
that

∀n ≥ n0(ω), max
|k|≤ℓn2ℓnd

|ciℓn,k| ≥ C0(ω)2−ℓnH . (6.7)

Hence :

• For any integer n and any j ∈ {jn, · · · , ℓn},

max(sup
ℓ≥j

|ciℓ,k|, 2
−j sup

ℓ≤j
2ℓ|ciℓ,k|) ≥ C0(ω)2−ℓnH ≥ C0(ω)2−jH .

• For any integer n and any j ∈ {ℓn + 1, · · · , jn+1 − 1}

max(sup
ℓ≥j

|ciℓ,k|, 2
−j sup

ℓ≤j
2ℓ|ciℓ,k|) ≥ C0(ω)2−j2ℓn(1−H) ≥ C0(ω)2−jH .

Then using the wavelet criterium, we can conclude.
Moreover, using for any integer j,

|cij,k| ≤ Cψ,ω sup
x∈Rd

sup
|h|≤2−j

|BH,τ (x+ h) −BH,τ (x)|

and (6.7) we deduce the lower bound in (5.9).
Since for any integer n, Hℓn = Hjn and

sup
x∈Rd

sup
|h|≤2−ℓn

|BH,τ (x+ h) −BH,τ (x)| ≤ sup
x∈Rd

sup
|h|≤2−jn

|BH,τ (x+ h) −BH,τ (x);

the lower bound in equation (5.8) follows.
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