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Abstract

The problem of handling missing data in linear mixed models with correlated
covariates is considered when the missing mechanism concerns both the de-
pendent variable and the design matrix. We propose an imputation algorithm
combining multiple imputation and Partial Least Squares (PLS) regression. The
method relies on two steps: removing random effects, fixed effects are first im-
puted and PLS components are constructed on the corresponding complete case.
The dependent variable is then imputed inside the linear mixed model obtained
by adding the random effects to PLS components. The method is applied on
simulations and on real data.

1. Introduction

The problem of handling missing data has been extensively studied in the
statistical literature. The best general reference here is Little and Rubin (2002),
where three non-response mechanisms are described: missing completely at ran-
dom (MCAR), missing at random (MAR) and missing not at random (MNAR).
Suppose that the data consist of an incomplete variable YK and a set of fully ob-
served variables Y1, ..., YK−1. The data are MCAR if the probability P (YKmissing)
is a constant that does not depend on the variables. The data are MAR
if the probability of missingness may depend on the fully observed variables
Y1, ..., YK−1 but does not depend on the incomplete variable YK . The MNAR
mechanism assumes that the probability of missingness depends on the variable
that contains missing values.

This work will be concerned with the MAR mechanism. When the missing
data are MAR, multiple imputation (MI) was first proposed in Rubin (1987)
in the context of a non-response mechanism which concerns both the response
variable and covariates. This method of imputation consists of replacing each
missing value by a vector of M ≥ 2 imputed values. It is shown that MI is
efficient in the sense that "When the M sets of imputations are repeated random
draws from the predictive distribution of the missing values under a particular
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model for nonresponse, the M complete-data inferences can be combined to form
one inference that properly reflects uncertainty due to nonresponse under that
model", (Little and Rubin, 2002).

This technique has been adapted to imputation in linear models and in
generalized linear models by Schafer (1997) and Ibrahim (1990) respectively.
Recently, Bastien (2008) studied the problem of missing data imputation in
generalized linear models when covariates are correlated. This author combined
the Partial Least Squares (PLS) regression technique (Wold, 1975) with the
multiple imputation method, obtaining a successfull method, called Multiple
Imputation with Partial Least Squares (MI-PLS). It consists of imputing the
missing data on the variable of interest by a PLS regression after imputation
of missing values on each explicative variable. The problem of missing data in
linear mixed models has also been investigated by Schafer and Yucel (1998),
who proposed a method denoted by MI-L2M (Multiple Imputation in Linear
Mixed Models) using multiple imputation on covariates. However, this method
can break down when covariates are linearly dependent, due to the singularity
of the design matrix.

In this paper, we consider the problem of missing data in the case of a
linear mixed model when the covariates are highly correlated. An algorithm
is proposed which combines the PLS approach defined in Bastien (2008) with
the multiple imputation method proposed by Schafer and Yucel (1998). This
method will be denoted by MI-PLS-L2M (Multiple Imputation with Partial
Least Squares in Linear Mixed Models). It consists in several steps. First,
omitting the random effect, a linear model with dependent errors is considered.
Missing data on covariates are imputed following the method of Little and Rubin
(2002). Several complete dataset of covariates are obtained and transformed
into PLS components. Second, random effects are reintroduced in the model
and a linear mixed model is obtained in which the fixed PLS components are
constructed by linear combinations of the observed regressors.The Henderson
method (1959, see Appendix) is used to estimate the parameters of the model.
Finally, the predictions of the final model based on the PLS components and the
random components are used to reconstruct the dependent variables. Moreover,
following Bastien et al. (2005), a bootstrap validation procedure allowed to test
the significance of the fixed effects.

The MI-PLS-L2M method is applied on simulations and compared to two
alternative procedures: the first one is the MI-PLS proposed by Bastien (2008),
restricted to the linear model. The second one is the MI-L2M introduced by
Schafer and Yucel (1998). This algorithm was then applied on a real dataset,
namely coffee dataset from Vivien and Sabatier (2001): 17 samples of coffee
were evaluated by 7 judges. In Vivien and Sabatier (2001), for each judge,
characteristics of the coffee were explained by physico-chemical properties. Here,
we have chosen to model the perception of the coffee by a score associated to a
linear mixed model where the fixed effects are physico-chemical variables which
are correlated and with a 7-level random effect corresponding to the 7 judges.

The paper is organized as follows: in Section 2 we review some standard
facts on PLS and multiple imputation methods. In Section 3 we derive the
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imputation algorithm by combining these two former methods. Section 4 is
devoted to the simulation study and Section 5 presents the study of the coffee
dataset. Section 6 contains a short discussion.

2. Multiple imputation and PLS background

Let Y = (Y1, . . . , Yn) be a vector of n observations. We denote by X the
(n× p)-matrix of the p covariate vectors Xj , j = 1, ..., p, referred to as the fixed
effects. The random effect is a vector u ∈ Rq. Given u, we consider the linear
mixed model

Yi = x′iβ + z′iu+ εi,∀i ∈ {1, ..., n}, (1)

where x′i and z′i are row vectors of X and Z respectively, β ∈ Rp is an unknown
vector of regression coefficients and Z is a known matrix associated to the ran-
dom effects. We will denote by Nd(a, b) the d-dimensional normal distribution
with mean a and variance b. It is assumed that

u ∼ Nq(0, D), εi ∼ N1(0, Ri), Cov(u, εi) = 0,∀i = {1, ..., n},

where D = σ2
qA, and A is a positive-definite matrix.

2.1. Multiple Imputation
When the data are Missing At Random, Rubin (1987) (see also Schafer,

1997) introduced the multiple imputation (MI) as the most reliable method
both from accuracy and efficiency point of view. The standard scheme of the
MI-algorithm consists of three steps:

• Imputation: m > 1 samples of possible values for the missing data are
created.

• Analysis: each of the m complete dataset is analyzed using the standard
statistical method that would be used in the absence of non-response.

• Pooling : the results of them analysis are combined to get a single complete
dataset.

In the Analysis step, we follow Honacker et al. (2010) who proposed an
Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977,
Wu, 1983) to estimate and replace the missing values. The EM part of the
algorithm can be described as follows. Assume that the missing values only
concern the response variable Y = (Yobs, Ymis). We denote by θ the vector of
parameters of the model for the complete dataset. The EM algorithm can be
summarized in the following way:

• (1) Complete the missing data Ymis using the first estimation of θ.

• (2) Using Yobs and Ymis completed, re-estimate θ.

• (3) Using θ estimated, re-estimate Ymis.

• (4) Iterate until convergence of θ.
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2.2. PLS Regression
From now on, we assume that the vectors Y , X1, .., Xp are centered.

In presence of correlation between covariates, PLS regression can replace the
classical linear regression model. The idea is to take over the matrix X by a
matrix T = (t1, . . . , th), for h < p, iteratively obtained by linear transformation
of the columns of X (Tenenhaus, 1998) according to the following algorithm:

• Determination of the first component t1

Compute the linear regression of Y on each Xj , for j ∈ {1, ..., p},

Y = a1jXj + ε.

Normalize the estimator â1j

w1j =
â1j

||â1||
,∀j ∈ {1, ..., p},

and so

t1 =
p∑
j=1

w1jXj .

Compute the linear regression of Y on t1

Y = c1t1 + εY1 ,

where the residuals εY1 express the deviation between the observed and
the first PLS component. Then, for j ∈ {1, ..., p}, compute the linear
regression of each covariate Xj on t1,

Xj = p1jt1 +X1j ,

where p1j is the loading vector associated to t1 and the residuals X1j ex-
press the deviation between the covariates and the first PLS component.

• Determination of the components th

For h = 2, ...,H, H < p, and for j ∈ {1, ..., p}, compute the linear regres-
sion of Y on each Xj as well as on the other PLS components th−1,

Y = ahjX(h−1)j + c1t1 + ...+ ch−1t(h−1) + εY(h−1) ,

where ahj and ch are the parameters associated to X(h−1)j and th respec-
tively, both of them being estimated by the model.
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Normalizing the estimator âhj

whj =
âhj
||âh||

,∀j ∈ {1, ..., p},

and using a linear regression of the matrix X on the h PLS components

Xj = p1jt1 + ...+ p(h−1)jt(h−1) +X(h)j ,∀j ∈ {1, ..., p}

where phj is the loading vector associated to th and X(h)j is the residual
term of the model,

th =
p∑
j=1

whjX(h)j .

• Number of PLS components

The number h of PLS components to be retained is estimated by cross-
validation. For that task, consider the regression model of y on the h PLS
components:

y = c1t1 + ...+ chth︸ ︷︷ ︸
ŷh

+yh. (2)

At each step h, a criterion is calculated for each new component th:

Q2
h = 1− PRESSh

RSSh−1
,

where RSSh (Residual Sum of Squares) and PRESSh (PRediction Error
Sum of Squares) are defined as:

RSSh =
n∑
i=1

(yi − ŷhi)2 and PRESSh =
n∑
i=1

(yi − ŷh(−i))2

where ŷh(−i) is the prediction of yi obtained by (2) without the observation
i.

For h = 1,

RSS0 =
n∑
i=1

(yi − yi)2

Referring to Tenenhaus (1998), a new component is considered as signifi-
cant as soon as Q2

h ≥ 0.0975.
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3. Adapting imputation by PLS regression to the linear mixed model

3.1. Description of the method
Let Yobs and Ymis denote the vectors of observed and missing values of Y ,

respectively. The proposed method can be decomposed into six consecutive
steps that we describe below.

Multiple imputation on fixed effects. We first impute X1, ..., Xp by the multiple
imputation method described in 2.1. We obtain m complete dataset.

PLS regression without random effects. Temporarily eliminating the random
effect and according to 2.2, we compute the PLS components T of the het-
eroscedastic linear model:

Yobs = βX + ε̃,

where ε̃ = ε + Zu. Clearly, ε̃ is a vector of dependent random variable such
that ε̃ ∼ Nn(0; Σ), with Σ = ZDZ ′ + R. But this transformation of ε does
not modify the PLS components, since they are completely specified by the
correlation between X and Y . The selection of the appropriate number of
components h is based on the cross-validation criterion Q2

h.

Estimation of fixed and random parameters. In order to take into account the
random effects, let us consider the new linear mixed model

Yobs = TC + Zu+ ε. (3)

The fixed parameters C and the random parameter u are estimated using Hen-
derson’s method (1959, see Appendix) and we denote by Ĉ and û their respective
estimators. Then, we reformulate β̂ according to W and Ĉ, using the recovery
formulas given in Bastien et al. (2005, see Appendix ).

Selection of the fixed effects. We use a bootstrap validation procedure to assess
the statistical significance of explanatory variables. This selection method is
inspired from the jacknife technique introduced by Westad and Martens (1999).
More precisely, the bootstrap procedure consists in sampling with replacement
from Yobs with their associated components T and Z. Applying (3) to the B (B
fixed) bootstrap samples, we finally obtain a vector β∗ of B estimators of β. It
allows us to calculate a bootstrapped confidence interval of the regressors and
Student tests are used to retain the significant variables at a prescribed level
(arbitrarily 5%).

Pooling. The last step consists of pooling the m estimates into a single one
which equals the estimated parameters mean, as it is done in Little and Rubin
(2004). If θ̂1, ..., θ̂m denote the m estimators of the parameter θ = (β, u), the
global estimator of θ is given by

θ = (β, u) =
1
m

m∑
k=1

θ̂k.
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Moreover the pooling method takes into account the variability of the m
estimates as follows: Let D̂1, ..., D̂m denote the m estimators of V ar(u). The
variability between them dataset is the empirical mean of the estimated variance

V =
1
m

m∑
k=1

D̂k,

while the variability within every dataset is given by

W =
1

m− 1

m∑
k=1

(ûk − u)(ûk − u)′.

Therefore, the global variance of u is given by

F̂ = V + (1 +
1
m

)W.

Finally, we simulate N1 ∼ Nn(Zu, F̂ ) and N2 ∼ Nn(0, V̂ε). We replace the
ith missing value of Y by the corresponding ith value of

Ŷmis = Xβ +N1 +N2.

3.2. Summary of the algorithm
Hereafter, we summarize the steps of the MI-PLS-L2M algorithm.

• Step 1. Imputation of covariates to get m complete dataset.

• Step 2. PLS procedure without random effect.

• Step 3. Consideration of random effect to estimate C and u.

• Step 4. Bootstrap selection.

• Step 5. Pooling.

4. Simulation study

In order to evaluate the performance of the proposed algorithm, simulations
were performed on several sample sizes (N = 100 and N = 500) and for different
variances of the random effects (V ar(u) = 0.5 and V ar(u) = 2). For each
simulation, we have computed the algorithm and the results presented were the
mean of 10 simulations. The performance criterion used is the Mean Square
Error for missing values defined by

MSE =
∑Nmis

i=1 (Ŷi − Yi)2

V ar(Y )
,

where Nmis denotes the number of missing values.

7



4.1. The model
In our simulations, the design matrix X consists of a N -sample of a 15-

dimensional covariate vector such that the last 10 components of the covariate
vector are highly correlated with the first 5 ones, as it is shown in Table 4.1.
The covariates are constructed as follows: five independent normal variables
X1 ∼ N (2, 1), X2 ∼ N (0, 1), X3 ∼ N (0, 1), X4 ∼ N (0, 1), X5 ∼ N (0, 1), and
ten linearly dependent variables

X6 = X1 + 4X2 −X3 + 2X4 + 3X5, X7 = 2X1 −X2 + 5X3 − 3X4 − 2X5,

X8 = X1 + 4X2 −X3 + 4X4 + 0.5X5, X9 = 2X1 −X2 + 5X3 +X4 − 3X5,

X10 = 3X1 + 3X2 + 4X3 + 5X4 + 0.5X5, X11 = 3X1 − 2X2 − 5X3 + 0.5X4 +X5,

X12 = −X1 +X2 −X3 +X4 −X5, X13 = X1 − 4X2 + 4X3 + 0.5X4 + 0.5X5,

X14 = X1 +X2 − 2X3 − 2X4 − 2X5, X15 = 0.5X1 − 0.5X2 +X3 +X4 + 2X5.

We consider an independent error term ε ∼ N (0, I), where I denotes the identity
matrix. In a first case, for N = 100 observations, the random effect was a 3-
level vector u ∼ N3(0, 2I). In other cases, for N = 500 observations, the
random effect was first a 3-level vector u ∼ N3(0, 2I), and second a 3-level
vector u ∼ N3(0, 0.5I).

The output variable Y belongs to RN and the MI-PLS-L2M algorithm (as
well as competitors MI-PLS and MI-L2M) was run with various percentage p of
missing value on Y and X. We have chosen p ∈ {8%, 10%, 15%, 20%, 25%}.

Table 1: Correlation matrix between the covariates (Pearson correlation coefficients, N = 500)
Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

X1 0.336 1
X2 0.797 0.051 1
X3 -0.014 -0.076 -0.018 1
X4 0.354 0.032 -0.024 -0.021 1
X5 0.383 -0.002 0.013 -0.076 0.028 1
X6 0.940 0.234 0.706 -0.253 0.336 0.574 1
X7 -0.298 0.224 -0.142 0.784 -0.436 -0.385 -0.553 1
X8 0.880 0.245 0.691 -0.225 0.650 0.130 0.848 -0.520 1
X9 -0.160 0.247 -0.161 0.797 0.128 -0.535 -0.460 0.827 -0.175 1
X10 0.701 0.406 0.399 0.495 0.627 0.050 0.493 0.164 0.674 0.520 1
X11 0.010 0.507 -0.265 -0.824 0.115 0.217 0.207 -0.558 0.147 -0.536 -0.268 1
X12 0.191 -0.399 0.438 -0.429 0.414 -0.434 -0.211 -0.558 0.542 -0.260 0.009 -0.021 1
X13 -0.437 0.087 -0.694 0.700 0.091 0.029 -0.547 0.623 -0.529 0.682 0.203 -0.285 -0.681 1
X14 0.183 0.489 0.475 -0.451 -0.414 -0.431 0.127 0.040 0.185 -0.130 -0.151 0.336 0.235 -0.634 1
X15 0.350 0.168 -0.192 0.323 0.396 0.795 0.400 -0.088 0.170 0.012 0.476 0.038 -0.540 0.494 -0.685

The number of multiple imputation was fixed to m = 5 following Rubin
(1987).

4.2. Study of the MI-PLS-L2M performance
Using the algorithm without missing data. In order to evaluate the efficiency of
the algorithm, we have first calculated estimators based on the original simulated
data without missing value for the three considered scenarios. Table 2 shows
the estimations of the vector β based on five retained PLS components. We
can observe a bias due to the hight correlation between covariates. This bias
is compensated on all the components of β. Finally a certain stability through
the sample size and the variance of the random effect u is observed.
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Table 2: Values of β and its estimators for N = 100, 500 and V ar(u) = 0.5, 2

β β̂ (N = 100;V ar(u) = 2) β̂ (N = 500;V ar(u) = 0.5) β̂ (N = 500;V ar(u) = 2)

1 1.05 1.06 1.05
2 1.28 1.13 1.28
-1 -0.97 -0.85 -0.97
-2 -1.64 -1.15 -1.64
3 3.35 -2.68 3.35
1 1.15 0.49 1.15
2 2.29 1.7 2.29
-1 -0.53 -0.4 -0.53
-2 -2.27 -1.99 -2.27
3 2.64 2.43 2.64
1 1.05 1.07 1.05
2 2.27 2.17 2.27
-1 -1 -0.88 -1
-2 -1.47 -1.87 -1.47
-3 -2.82 -2.56 -2.82

Analysis of MI-PLS-L2M performance. We have studied estimations of C, the
coefficient vector associated to the PLS components, and estimations of the
standard errors of u and ε when using MI-PLS-L2M. The different estimations
were obtained with p = {0%, 8%, 10%, 15%, 20%, 25%}. Tables 3-5 contain esti-
mations for the significant PLS components at the risk level α = 0.05. The test
of significance was based on B = 200 bootstrap samples. Only five components
were retained for all models. It can be seen that the estimation of V ar(ε) was
increasing with the percentage of missing data while the estimations of V ar(u)
was more stable. The MSE clearly increased with the number of missing values.
Tables 3 and 5 illustrate the gain of precision due to the sample size.
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Table 3: Estimations associated to significant PLS component t1, t2, t3, t4, t5. Brackets give
the standard deviations obtained by bootstrap, N = 100 and V ar(u) = 2

Missing (%) 0% 8% 10% 15% 20% 25%
C (sd) 7.16 (0.05) 7.37 (0.06) 7.54 (0.06) 7.48 (0.06) 7.45 (0.07) 7.35 (0.09)

2.29 (0.06) 2.13 (0.07) 1.96 (0.07) 2.06 (0.08) 2.13 (0.09) 2.02 (0.01)
1.12 (0.07) 0.82 (0.07) 0.79 (0.07) 0.82 (0.07) 0.83 (0.09) 0.88 (0.1)
0.30 (0.06) 0.26 (0.07) 0.21 (0.07) 0.25 (0.08) 0.22 (0.09) 0.28 (0.12)
0.14 (0.08) 0.09 (0.12) 0.08 (0.13) 0.11 (0.14) 0.89 (0.47) 0.15 (0.37)

sd(u) 1.57 1.23 1.22 1.36 1.29 1.71
sd(ε) 1 1.07 1.04 1.11 1.3 1.48
MSE 0 0.21 0.19 0.36 0.4 0.51
N observed 100 92 90 85 80 75

Table 4: Estimations associated to significant PLS component t1, t2, t3, t4, t5. Brackets give
the standard deviations obtained by bootstrap, N = 500 and V ar(u) = 0.5

Missing (%) 0% 8% 10% 15% 20% 25%
C (sd) 7.76 (0.02) 7.66 (0.02) 7.62 (0.02) 7.63 (0.03) 7.58 (0.03) 7.61 (0.04)

2.25 (0.03) 2.04 (0.03) 2.04 (0.03) 2.07 (0.03) 2.11 (0.03) 2.02 (0.04)
0.93 (0.03) 0.88 (0.03) 0.91 (0.04) 0.9 (0.03) 0.93 (0.03) 0.96 (0.04)
0.26 (0.04) 0.22 (0.03) 0.22 (0.03) 0.21 (0.04) 0.22 (0.04) 0.23 (0.05)
0.04 (0.03) 0.04 (0.03) 0.03 (0.03) 0.03 (0.04) 0.04 (0.04) 0.08 (0.07)

sd(u) 0.60 0.58 0.53 0.56 0.54 0.69
sd(ε) 0.98 0.99 0.99 1.07 1.11 1.34
MSE 0 0.18 0.25 0.33 0.47 0.57
N observed 500 460 450 425 400 375
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Table 5: Estimations associated to significant PLS component t1, t2, t3, t4, t5. Brackets give
the standard deviations obtained by bootstrap, N = 500 and V ar(u) = 2

Missing (%) 0% 8% 10% 15% 20% 25%
C (sd) 7.47 (0.04) 7.30 (0.03) 7.48 (0.04) 7.60 (0.04) 7.36 (0.05) 7.25 (0.04)

2.25 (0.04) 2.46 (0.04) 2.26 (0.04) 2.17 (0.05) 2.44 (0.06) 2.48 (0.05)
1.05 (0.05) 1.12 (0.05) 1.03 (0.05) 0.86 (0.05) 1.10 (0.07) 1.12 (0.07)
0.19 (0.04) 0.21 (0.05) 0.16 (0.05) 0.23 (0.05) 0.17 (0.07) 0.14 (0.06)
0.10 (0.05) 0.11 (0.05) 0.11 (0.05) 0.12 (0.06) 0.13 (0.08) 0.09 (0.07)

sd(u) 1.71 1.73 1.71 1.79 1.90 1.94
sd(ε) 1.02 1.01 1.03 1.03 1.05 1.12
MSE 0 0.15 0.22 0.31 0.46 0.83
N observed 500 460 450 425 400 375

Figure 1 illustrates the stability of the distribution of Y after multiple im-
putation as showed by the boxplot of Y after imputation using MI-PLS-L2M,
with respect to the percentages of missing values. The sample size was N = 500
and the variance of the random effect was V ar(u) = 2. A general remark is that
the distribution of the predicted data seems to be relatively close to the initial
dataset with no missing values.

0% 08% 08%(IM) 10% 10%(IM) 15% 15%(IM) 20% 20%(IM) 25% 25%(IM)

-4
0

-2
0

0
20

40
60

Missing%

Figure 1: From the left to the right : Boxplot with 0%, 8% (before and after imputation),
10% (before and after imputation), 15% (before and after imputation), 20% (before and after
imputation), 25% (before and after imputation) of missing values
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4.3. Comparing with MI-PLS and MI-L2M methods
There is no known method to deal with the problem of missing data for a

linear mixed model in presence of correlation between covariates. However, to
assess the contribution of the method we have confronted the result of MI-PLS-
L2M with the results obtained with MI-PLS and MI-L2M. By construction,
the method MI-PLS proposed by Bastien (2008) will not take into account the
random effect and then for assessing the contribution of our method we have
considered different variances of the random effects: it was expected that with
large variance of u (V ar(u) = 2) the MI-PLS-L2M will be better, although with
a small variance of u (V ar(u) = 0.5) the results obtained with the two algorithms
will be similar. Concerning the MI-L2M method proposed by Schafer and Yucel
(1998), it was not adapted to the case of collinearity because of singularity of the
design matrix, but we proposed to make the regression of Yobs on each vector of
the design matrix and each component of β was obtained from a one-dimensional
model. On each model, a parameter of the random effect was estimated and for
the final model, the mean of the estimated parameters was calculated. The MI-
PLS-L2M method took into account all variables simultaneously and we have
therefore expected to obtain better results. We have used the ratio of the MSE
to quantify the difference between the three methods.

The first step imputation of covariates was the same for the three algorithms.
We used the method of Honacker and King (2010), that is a multiple imputation
by EM algorithm of X, as defined in 2.1 and using the R package Amelia.

Table 6 presents ratio between MSE obtained for the three methods of im-
putation according to the proportion of missing values for N = 100 and for
V ar(u) = 2. Clearly, the variance of the random effects was large but the sam-
ple size was too small to detect this effect. Then, the variability of random effect
was spread within the random errors and the estimated model was close to a
linear one. Hence, MI-PLS and MI-PLS-L2M gave very close results in terms
of MSE. For all cases MI-L2M gave larger MSE since it was used as consecutive
univariate methods.

Table 6: Ratio between MSE for MI-PLS and MI-L2M versus MI-PLS-L2M, Nmis denoting
the number of missing values, for N = 100 and var(u) = 2

Missing values (%) Nmis
MSE(MI− PLS)

MSE(MI− PLS− L2M)
MSE(MI− L2M)

MSE(MI− PLS− L2M)

8 8 1.1 4.1
10 10 1.11 5.47
15 15 1.14 4.61
20 20 1.08 5.05
25 25 1.16 5.75
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In Table 7 ratio for MSE are presented for N = 500 and V ar(u) = 2. This
larger sample size allowed to well estimate the random effect and then the MI-
PLS-L2M method took into account this variable. Moreover, it gave better
results than MI-PLS where the random effect was omitted. Concerning MI-
L2M, the conclusion was the same than in the first situation because of the
collinearity.

Table 7: Ratio between MSE for MI-PLS and MI-L2M versus MI-PLS-L2M, Nmis denoting
the number of missing values, for N = 500 and var(u) = 0.5

Missing values (%) Nmis
MSE(MI− PLS)

MSE(MI− PLS− L2M)
MSE(MI− L2M)

MSE(MI− PLS− L2M)

8 40 1 4.06
10 50 1 4.82
15 75 1.03 4.84
20 100 1 4.60
25 125 1.04 5.09

In Table 8 the ratio of MSE were obtained for N = 100 and V ar(u) = 0.5.
The variance of the random effect was too small to get significant estimations
with MI-PLS-L2M. Then, this situation concords with the first one where the
random effect was not detected and MI-PLS-L2M gave the same results than
MI-PLS. Concerning MI-L2M, the conclusion is the same as previously.

Table 8: Ratio between MSE for MI-PLS and MI-L2M versus MI-PLS-L2M, Nmis denoting
the number of missing values, for N = 500 and var(u) = 2

Missing values (%) Nmis
MSE(MI− PLS)

MSE(MI− PLS− L2M)
MSE(MI− L2M)

MSE(MI− PLS− L2M)

8 40 3.54 2.74
10 50 3.49 4.72
15 75 3.18 5.16
20 100 3.19 5.18
25 125 2.22 3.63

In conclusion, MI-PLS-L2M performed better than the two other methods
when the random effect is significantly estimated; that is, when the sample size
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allows to estimate its variability. When random effect was not significant (too
small variance, or too small sample size), MI-PLS-L2M and MI-PLS gave similar
results and they were better than MI-L2M as soon as there was a collinearity
between covariates. Figure 2 summarizes this analysis by showing the associated
MSE, respectively forN = 100 and V ar(u) = 2, N = 500 and V ar(u) = 0.5, and
N = 500 and V ar(u) = 2. The three methods have a term of error increasing
with the number of missing values.
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Figure 2: MSE associated to the three methods with respect to the % of missing data

5. The coffee example

5.1. The data
We used the data presented in Vivien and Sabatier (2001): 17 coffee samples

were prepared with 3 parameters which are temperature, proportion grinding-
water and size, with 3, 3 and 2 modalities, respectively. 4 samples, with similar
physico-chemical properties were chosen as reference sample for a comparison
with the other 13 samples. In order to evaluate the different samples, 7 judges
from the ENSBANA (Dijon, France) have compared 3 times each of the 13
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samples to a reference sample and have answered 6 questions: Which both is the
more characteristic in flavor, the more intense in flavor, the most bitter, the
more acid, the most characteristic in aroma ans the most intense in aroma ?
by specifying if the difference was very easy, easy, complicated, hard, or almost
impossible to evaluate. In order to summary these judgements, a scale, from 1
to 5 was created where:

• 1: The reference sample is strictly greater than the sample.

• 2: The reference sample is greater than the sample.

• 3: The judge has perceived no difference.

• 4: The sample is greater than the reference sample.

• 5: The sample is strictly greater than the reference sample.

Here, we have chosen to create a mean score of these marks, called Y , which con-
stitutes our variable of interest. The judges were considered as a random effect
of 7 levels and X is a design matrix associated to 10 fixed effects corresponding
to the 10 physico-chemical properties and we simulate 15% of missing values
on Y and X, by random resampling without replacement. Table 9 presents the
fixed effects and Table 10 provides an extract of the data.

Table 9: The fixed effects

Dry extract EXS
Extraction rate TEE
PH PHH
Acidity CID
Optical density to 430n. m DO4
Optical density to 510n. m DO5
Conductance CDT
Caffeine CAF
Viscosity VIS
Retention of water in the milling CPR
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Table 10: Fixed effects for each coffee sample

Cof. EXS TEE PHH CID DO4 DO5 CDT CAF VIS CPR
1 2.5 -1.18 -0.02 1.02 0.72 0.31 3.09 0.95 0.32 0.13
2 -1.44 -4.62 0.27 -0.66 -0.42 -0.17 -2.42 -0.2 -0.11 -0.34
3 0.18 1.42 -0.10 0.10 0.09 0.04 -0.25 0.25 -0.09 -0.70
4 0.85 6.59 0.05 0.35 0.56 0.28 0.69 -0.05 -0.04 -0.42
5 0.49 4.76 0.00 0.22 0.33 0.11 0.44 0.32 -0.04 -0.07
6 -0.08 -0.15 0.05 0.00 -0.10 -0.06 -0.06 -0.20 -0.19 0.07
7 0.18 2.56 0.10 0.01 0.01 -0.01 0.32 0.00 -0.13 0.01
8 -1.16 -4.12 0.05 -0.57 -0.26 -0.10 0.32 0.00 -0.13 0.01
9 -1.07 -2.76 0.00 -0.22 -0.12 -0.04 -0.64 -0.27 -0.16 -0.09
10 -0.45 4.76 0.00 -0.50 -0.22 -0.08 -1.68 -0.50 -0.22 0.08
11 -1.06 -2.85 -0.05 -0.63 -0.17 -0.05 -2.08 -0.60 0.09 0.00
12 1.89 -5.82 0.15 0.78 0.28 0.12 2.30 1.05 0.05 -0.27
13 1.45 -6.97 0.20 0.58 0.18 0.08 2.42 .50 0.05 -0.21

Table 11 provides the correlation values of the fixed effects and the response
variable. It justifies clearly the use of the PLS method.

Table 11: Correlation between the response variable and the fixed effects

Cor Y EXS TEE PHH CID DO4 DO5 CDT CAF VIS CPR
EXS 0.624 1
TEE 0.254 0.021 1
PHH -0.163 0.030 -0.492 1
CID 0.578 0.974 -0.019 0.030 1
DO4 0.519 0.779 0.194 0.085 0.752 1
DO5 0.644 0.859 0.283 -0.212 0.863 0.838 1
CDT 0.400 0.755 -0.119 0.409 0.731 0.824 0.669 1
CAF 0.401 0.862 -0.272 0.175 0.881 0.753 0.662 0.778 1
VIS 0.429 0.681 -0.275 -0.071 0.645 0.635 0.691 0.555 0.639 1
CPR 0.021 -0.044 -0.016 -0.087 -0.106 -0.305 -0.128 0.016 -0.158 0.084 1

5.2. Competitor methods
As in the simulations study, we have confronted the results of the MI-PLS-

L2M method with those of MI-PLS and MI-L2M, obtained after ten compila-
tions of the algorithm. We used the MSE to quantify the difference between the
imputation of Y and its true value.
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5.3. Results
Table 12 presents ratio between MSE obtained for the three methods of

imputation according to the 15% of missing values.

Table 12: Ratio between Mean Square Errors for MI-PLS and MI-L2M versus MI-PLS-L2M,
with 15% of missing values

MSE(MI− PLS)
MSE(MI− PLS− L2M)

MSE(MI− L2M)
MSE(MI− PLS− L2M)

10.516 15.671

On this example, MI-PLS-L2M seems to perform better than the two other
methods. We have compared the different estimations obtained with MI-PLS-
L2M without missing values and with p = 15%. We estimated C, the coefficient
parameter associated to the PLS components, and the standard errors of u and
ε. Table 13 contains estimations for the significant PLS components at the risk
level α = 0.05. The test of significance was based on B = 200 bootstrap samples.
As expected only six components were retained for the model, as in Vivien and
Sabatier (2001). The loss of accuracy obtained under the missing mechanism
did not appear significant. The random effect u was estimated significantly with
a variance close to that of the errors ε. It might explain the advantage of the
use of MI-PLS-L2M on this dataset.

Table 13: Estimations associated to significant PLS component t1, t2, t3, t4, t5, t6. Brackets
give the standard deviations obtained by bootstrap.

Missing (%) 0 15
C (sd) 0.375 (0.001) 0.366 (0.002)

0.132 (0.097) 0.158 (0.162)
0.066 (0.079) 0.075 (0.047)
0.031 (0.148) 0.057 (0.158)
0.884 (0.787) 0.629 (0.741)
-1.283 (1.175) -1.909 (1.968)

sd(u) 0.045 0.042
sd(ε) 0.086 0.096
MSE 0 0.221

N observed 91 77

Table 14 presents estimations for the random effect. It appears that the two
first judges overestimate the coffee score while the effect of the third judge seems
to make decrease the score. The other judges seem to estimate in the same way
the coffee score.
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Table 14: Estimations associated to the significant random effect.

Judge 1 2 3 4 5 6 7
û 0.42 0.49 -0.72 0.30 0.33 0.33 0.36

As observed in the simulation study, the boxplots before and after imputation
associated to p = 15% of missing values were very close to the initial dataset
and we have omitted their representation.

6. Discussion

The algorithm MI-PLS-L2M was proposed to deal with the problem of miss-
ing data in a linear mixed model when covariates are correlated. It combines
the multiple imputation theory developed by Rubin (1987) adapted to the lin-
ear mixed models with the PLS method introduced by Wold (1975) (see also
Tenenhaus, 1998). It is also an adaptation of the MI-PLS algorithm proposed
by Bastien (2008) and the MI-L2M initiated by Schafer and Yucel (1998), since
it is dedicated to the problem of missing data in the presence of both collinearity
and random effect.

Simulation studies are carried out which suggest that the proposed method
is advocated as soon as a random effect is significant. When the random effect is
detected, MI-PLS-L2M provides good estimations of the parameters and keeps
the distribution shape of the original data before imputation. It is also shown
that the MSE increases slowly with the percentage of missing values.

Moreover, the gain provided by our algorithm compared to the method used
in Bastien (2008) and the method proposed in Schafer and Yucel (1998) was
studied. Because of the singularity of the design matrix due to the collinearity,
the MSE calculated for MI-PLS-L2M was better than that of MI-L2M. The ratio
between MSE shown better performances of MI-PLS-L2M other MI-PLS when
the random effects are significant. When the variance of the random effect is
small, or for sample size too small to detect it, MI-PLS and MI-PLS-L2M gave
similar results.

The application of our method to a real dataset showed good performance
through the MSE and the estimation of the parameters. In addition, the method
detected a significant random effect and then a new interpretation of the analysis
of the coffe dataset.

Future research will be to adapt the MI-PLS-L2M to the generalized linear
mixed models. The way is to use a step of linearization of the model, adapting
for instance the algorithm of Schall (1991).
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Appendix

The Henderson method (1959)
Given the random effects, we assume that Y , X and u satisfy (1).
The Henderson method (1959) defines an equation system

β̂ = (
n∑
i=1

X ′iV
−1
i Xi)−1

n∑
i=1

X ′iV
−1
i yi

û = (
n∑
i=1

D′iZ
′
iV
−1
i )−1

n∑
i=1

yi −Xiβ̂i,

where β̃ and ũ are solution of the GLS (Generalized Least Squares) and the
BLUP (Best Linear Unbiased Predictor). Writing:

X ′R−1Xβ̃ = X ′R−1(y − Zũ) (4)
(Z ′R−1Z +D−1)ũ = Z ′R−1(y −Xβ̃), (5)

we obtain the following system[
X ′R−1X X ′R−1Z
Z ′R−1T Z ′R−1Z +D−1

] [
β̂
û

]
=
[
X ′R−1y
Z ′R−1y.

]
Expression of PLS components in terms of the original explanatory variables
(Bastien et al., 2005)

All variables y, x1, ..., xj , ..., xp are assumed to be centered. The PLS regres-
sion model with h components is written as

y =
h∑

H=1

cH(
p∑
j=1

w∗Hjxj) + residual, (6)
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with the constraint that the PLS components tH =
∑p
j=1 w

∗
Hjxj are orthogonal

and the parameters cH and w∗Hj in (6) are to be estimated.
The estimated regression equation may be then expressed in terms of the

original variables xj ’s:

ŷ =
h∑

H=1

cH(
p∑
j=1

w∗Hjxj) =
p∑
j=1

(
h∑

H=1

cHw
∗
Hj)xj =

p∑
j=1

βjxj .
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