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Imputation by PLS regression for linear mixed models

Emilie Guyon∗,a, Denys Pommeret,a

aInstitut de Mathématiques de Luminy (IML), CNRS Marseille, Case 907, Campus de
Luminy, 13288 Marseille Cedex 9, France

Abstract

The problem of handling missing data for a linear mixed model in presence of
correlation between covariates is considered. The missing mechanism concerns
both dependent variable and design matrix. We propose an imputation algo-
rithm combining multiple imputation and Partial Least Squares (PLS) analysis
methods. Our method relies on two steps: removing random effects, fixed effects
are first imputed and PLS components are constructed on the corresponding
complete case. The dependent variable is then imputed inside the linear mixed
model built by adding the random effects to PLS components. The method is
applied on simulations and on real data.

Key words: Multiple Imputation, Missing Data, Linear Mixed Regression
Model.

1. Introduction

The problem of handling missing data has been extensively studied in the
statistical literature. In Little and Rubin (2002), three non-response mecha-
nisms are described: missing completely at random (MCAR), missing at random
(MAR) and missing not at random (MNAR). The MCAR mechanism assumes
that the missingness on a variable does not depend on the variable nor on the
others variables. The MNAR mechanism assumes that missingness depends
only on the variable that contains missing values. The MAR mechanism as-
sumes that missingness only depends on the observed components and not on
the components that are missing. This work will be concerned with the MAR
mechanism. A method to deal with MAR data in statistical analyses is the
multiple imputation introduced by Rubin (1987). Rubin proposes this method
when the nonresponse mechanism concerns both response variable and covari-
ates. It consists in replacing each missing value by a vector of M ≥ 2 imputed
values. It is efficient in the sense that "When the M sets of imputations are re-
peated random draws from the predictive distribution of the missing values under
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a particular model for nonresponse, the M complete-data inferences can be com-
bined to form one inference that properly reflects uncertainty due to nonresponse
under that model", (Little and Rubin, 2002).

So far, this technique has been widely used for imputation in linear mod-
els (Schafer, 1997), as well as in generalized linear models (Ibrahim, 1990).
Recently, Bastien (2008) studied the problem of missing data imputation in
generalized linear models when covariates are correlated. The author combines
the technique of Partial Least Squares (PLS) regression (Wold, 1975) to the
multiple imputation method, obtaining a successfull method, called Multiple
Imputation with Partial Least Squares (MI-PLS). It consists, after imputation
of missing values on each explicative variable, to impute the missing data on the
variable of interest by a PLS regression instead of a linear regression. The prob-
lem of missing data in linear mixed models (McCullagh and Nelder, 1989) has
also been investigated by Schafer and Yucel (1998), using multiple imputation
on covariates. However this method breaks down when covariates are linearly
dependent, due to the singularity of the design matrix.

In this paper, the problem of handling missing data in linear mixed models
with correlated covariates is considered. An algorithm is proposed combining
PLS method, defined by Bastien (2008) and multiple imputation, defined by
Schafer and Yucel (1998). This algorithm is denoted by Multiple Imputation
with Partial Least Squares in Linear Mixed Models (MI-PLS-L2M). The method
relies into two steps: first omitting the random effect, a linear model with
dependent errors is considered. Missing data on covariates are imputed following
the method of Little and Rubin (2002). So several completed datasets are
obtained, on which are computed the PLS components. Random effects are
then reintroduced in the model and a linear mixed model is obtained where the
fixed PLS latent variables are constructed by linear combinations of the observed
regressors. The Henderson method (1959) is used to estimate the parameters
of the model. Afterwards, we use the prediction of the final model based on
the latent variables and the random components to reconstruct the dependent
variable. Following Bastien et al. (2005), a bootstrap validation procedure
allows to test the significance of the fixed effects.

Our method is applied on simulations and is compared to two alternative
procedures: The first one is the MI-PLS proposed by Bastien (2008), restricted
to the linear model. The second one is that introduced by Schafer and Yucel
(1998) and denoted Multiple Imputation in Linear Mixed Models (MI-L2M)
method. Based on the Mean Square Ratio, our algorithm gives better approx-
imations of the data than the two others methods. Moreover, the results of
simulations show good performance in situation of high colinearity. Our al-
gorithm is applied on a real data set, the coffee example used in Vivien and
Sabatier (2001): 17 samples of coffee are evaluated by 7 judges. In Vivien and
Sabatier (2001), for each judge, characteristics of the coffee are explained by
physico-chemical properties. Here, we have chosen to model the perception of
the coffee by a score associated to a linear mixed model where the fixed effects
are physico-chemical variables which are correlated and with a 7 levels random
effect corresponding to the 7 judges . The results are similar to those of Vivien
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and Sabatier (2001). In addition we obtain significant random effects.
The paper is organized as follows: in Section 2 we review PLS and multiple

imputation methods. In Section 3 we derive the imputation algorithm by com-
bining these two former methods. Section 4 is devoted to the simulation study
and Section 5 to the study of the coffee data set. Section 6 takes part of a short
discussion.

2. Multiple imputation and PLS background

Let Y = (Y1, . . . , Yn) be a vector of n observations. Let X = (X ′

1, · · · , X ′

p)
be a matrix of p covariates referred to the fixed effects, where x′ stands for the
transpose of x. Let U = (U ′

1, · · · , U ′

K), Uj ∈ Rqj , be a matrix of K random
vectors referred to the random effects. Given the random effects, we assume
that Y , X and U satisfy a linear mixed model, that is

Yi = X ′

iβ + Z ′

iU + ǫi,∀i ∈ {1, ..., n}, (1)

where β ∈ Rp is an unknown vector of regression coefficients, and Z is a known
matrix associated to the random effects. Writing Nd(a, b) for the d-dimensional
normal distribution with mean a and variance b, we assume that

U ∼ Nq(0, D), ǫi ∼ N1(0, Ri), Cov(U, ǫi) = 0,

and that D = σ2
KA, where A is a positive-definite matrix.

2.1. Multiple Imputation

When the data are Missing At Random, Rubin (1987) and Schafer (1997)
introduce the multiple imputation as the most reliable method both on accuracy
and efficiency. The principle can be divided into three steps. First, m > 1
samples of possible values for the missing data are created (Imputation). Each
of the m complete data set is analyzed using the standard statistical method
that would be used in the absence of nonresponse (Analysis). Finally, the results
of the m analysis are combined (Pooling).

Honacker et al. (2009) proposed to impute missing data on the fixed effects
by multiple imputation and bootstrap Expectation-Maximization (EM) algo-
rithm (Dempster, Laird and Rubin, 1977, Wu, 1983). The main idea is the
following. For the first step Imputation, the m samples of value are created by
bootstraping a dataset with the same dimension as the original data. Then,
for the Analysis step, the model is estimated by EM algorithm, and leads to
replace the missing values of the sample. Finally, the results of the m analysis
are combined (Pooling), as usually.

The EM part of the algorithm can be described as follows. Assume that the
missing value are only on the response variable Y = (Yobs, Ymis). We note θ the
vector of parameters of the model on the complete dataset. The algorithm can
be summarized in the following way:

• (1) Complete the missing data Ymis using the first estimation of θ.
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• (2) Using Yobs and Ymis completed, re-estimate θ.

• (3) Using θ estimated, re-estimate Ymis.

• (4) Iteration until convergence of θ.

2.2. PLS Regression
From now, we consider that the vectors Y , X1, .., Xp are centered.

When the covariates are correlated, PLS regression can be used in place of the
classical linear regression model. The idea is to replace the matrix X by a
matrix T = (t1, . . . , th), for h < p, iteratively obtained by linear transformation
of the columns of X (Tenenhaus, 1998) according to the following algorithm:

• Determination of the first component t1
Compute the linear regression of Y on each Xj , for j ∈ {1, ..., p}, with

Yi = a1jXij + ǫi,∀i ∈ {1, ..., n}.

Normalize the parameter a1j

w1j =
â1j

||â1j ||
,∀j ∈ {1, ..., p},

and write

t1 =

p∑

j=1

w1jXj .

• Determination of the components th
For h = 2, ...,H, with H < p, compute the linear regression of Y on each
Xj and on the other PLS components th−1, for j ∈ {1, ..., p}, with

Yi = ahjXij + c1t1i + ... + ch−1t(h−1)i + ǫY(h−1)i
,∀i ∈ {1, ..., n},

where ahj is the parameter associated to Xij , and ch is the parameter
associated to th, both being estimated by the model. The significance of
each parameter th permits to choose the number of components h.
Normalizing the parameter ahj

whj =
ˆahj

|| ˆahj ||
,∀j ∈ {1, ..., p}.

and using a linear regression of the matrix X on the h PLS components

Xij = p1t1i+...+p(h−1)t(h−1)i+X(h−1)ij ,∀j ∈ {1, ..., p} and ∀i ∈ {1, ..., n},

with ph the parameter associated to th, estimated by the model and
X(h−1)j the residual term of the model, we write

th =

p∑

j=1

whjX(h−1)j .
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3. Adapting PLS to the linear mixed model

3.1. Description of the method

We consider the model (1) with Y and X centered. We assume that both
Y and X observations are affected by missing values, according to a Missing
At Random mechanism. Let Yobs and Ymis denote the vectors of observed and
missing values of Y . The algorithm can be decomposed into different steps:

Multiple imputation on fixed effects. We first impute X by the multiple impu-
tation method described in Subsection 2.1. We obtain m complete datasets.

PLS regression. Temporarily eliminating the random effects and according to
Subsection 2.2, we compute the PLS components T of the heteroscedatic linear
model:

Yobs = βX + ǫ̃,

where ǫ̃ = ǫ + ZU . Clearly, ǫ̃i is a vector of dependent random variables such
that ǫ̃ ∼ N (0;σ2), with σ2 = ZDZ ′ + R 6= 1. But this transformation of ǫ

does not modify the PLS components, since they are completely specified by
the correlation between X and Y .

Estimation of the parameters. Reintroducing the random effects, let us consider
the new linear mixed model

Yobs = TC + ZU + ǫ. (2)

The fixed parameters C and the random parameters U are estimated using Hen-
derson’s method (1959) and we denote by Ĉ and Û their respective estimators.
Then, we reformulate β̂ according to W and Ĉ, as defined in Bastien (2005).

Bootstrap. We use a bootstrap procedure consisting in sampling with replace-
ment in Yobs and the associated components T and Z. The third step is then ap-
plied on B (B fixed) bootstrap samples, giving a vector β∗ of B estimators of β.
In view to predict Ymis, we only keep significative coefficients, that is with con-
fidence intervals that do not contain zero. We then simulate N1 ∼ N (ZÛ, V̂U )
and N2 ∼ N (0, V̂ǫ). The prediction of Ymis is given by

Ŷmis = Xβ̂ + N1 + N2,

with β selected as above.

Pooling. The last step consists in pooling the m estimates of Y and X into
one estimate by calculation of the mean of the estimates parameters, as done in
Little and Rubin (2004). Let θ̂1, ..., θ̂m denote the m estimates of the parameter
θ and V̂1, ..., V̂m the m estimates of the variance-covariance matrix V , obtained
by the m complete datasets. Thus, the global estimator of θ is given by

θ =
1

m

m∑

i=1

θ̂i.
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The variance-covariance matrix of θ has two components: one given by the vari-
ability between the m datasets, and one obtained from the variability within
every dataset. The variability between the m datasets is the mean of the esti-
mated variance

V =
1

m

m∑

i=1

V̂i,

and the variability within every dataset is given by

W =
1

m − 1

m∑

i=1

(θ̂i − θ)(θ̂i − θ)′.

Then the global variance of θ is given by

F̂ = V + (1 +
1

m
)W.

3.2. Description of the algorithm

Hereafter, we summarize the steps of our algorithm.

Algorithm steps.

1. Step 1. Imputation of covariates. Missing data on the matrix X are im-
puted and m complete datasets are obtained.

2. Step 2. PLS procedure. On each dataset, assuming that Y is centered and
X are centered and normalized, the PLS components T are calculated on
the linear model Y = Xβ + ǫ̃, with ǫ̃ = ǫ + ZU .

3. Step 3. Considering random effects. The estimations of C and U , denoted
by Ĉ and Û , are obtained from the mixed model Y = TC + ZU + ǫ, and
β̂ is reconstructed using Ĉ and the PLS components.

4. Step 4. Testing fixed effects. Bootstrap testing procedures are used to
select significant fixed effects.

5. Step 5. Imputation of Y. When Y is missing, Y is simulated from N (Xβ̂+
ZÛ ;ZDZ ′ + R).

6. Step 6. Pooling. Pool the m estimates of Y and X into one estimate.
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4. Simulation study

We compare the performance of our algorithm with that of several competi-
tors on simulated data arising from a linear mixed model with correlated fixed
effects. The measure of performance is the Mean Square Error for missing values

MSE =

∑Nmis

i=1 (Ŷi − Yi)
2

var(Y )
.

4.1. The method

In our simulations, for N = 500 observations, the design matrix X consists of
a 15-dimensional vector such that the last 10 components are deeply correlated
with the first 5 ones, as it is shown in Table 4.1. The covariates are constructed
as follows: five independent normal variables x1 ∼ N (2, 1), x2 ∼ N (0, 1), x3 ∼
N (0, 1), x4 ∼ N (0, 1), x5 ∼ N (0, 1), and ten linearly dependent variables

x6 = x1 + 4x2 − x3 + 2x4 + 3x5, x7 = 2x1 − x2 + 5x3 − 3x4 − 2x5,

x8 = x1 + 4x2 − x3 + 4x4 + 0.5x5, x9 = 2x1 − x2 + 5x3 + x4 − 3x5,

x10 = 3x1 + 3x2 + 4x3 + 5x4 + 0.5x5, x11 = 3x1 − 2x2 − 5x3 + 0.5x4 + x5,

x12 = −x1 + x2 − x3 + x4 − x5, x13 = x1 − 4x2 + 4x3 + 0.5x4 + 0.5x5,

x14 = 2x1 + 2x2 − 2x3 − 2x4 − 2x5, x15 = 0.5x1 − 0.5x2 + x3 + x4 + 2x5.

The random effect is a 3 levels vector U ∼ N3(0, 2I), where I denotes the
identity matrix.

We consider an independent error term ǫ ∼ N (0, 1). The output variable Y

belongs to R. Algorithm MI-PLS-L2M as well as competitors MI-PLS and MI-
L2M are run on a set of size N = 500 observations, with prescribed percentage
p of missing value on Y and X. We choose p ∈ {8%, 10%, 15%, 20%, 25%}.

Table 1: Correlation matrix between the covariates (Pearson correlation coefficients, N = 500)
Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

X1 0.336 1

X2 0.797 0.051 1

X3 -0.014 -0.076 -0.018 1

X4 0.354 0.032 -0.024 -0.021 1

X5 0.383 -0.002 0.013 -0.076 0.028 1

X6 0.940 0.234 0.706 -0.253 0.336 0.574 1

X7 -0.298 0.224 -0.142 0.784 -0.436 -0.385 -0.553 1

X8 0.880 0.245 0.691 -0.225 0.650 0.130 0.848 -0.520 1

X9 -0.160 0.247 -0.161 0.797 0.128 -0.535 -0.460 0.827 -0.175 1

X10 0.701 0.406 0.399 0.495 0.627 0.050 0.493 0.164 0.674 0.520 1

X11 0.010 0.507 -0.265 -0.824 0.115 0.217 0.207 -0.558 0.147 -0.536 -0.268 1

X12 0.191 -0.399 0.438 -0.429 0.414 -0.434 -0.211 -0.558 0.542 -0.260 0.009 -0.021 1

X13 -0.437 0.087 -0.694 0.700 0.091 0.029 -0.547 0.623 -0.529 0.682 0.203 -0.285 -0.681 1

X14 0.183 0.489 0.475 -0.451 -0.414 -0.431 0.127 0.040 0.185 -0.130 -0.151 0.336 0.235 -0.634 1

X15 0.350 0.168 -0.192 0.323 0.396 0.795 0.400 -0.088 0.170 0.012 0.476 0.038 -0.540 0.494 -0.685

The number of multiple imputation is fixed to m = 5 following Rubin (1987)
who shown only three to five imputations are enough to have excellent results.
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4.2. Competitor methods
There is no known method to deal with the problem of missing data for

a linear mixed model in presence of correlation between covariates. However,
we confront the result of our method MI-PLS-L2M with MI-PLS and MI-L2M.
By construction the method MI-PLS proposed by Bastien (2008) will not take
into account the random effect. Concerning the method MI-L2M proposed by
Schafer and Yucel (1998), it is not adapted to the case of colinearity. The re-
gression of Yobs is made on each vector of the design matrix and each component
of β is obtained from a one-dimensional model. On each model, a parameter of
the random effect is estimated and for the final model, the mean of the param-
eters estimates is calculated. We use the Mean Square Error to quantify the
difference between the imputation of Y and its true value.

The first step imputation of covariates is the same for the three algorithms.
We use the method of Honacker and King (2010), that is a multiple imputation
by EM algorithm of X, as defined in 2.1 and using the R package Amelia.

4.3. Results
Table 2 presents ratio of the Mean Square Error obtained for the three

methods of imputation according to the proportion of missing values.

Table 2: Mean Square Error Ratio for MI-PLS and MI-L2M versus MI-PLS-L2M, Nmis

denoting the number of missing values

Missing values (%) Nmis

MSE(MI − PLS)

MSE(MI − PLS − L2M)

MSE(MI − L2M)

MSE(MI − PLS − L2M)

8 40 3.544 2.735
10 50 3.493 4.716
15 75 3.178 5.155
20 100 3.186 5.18
25 125 2.222 3.625

For these situations our method performs better than the multiple impu-
tation with PLS regression (MI-PLS). In fact, as the random effect has an
important variance, the error term is more important. MI-PLS overestimates
the error term since this term is made up of the residuals and the random effects
parameters of the model. It is then not appropriated in this situation. For the
method of multiple imputation on a linear mixed model (MI-L2M), it can be
implemented only on univariate regressions. Thus, this method has a term of
error more important than our method.

Figures 1 shows the associated Mean square errors. The three methods have
a term of error increasing with the number of missing values, but MI-PLS-L2M
has a term of error smaller than the others.
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Figure 1: MSE associated to the three methods with respect to the % of missing data

.

Finally, we compare the different estimations obtained with our method
when p = 0, 8%, 10%, 15%, 20%, 25%. We estimate C, the coefficient parameter
associated to the PLS components, and the standard errors of U and ǫ. Table
3 contains estimations for the significant PLS components at the risk level α =
0.05. The test of significance is based on B = 200 bootstrap samples. As
expected only five components are retained for all models.
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Table 3: Estimations associated to significant PLS component t1, t2, t3, t4, t5. Brackets give
the standard errors obtained by bootstrap.

Missing (%) 0 8 10 15 20 25

C (sd) 7.466 (0.037) 7.296 (0.034) 7.478 (0.036) 7.598 (0.038) 7.364 (0.049) 7.246 (0.044)
2.254 (0.036) 2.462 (0.04) 2.262 (0.04) 2.170 (0.045) 2.440 (0.059) 2.480 (0.052)
1.051 (0.046) 1.121 (0.05) 1.028 (0.048) 0.855 (0.048) 1.098 (0.072) 1.12 (0.067)
0.191 (0.042) 0.209 (0.047) 0.164 (0.046) 0.226 (0.052) 0.166 (0.068) 0.144 (0.062)
0.104 (0.047) 0.109 (0.048) 0.110 (0.054) 0.120 (0.055) 0.134 (0.08) 0.092 (0.065)

sd(U) 1.709 1.732 1.706 1.793 1.902 1.938

sd(ǫ) 1.017 1.007 1.025 1.028 1.048 1.121

MSE 0 0.147 0.215 0.309 0.456 0.825

N 500 460 450 425 400 375

Figure 2 shows the boxplot associated to the percentages p of missing values
equal to 0%, 8%, 10%; 15%, 20%, 25%. The distribution of the predicted data
seems to be relatively closed to the initial dataset with no missing values.

0% 08% 08%(IM) 10% 10%(IM) 15% 15%(IM) 20% 20%(IM) 25% 25%(IM)

-
4
0

-
2
0

0
2
0

4
0

6
0

Missing%

Figure 2: From the left to the right : Boxplot with 0%, 8% (before and after imputation),
10% (before and after imputation), 15% (before and after imputation), 20% (before and after
imputation), 25% (before and after imputation) of missing values
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5. The coffee example

5.1. The data

We used the data presented in Vivien and Sabatier (2001). 17 coffee samples
were prepared with 3 parameters: temperature, proportion grinding-water and
size, with 3, 3 and 2 modalities, respectively. 4 samples, with similar physico-
chemicals properties were chosen as witness for a comparison with the others
13 samples. In order to evaluate the different samples, 7 judges from the ENS-
BANA (Dijon, France) have compared 3 times each of the 13 samples to a
witness and have answered 6 questions: Which both is the more characteristic
in flavor, the more intense in flavor, the most bitter, the more acid, the most
characteristic in aroma ans the most intense in aroma ? by specifying if the
difference was very easy, easy, complicated, hard, or almost impossible to eval-
uate. In order to summary these judgements, a scale, from 1 to 5 was created
where:

• 1: The witness is strictly greater than the sample.

• 2: The witness is greater than the sample.

• 3: The judge has perceived no difference.

• 4: The sample is greater than the witness.

• 5: The sample is strictly greater than the witness.

Here, we have chosen to create a mean score of these marks, called Y , which con-
stitutes our variable of interest. The judges were considered as a random effect
of 7 levels and X is a design matrix associated to 10 fixed effects corresponding
to the 10 physico-chemical properties and we simulate 15% of missing values
on Y and X, by random resampling without replacement. Table 4 presents the
fixed effects and Table 5 provides an extract of the data.

Table 4: The fixed effects

Dry extract EXS
Extraction rate TEE
PH PHH
Acidity CID
Optical density to 430n. m DO4
Optical density to 510n. m DO5
Conductance CDT
Caffeine CAF
Viscosity VIS
Retention of water in the milling CPR
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Table 5: Fixed effects for each coffee sample

Cof. EXS TEE PHH CID DO4 DO5 CDT CAF VIS CPR
1 2.5 -1.18 -0.02 1.02 0.72 0.31 3.09 0.95 0.32 0.13
2 -1.44 -4.62 0.27 -0.66 -0.42 -0.17 -2.42 -0.2 -0.11 -0.34
3 0.18 1.42 -0.10 0.10 0.09 0.04 -0.25 0.25 -0.09 -0.70
4 0.85 6.59 0.05 0.35 0.56 0.28 0.69 -0.05 -0.04 -0.42
5 0.49 4.76 0.00 0.22 0.33 0.11 0.44 0.32 -0.04 -0.07
6 -0.08 -0.15 0.05 0.00 -0.10 -0.06 -0.06 -0.20 -0.19 0.07
7 0.18 2.56 0.10 0.01 0.01 -0.01 0.32 0.00 -0.13 0.01
8 -1.16 -4.12 0.05 -0.57 -0.26 -0.10 0.32 0.00 -0.13 0.01
9 -1.07 -2.76 0.00 -0.22 -0.12 -0.04 -0.64 -0.27 -0.16 -0.09
10 -0.45 4.76 0.00 -0.50 -0.22 -0.08 -1.68 -0.50 -0.22 0.08
11 -1.06 -2.85 -0.05 -0.63 -0.17 -0.05 -2.08 -0.60 0.09 0.00
12 1.89 -5.82 0.15 0.78 0.28 0.12 2.30 1.05 0.05 -0.27
13 1.45 -6.97 0.20 0.58 0.18 0.08 2.42 .50 0.05 -0.21

To justify the use of the PLS method, Table 6 provides the correlation values
of the fixed effects and the response variable.

Table 6: Correlation between the response variable and the fixed effects

Cor Y EXS TEE PHH CID DO4 DO5 CDT CAF VIS CPR
EXS 0.624 1
TEE 0.254 0.021 1
PHH -0.163 0.030 -0.492 1
CID 0.578 0.974 -0.019 0.030 1
DO4 0.519 0.779 0.194 0.085 0.752 1
DO5 0.644 0.859 0.283 -0.212 0.863 0.838 1
CDT 0.400 0.755 -0.119 0.409 0.731 0.824 0.669 1
CAF 0.401 0.862 -0.272 0.175 0.881 0.753 0.662 0.778 1
VIS 0.429 0.681 -0.275 -0.071 0.645 0.635 0.691 0.555 0.639 1
CPR 0.021 -0.044 -0.016 -0.087 -0.106 -0.305 -0.128 0.016 -0.158 0.084 1

5.2. Competitor methods

As previously on the simulations, we confront the result of our method MI-
PLS-L2M with MI-PLS and MI-L2M. We use the Mean Square Error to quantify
the difference between the imputation of Y and its true value.
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5.3. Results

Table 7 presents ratio of the Mean Square Error obtained for the three
methods of imputation according to the 15% of missing values.

Table 7: Mean Square Error Ratio for MI-PLS and MI-L2M versus MI-PLS-L2M, with 15%

of missing values

MSE(MI − PLS)

MSE(MI − PLS − L2M)

MSE(MI − L2M)

MSE(MI − PLS − L2M)
10.516 15.671

On this example, our method seems to perform better than the two methods.
Finally, we compare the different estimations obtained with our method when
p = 0%, 15%. We estimate C, the coefficient parameter associated to the PLS
components, and the standard errors of U and ǫ. Table 8 contains estimations
for the significant PLS components at the risk level α = 0.05. The test of
significance is based on B = 200 bootstrap samples. As expected only six
components are retained for the model, as in Vivien and Sabatier (2001).

Table 8: Estimations associated to significant PLS component t1, t2, t3, t4, t5, t6. Brackets
give the standard errors obtained by bootstrap.

Missing (%) 0 15

C (sd) 0.375 (0.001) 0.366 (0.002)
0.132 (0.097) 0.158 (0.162)
0.066 (0.079) 0.075 (0.047)
0.031 (0.148) 0.057 (0.158)
0.884 (0.787) 0.629 (0.741)
-1.283 (1.175) -1.909 (1.968)

sd(U) 0.045 0.042

sd(ǫ) 0.086 0.096

MSE 0 0.221

N 91 77

Figure 3 shows the boxplot associated to the percentages p of missing values
equal to 0%, 15%. The distribution of the predicted data seems to be relatively
closed to the initial dataset with no missing values.
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Figure 3: From the left to the right : Boxplot with 0%, 15% (before and after imputation) of
missing values

6. Discussion

We have proposed an algorithm MI-PLS-L2M to deal with the problem of
missing data in a linear mixed model when covariates are correlated. The al-
gorithm combines the multiple imputation theory developed by Rubin (1987)
adapted to the linear mixed models with the PLS method introduced by Wold
(1975).

Simulation studies are carried out which suggest that the proposed method
works well for practical situations. It is shown that the mean square error
increases slowly with the percentage of missing values. Moreover it provides
good estimations of the parameters and it keeps the distribution shape of the
original data before imputation. We confronted our algorithm with two others,
one proposed by Bastien (2008) and another proposed in Schafer and Yucel
(1998). The MSE ratios shown better performances of our method.

The application of our method to a real data set also shows good performance
trough the MSE and the estimation of the parameters. Moreover, the advantage
of the method is to take into account the random effects.

Future research will be to adapt the MI-PLS-L2M to the generalized linear
mixed models. The way is to use a step of linearization of the model, using for
instance the algorithm of Schall (1991).
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