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We study the sample paths properties of Operator scaling Gaussian random fields. Such fields are anisotropic
generalizations of self-similar fields. Some characteristic properties of the anisotropy are revealed by the regu-
larity of the sample paths. The sharpest way of measuring smoothness is related to these anisotropies and thus
to the geometry of these fields.
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1 Introduction and motivations

Random fields are now used for modeling in a wide range of scientific areas including physics, engineering,
hydrology, biology, economics and finance (see [29] and its bibliography). An important requirement is that the
data thus modelled present strong anisotropies which therefore have to be present in the model. Many anisotropic
random fields have therefore been proposed as natural modelsin various areas such as image processing, hy-
drology, geostatistics and spatial statistics (see, for example, Davies and Hall ( [14]), Bonami and Estrade ( [4]),
Benson and al.( [3])). Let us also quote the example of Levy random fields, deeply studied by Durand and Jaffard
(see [16]), which is the only known model of anisotropic multifractal random field. In many cases, Gaussian
models have turned to be relevant when investigating anisotropic problems. For example the stochastic model
of surface waves is usually assumed to be Gaussian and is surprisingly accurate (see [21]). More generally
anisotropic Gaussian random fields are involved in many others concrete situations and then arise naturally in
stochastic partial differential equations (see, e.g., Dalang [13], Mueller and Tribe [22],̂Oksendal and Zhang [25],
Nualart [24]).

In many situations, the data present invariant features across the scales (see for example [1]). These two
requirements (anisotropy and self–similarity) may seem contradictory, since the classical notion of self-similarity
defined for a random field{X(x)}x∈Rd onR

d by

{X(ax)}x∈Rd
L
= {aH0X(x)}x∈Rd , (1)

for someH0 ∈ R (called the Hurst index) is by construction isotropic and has then to be changed in order to fit
anisotropic situations. To this end, several extensions ofself-similarity property in an anisotropic setting have
been proposed. In [19], Hudson and Mason defined operator self-similar processes{X(t)}t∈R with values inRd.

∗ Corresponding author E-mail:clausel@univ-paris12.fr, Phone: +33 01 45 17 17 61
∗∗ Second author E-mail:beatrice.vedel@univ-ubs.fr.

Copyright line will be provided by the publisher



2 M.Clausel and B.Vedel: Two optimality results about sample path properties of OSGRF

In [20], Kamont introduced Fractional Brownian Sheets which satisfies different scaling properties according
the coordinate axes. More recently, in [8] Biermé, Meerschaert and Scheffler introduced the notion of Operator
Scaling Random Fields (OSRF). These fields satisfy the following anisotropic scaling relation :

{X(aE0x)}x∈Rd
L
= {aH0X(x)}x∈Rd . (2)

for some matrixE0 (called an exponent or an anisotropy of the field) whose eigenvalues have a positive real part
and someH0 > 0 (called an Hurst index of the field). The usual notion of self-similarity is extended replacing
usual scaling, (corresponding to the caseE0 = Id) by a linear scaling involving the matrixE0 (see figure 1
below). It allows to define new classes of random fields with new geometry and structure.
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Fig. 1

Action of a linear scalingx 7→ λEx on the smallest ellipsis.

This new class of random fields have been introduced in order to model various phenomena such as fracture
surfaces (see [27]) or sedimentary aquifers (see [3]). Furthermore in [8], the authors construct a large class of
Operator Scaling Stable Random Fields with stationary increments presenting both a moving average and an
harmonizable representation of these fields.

In order to use such models in practice, the first problem is torecover the parametersH0 andE0 from the
inspection of one sample paths. Even if we consider the modelmentioned above in the Gaussian case, the
problem of identification of an exponent of self-similarityE0 (which in some case is not unique) and of an Hurst
indexH0 is an open problem.

The first step in the resolution of this question involves an identification of some specific features of expo-
nents and indices which can be recovered on sample paths. This paper is a first step : we will prove that from
the regularity point of view these exponents and Hurst indices satisfy what we call optimality properties. More
precisely, we prove that (see Theorems 4.3 and 4.2), the Hurst indexH0 maximizes the local critical exponent of
the field in specific functional spaces related with the anisotropy matrixE0 among all possible critical exponents
in general anisotropic functional spaces.

Therefore, the results of the present paper open the way to the following strategy to recover the Hurst index.
One first have to consider a discretized version of the set of all possible anisotropies. In each case an estimator of
the critical exponent related with these anisotropies has to be given. Therefore, one has to locate the maximum
of all these estimators–which can be based on anisotropic quadratic variations–and to identify the corresponding
values of the anisotropy. The problem can thus be reformulated in terms of finding extreme values of some multi-
variate Gaussian series related to the set of discrete anisotropies (see [17,28] for some references about extremes
and [32] for some reference about extremes of multivariate series). The study of these estimators from a statistical
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point of view will be the purpose of a forthcoming paper.

Our two optimality results come from sample paths properties of the model under study in an anisotropic
setting. This approach is natural : In [20], Kamont studied the regularity of the sample paths of the well-known
anisotropic Fractional Brownian Sheet in anisotropic Hölder spaces related to Fractional Brownian Sheet. More-
over, some results of regularity in specific anisotropic Hölder spaces related to matrixE0 have already be estab-
lished for operator scaling self-similar random fields (which may be not Gaussian) in [7] or in the more general
setting of strongly non deterministic anisotropic Gaussian fields in [36]. We then extend already existing results
by measuring smoothness in general anisotropic spaces not necessarily related to the exponent matrixE0 of the
field.

This paper is organized as follows. In Section 2, we briefly recall some facts about Operator Scaling Random
Gaussian Fields (OSRGF) and describe the construction of [8] of the model. In Section 3, we present the differ-
ent concepts used for measuring smoothness in an anisotropic setting and especially anisotropic Besov spaces.
Section 4 is devoted to the statement of our optimality and regularity results. Finally, Section 5 contains proofs
of the results stated in Section 4.

For any matrixM let us define

ρmin(M) = min
λ∈Sp(M)

(|Re(λ)|), ρmax(M) = max
λ∈Sp(M)

(|Re(λ)|).

whereSp(M) denotes the spectrum of matrixM .
For any reala > 0, aM denotes the matrix

aM = exp(M log(a)) =
∑

k≥0

Mk logk(a)

k!
.

In the following pages, we denoteE+ the collection of matrices ofMd(R) whose eigenvalues have positive real
part.

2 Presentation of the studied model

The existence of operator scaling stable random fields, thatis random fields satisfying relationship (2), is proved
in [8]. The following Theorem (Theorem4.1 and Corollary4.2 of [8]) completes this result by yielding a practical
way to construct a Operator Scaling Stable Random Field (OSRF) with stationary increments for anyE0 ∈ E+

andH0 ∈ (0, ρmin(E0)). We state it only in the Gaussian case having in mind the problem of the estimation of
the Hurst indexH0 and the anisotropyE0.

Theorem 2.1 Let E0 be in E+ and ρ a continuous function with positive values such that for allx 6= 0,
ρ(x) 6= 0. Assume thatρ isEt0-homogeneous that is :

∀a > 0, ∀ξ ∈ R
d, ρ(aE

t
0ξ) = aρ(ξ).

Then the Gaussian field

Xρ(x) =

∫

Rd

(ei<x,ξ> − 1)ρ(ξ)−H0−
Tr(E0)

2 dŴ (ξ), (3)

exists and is stochastically continuous if and only ifH0 ∈ (0, ρmin(E0)). Moreover this field has the following
properties :

1. Stationary increments :

∀h ∈ R
d, {Xρ(x+ h) −Xρ(h)}x∈Rd

(fd)
= {Xρ(x)}x∈Rd

Copyright line will be provided by the publisher



4 M.Clausel and B.Vedel: Two optimality results about sample path properties of OSGRF

2. The operator scaling relation (2) is satisfied.

Remark 2.2 The assumption of homogeneity on the functionρ is necessary to recover linear self-similarity
properties of the Gaussian field{Xρ(x)}x∈Rd . The assumption of continuity onρ allows to ensure that the
constructed field is stochastically continuous.

Remark 2.3 In general, the couple(H0, E0) of an OSRF is not unique. Indeed, ifH0 andE0 are respectively
an Hurst index and an exponent of the OSRF{X(x)}x∈Rd , then for anyλ > 0 so doλH0 andλE0.
Uniqueness of the Hurst indexH0 can be recovered by choosing the following normalization for E0 : Tr(E0) =
d. However, even under this assumption,E0 is not necessarily unique. Nevertheless remark that the real diago-
nalizable real part of the matrixE0 is unique (see Section 5.2 for a definition). We refer to Remark 2.10 of [8]
for more details on the structure of the set of exponents of anOSRF.

Remark that Theorem 2.1 relies on the existence ofEt0 homogeneous functions. Constructions of such func-
tions have been proposed in [8] via an integral formula (Theorem 2.11). An alternative construction which is
more fitted for numerical simulations can be found in [12].

3 Anisotropic concepts of smoothness

Our main goal here is to study the sample paths properties of this class of Gaussian fields in well adapted
anisotropic functional spaces. This approach is quite natural (see [7, 20]) since the studied model is anisotropic.
To this end, suitable concepts of anisotropic smoothness are needed. The aim of this Section is to give some back-
ground about the appropriate anisotropic functional spaces : Anisotropic Besov spaces. These spaces generalize
classical (isotropic) Besov spaces and have been studied inparallel with them (see [5, 9] for a complete account
on the results presented in this Section. The definition of anisotropic Besov spaces is based on the concept of
pseudo-norm. We first recall some well known facts about pseudo-norms which can be found with more details
in [26].

3.1 Preliminary results about pseudo-norms

In order to introduce anisotropic functional spaces, an anisotropic topology onRd is needed. We need to introduce
a slight variant of the notion introduced by Lemarie in [26] since the one used in [26] is fitted to the case of discrete
dilatations.

Definition 3.1 Let E ∈ E+. A functionρ defined onRd is a (Rd, E) pseudo-norm if it satisfies the three
following properties :

1. ρ is continuous onRd,

2. ρ isE-homogeneous,i.e. ρ(aEx) = aρ(x) ∀x ∈ Rd, ∀a > 0,

3. ρ is strictly positive onRd \ {0}.

For any(Rd, E) pseudo-norm, define the anisotropic sphereSE0 (ρ) as

SE0 (ρ) = {x ∈ R
d; ρ(x) = 1}. (4)
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Fig. 2

Examples of spheresSE0 (ρ).

Proposition 3.2 For all x ∈ Rd\{0}, there exists an unique couple(r, θ) ∈ R∗
+×SE0

0 (ρ) such thatx = rE0θ.
MoreoverSE0

0 (ρ) is a compact ofRd and the map

(r, θ) → x = rE0θ

is an homeomorphism fromR∗
+ × SE0

0 (ρ) to Rd \ {0}.

The term ”pseudo-norm” is justified by the following Proposition :

Proposition 3.3 Letρ a (Rd, E) pseudo-norm. There exists a constantC > 0 such that

ρ(x+ y) ≤ C(ρ(x) + ρ(y)), ∀x, y ∈ R
d.

The following key property allows to define an anisotropic topology onRd based on pseudo-norms and then
anisotropic functional spaces :

Proposition 3.4 Let ρ1 andρ2 be two(Rd, E) pseudo-norms. They are equivalent in the following sense :
There exists a constantC > 0 such that

1

C
ρ1(x) ≤ ρ2(x) ≤ Cρ1(x), ∀x ∈ R

d.

In particular, any topologies onRd related with two different(Rd, E) pseudo-norms are equivalent.

3.2 Anisotropic Besov spaces

LetE be a matrix with positive real part of the eigenvalues. Let usfix a (Rd, E∗)-pseudo-norm, denoted by| · |E∗ .
Forx0 ∈ Rd andr > 0,B|·|E∗ (x0, r) denotes the anisotropic ball of centerx0 and radiusr

B|·|E∗ (x0, r) = {x ∈ R
d, |x− x0|E∗ ≤ r}.

Definition 3.5 LetψE0 ∈ S(Rd) be such that

ψ̂E0 (ξ) = 1 if |ξ|E∗ ≤ 1, ψ̂E0 (ξ) = 0 if |ξ|E∗ ≥ 2.

For j ∈ N, let

ψ̂Ej (ξ) = ψ̂E0 (2−jE
∗

ξ) − ψ̂E0 (2−(j−1)E∗

ξ).
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6 M.Clausel and B.Vedel: Two optimality results about sample path properties of OSGRF

Then

+∞∑

j=0

ψ̂Ej ≡ 1,

is an anisotropic partition of the unity withsupp(ψ̂Ej ) ⊂ B|·|E∗ (0, 2j+1) \B|·|E∗ (0, 2j−1).

The anisotropic Besov spacesBsp,q(R
d, E) are then defined as follows.

Definition 3.6 Let 0 < p, q ≤ ∞, s ∈ R and

‖f‖Bs
p,q(Rd,E) =

∞∑

j=0

2jsq‖f ∗ ψEj ‖
q
Lp(Rd)

.

Then

Bsp,q(R
d, E) = {f ∈ S′(Rd), ‖f‖Bs

p,q(Rd,E) < +∞}.

The matrixE is called the anisotropy of the Besov spacesBsp,q(R
d, E).

In a more general way, ifN ∈ R, we define

‖f‖Bs

p,q,| log |N
(Rn,E) =

∞∑

j=0

jN2jsq‖f ∗ ψEj ‖
q
Lp(Rn),

and

Bsp,q,| log |N (Rd, E) = {f ∈ S′(Rd), ‖f‖Bs

p,q,| log |N
(Rd,E) < +∞}.

Remark 3.7 LetE ∈ E+ and| · |E∗ a (Rd, E∗)-pseudo-norm. For anyλ > 0, | · |
1
λ

E∗ is a(Rd, λE∗)-pseudo-

norm. Hence for anys > 0,B
s
λ
p,q(Rd, λE) = Bsp,q(R

d, E).

So, without loss of generality, we assume in the sequel thatTr(E) = d.
As it is the case for isotropic spaces, anisotropic Hölder spacesCs(Rd, E) can be defined as particular Besov

spaces.

Definition 3.8 Let s be inR andN ∈ R. The anisotropic Hölder spacesCs(Rd, E) andCs|log|N (Rd, E) are
defined by

Cs(Rd, E) = Bs∞,∞(Rd, E) and Cs| log |N (Rd, E) = Bs∞,∞,| log |N (Rd, E).

Proposition 3.9 Let0 < s < ρmin(E) andN ∈ R. Then

‖f‖L∞(Rd) + sup
|h|E≤1

sup
x∈Rd

(
|f(x+ h) − f(x)|

|h|sE | log(|h|E)|N
),

and the norm‖f‖Bs

∞,∞,| log |N
defined above are equivalent norms inCs| log |N (Rd, E).

Remark 3.10 Anisotropic Hölder spaces admit a characterization by finite differences under the general as-
sumptions > 0. Here, we only need to deal with the case0 < s < ρmin(E) and have thus stated Proposition 3.9
in this special setting.

Let us comment Proposition 3.9. Let0 < s < ρmin(E) andN ∈ R. A bounded functionf belongs to the
Hölder spaceCs| log |N (Rd, E) if and only if : For anyr ∈ (0, 1), Θ ∈ S0

E(| · |E) andx ∈ Rd

|f(x+ rEΘ) − f(x)| ≤ C0r
s| log(r)|N

Copyright line will be provided by the publisher
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for someC0 > 0.
Hence, a functionf belongs to the Hölder spaceCs| log |N (Rd, E) if and only if its restrictionfΘ along any
parametric curve of the form

r > 0 7→ rEΘ,

with Θ ∈ S0
E(| · |E) is in the usual Hölder spaceCs|log|N (R) and‖fΘ‖Cs

|log|N
(R) does not depend onΘ. Roughly

speaking, the anisotropic “directional” regularity in anyanisotropic “direction” has to be larger thans. In other
words, we replace straight lines of isotropic setting by curves with parametric equationr > 0 7→ rEΘ adapted to
anisotropic setting.

Fig. 3

”Isotropic lines” and ”anisotropic lines” in the caseE =

(
1 −1
1 1

)
.

4 Statement of our results

First in Section 4.1, we state our optimality results and characterize in some sense an anisotropyE0 and an Hurst
index of the fieldH0. These results come from an accurate study of sample paths properties of the OSRGF
{XρE0 ,H0(x)}x∈Rd in anisotropic Besov spaces (see in Section 4.2). But beforeany statement let us give some
definitions and notations.
In this sectionρE0 denotes a(Rd, E0) pseudo-norm,{XρE0 ,H0(x)}x∈Rd is the OSRGF with exponentE0 and
Hurst indexH0 defined by (3).

We assume - without loss of generality - that any anisotropy of the fieldE0 and any anisotropyE of the
analyzing spacesBsp,q(R

d, E) satisfyTr(E0) = Tr(E) = d. Let us denote byE+
d the set of matrices ofMd(R)

satisfyingTr(E) = d whose eigenvalues have positive real parts.
Our results are based on local sample path properties of the Gaussian field{XρE0 ,H0(x)}x∈Rd . We first need

some definitions.

Definition 4.1 LetE ∈ E+
d be a fixed anisotropy,(p, q, s) ∈ (1,+∞]2 × (0,+∞) andf ∈ Lploc(R

d).
The functionf belongs toBαp,q,loc(R

d, E) if for anyϕ ∈ D(Rd), the functionϕf belongs toBαp,q,| log |N (Rd, E).

The spacesBαp,q,| log |N ,loc(R
d, E) can be defined in an analogous way for any(p, q, s,N) ∈ (0,+∞]2 ×

(0,+∞) × R.
The anisotropic local critical exponent in anisotropic Besov spacesBsp,q(R

d, E) of the OSRGF{XρE0 ,H0(x)}x∈Rd

is then defined by

αXρE0
,H0 ,loc

(E, p, q) = sup{s, XρE0 ,H0(·) ∈ Bsp,q,loc(R
d, E)} .

In the special casep = q = ∞, this exponent is also called the anisotropic local critical exponent in anisotropic
Hölder spaces of the OSRGF{XρE0 ,H0(x)}x∈Rd and is denoted byαXρE0

,H0 ,loc
(E).

Copyright line will be provided by the publisher



8 M.Clausel and B.Vedel: Two optimality results about sample path properties of OSGRF

4.1 Two optimality results

We get a first general result :

Theorem 4.2 Let(p, q) ∈ (1,+∞]2 andE0 a matrix whose eigenvalues have positive real parts. Then almost
surely

αXρE0
,H0 ,loc

(E0, p, q) = sup{αXρE0
,H0 ,loc

(E, p, q), E ∈ E+
d , E commuting withE0}.

that is the valueE = E0 maximizes the anisotropic local critical exponent of the OSRGF{XρE0 ,H0(x)}x∈Rd

among all possible anisotropic local critical exponent in anisotropic Besov spaces with an anisotropyE com-
muting withE0.

Remark The assumption ’E andE0 are commuting’ implies that the two matricesD andD0 of Theorem 4.2
admit the same spectral decomposition. Hence, in fact we proved that any anisotropy matrixE0 maximize the
critical exponent among matrices having the same spectral decomposition. Thus, in the general case dimension
we implicitly assumed that the spectral decomposition of anisotropy matrix is well-known.
In dimension two, we have a stronger optimality result aboutanisotropy matrixE0 and Hurst indexH0. Note,
that this case is interesting when dealing with anisotropicimages.

Theorem 4.3 Let(p, q) ∈ (1,+∞]2 andE0 a matrix whose eigenvalues have positive real parts. Then almost
surely

αXρE0
,H0 ,loc

(E0, p, q) = sup{αXρE0
,H0 ,loc

(E, p, q), E ∈ E+
d }.

In fact, Theorem 4.3 contains two main results :

• The critical exponent of the field{XρE0 ,H0(x)}x∈Rd in anisotropic Besov spaceBsp,q(R
d, E0), and more

generally in anisotropic Besov spaceBsp,q(R
d, E0) equals the associated Hurst indexH0.

• Any anisotropyE0 of the field {XρE0 ,H0(x)}x∈Rd maximizes this critical exponent among all possible
anisotropy analysis matrix. In fact, the ’best way’ of measuring smoothness of the field{XρE0 ,H0(x)}x∈Rd

is to measure smoothness along the anisotropic ’directions’ r > 0 7→ rE0Θ related to the genuine geometry
of the field.

4.2 Sample paths properties of the OSRGF{XρE0 ,H0(x)}x∈Rd in anisotropic Besov spaces

In order to prove Theorem 4.2 and Theorem 4.3, we investigatethe local regularity of the sample path of the
field {XρE0 ,H0(x)}x∈Rd in general anisotropic Besov spaces. But before any statement, we first need some
background about the concept of real diagonalizable part ofa square matrix. This notion is based on real additive
Jordan decomposition of a square matrix (see for e.g. to Lemma 7.1 chap 9 of [18] where a multiplicative version
of Proposition 4.4 is given) :

Proposition 4.4 Any matrixM ofMd(R) can be decomposed into a sum of three commuting real matrices

M = D + S +N ,

whereD is a diagonalizable matrix inMd(R), S is a diagonalizable matrix inMd(C) with zero or imaginary
complex eigenvalues, andN is a nilpotent matrix. MatrixD is called the real diagonalizable part ofM , S its
imaginary semi-simple part, andN its nilpotent part.

Now we are given twocommuting matricesE0, E of E+
d . LetD0 (respD) be the real diagonalizable part of

matrixE0 (respE). Since matricesE0 andE are commuting, so do matricesD0 andD. Furthermore, matrices
D0 andD are diagonalizable inMd(R) then they are simultaneously diagonalizable. Up to a changeof basis, we
may assume thatD0 andD are two diagonal matrices. More precisely, suppose that

D0 =



λ0

1Idd1 0
. . .

0 λ0
mIddm


 , D =



λ1Idd1 0

. . .
0 λmIddm


 , (5)

Copyright line will be provided by the publisher
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with

λm
λ0
m

≤ · · · ≤
λ1

λ0
1

. (6)

SinceTr(E0) = Tr(E) = d, one hasλm/λ0
m ≤ 1.

The regularity results about sample path of the field{XρE0 ,H0(x)}x∈Rd are summed up in the following
theorem.

Theorem 4.5 Let 1 < p ≤ +∞, 1 < q ≤ +∞. Almost surely the anisotropic local critical exponent
αXρE0

,H0 ,loc
(E, p, q) in anisotropic Besov spacesBsp,q(R

d, E) of the OSRGF{XρE0 ,H0(x)}x∈Rd satisfies

αXρE0
,H0 ,loc

(E, p, q) = H0
λm
λ0
m

≤ H0.

In particular, in the special caseE = E0, αXρE0
,H0 ,loc

(E, p, q)H0.

In other words Theorem 4.5 asserts that when one measures local regularity of the sample paths along
anisotropic directions different from those associated toan anisotropy of the fieldE0, one loses smoothness.
The further the anisotropic direction of measure from the genuine anisotropic direction associated to the field are,
the smaller the anisotropic local critical exponent is. This anisotropic local critical exponent can take any value
in the range(0, H0].

The special casep = q = +∞ yields us the following result about anisotropic Hölderian regularity of the
sample paths.

Corollary 4.6 Almost surely the anisotropic local critical exponent of the sample paths of{XρE0 ,H0(x)}x∈Rd

in anisotropic Ḧolder spaces equalsH0
λm

λ0
m

and is always lower thanH0. In particular, if E = E0 this critical
exponent equals the Hurst indexH0.

Remark 4.7 This estimate on anisotropic local critical exponent was already known in the caseE = E0

(see [7]).

Theorem 4.5 allows us to obtain regularity results which extend those proved in the casep = q = ∞ in
the usual isotropic setting. Since matricesE0 andId are commuting, we can apply the above result to the case
E = Id. Note that in this caseλ0

m = ρmax(E0). We obtain the following Proposition :

Proposition 4.8 Almost surely the local critical exponent of the sample paths of{XρE0 ,H0(x)}x∈Rd in clas-
sical Besov spaces equalsH0

1
ρmax(E0) .

In particular, forp = q = ∞, almost surely the local critical exponent of the sample paths of{XρE0 ,H0(x)}x∈Rd

in classical Ḧolder spaces equalsH0
1

ρmax(E0)
.

Remark 4.9 In the special casep = q = ∞, we recover results about classic Hölderian regularity already
established in Theorem5.4 of [8]. Recall that Theorem5.4 of [8] is based on directional regularity results
about the Gaussian field{XρE0 ,H0} and comes from an accurate estimate of the variogramvXρE0

,H0
(h) =

E(|XρE0 ,H0(h)|
2) along special directions linked to the spectral decomposition of matrixE0. Here our approach

is based on wavelet technics.

5 Complements and proofs

5.1 Role of the real diagonalizable part of the anisotropyE of the analysing spacesBsp,q(R
d, E)

We will first prove that measuring smoothness in the general Besov spacesBsp,q(R
d, E) may actually be deduced

from the special case where matrixE is diagonalizable. To this end, we show the following embedding property:
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10 M.Clausel and B.Vedel: Two optimality results about sample path properties of OSGRF

Proposition 5.1 Assume thatE1 ∈ E+
d andE2 ∈ E+

d have the same real diagonalizable partD. For any
α > 0 and any(p, q) ∈ (1,+∞]2 one has,

Bα
p,q,| log |

d
ρmin(D)

(Rd, E1) →֒ Bαp,q(R
d, E2) →֒ Bα

p,q,| log |
− d

ρmin(D)
(Rd, E1).

As a direct consequence, we obtain Corollary 5.2. Note that this result does not depend on the studied Gaus-
sian field but of the involved functional spaces. Hence, it does not give any information about the anisotropic
properties of the field.

Corollary 5.2 The anisotropic local critical exponent

αX,loc(E, p, q) = sup{s > 0, X(·) ∈ Bsp,q,loc(R
d, E)},

of any Gaussian field{X(x)}x∈Rd in anisotropic Besov spacesBsp,q(R
d, E) depends only on the real diagonal-

izable part ofE.

Proof of Proposition 5.1 relies on the following lemma :

Lemma 5.3 Assume thatE1 andE2 are two matrices ofE+ having the same real diagonalizable partD.
Then there exists two positive constantsc1 andc2 such that, for allx ∈ Rd,

c1|x|E∗
2
(1 + | log(|x|E∗

2
)|)

− d
ρmin(D) ≤ |x|E∗

1
≤ c2|x|E∗

2
(1 + | log(|x|E∗

2
)|)

d
ρmin(D) .

Proof 5.4 Using polar coordinates associated toE∗
1 , one has, forx ∈ Rd,

x = rE
∗
1 Θ, (r,Θ) ∈ R

∗
+ × S0(E

∗
1 ).

DenoteF1 = E1 −D, F2 = E2 −D and remark that those two matrices have only pure imaginary eigenvalues.
By Lemma2.1 of [8], it comes that for anyε > 0

|x|E∗
2

= |rE
∗
2 r−Dr−F

∗
2 rDrF

∗
1 Θ|E∗

2

≤ r|r−F
∗
2 rF

∗
1 Θ|E∗

2

≤ Crmax(|r−F
∗
2 rF

∗
1 Θ|

1
ρmin(D)−ε , |r−F

∗
2 rF

∗
1 Θ|

1
ρmax(D)+ε )

≤ Crmax(‖r−F2rF1‖
1

ρmin(D)−ε , ‖r−F2rF1‖
1

ρmax(D)+ε )

≤ Cr(1 + | log(r)|)
d−1

ρmin(D)−ε

≤ Cr(1 + | log(r)|)
d

ρmin(D) .

Using two anisotropic Littlewood-Paley analysis associated respectively to matricesE1, E2 andD and the
lemma above we deduce the following embedding stated in Proposition 5.1 :

Bα
p,q,−| log |

d
ρmin(D)

(Rd, E1) →֒ Bαp,q(R
d, E2) →֒ Bα

p,q,| log |
d

ρmin(D)
(Rd, E1).

for anyα > 0, 1 < p, q ≤ +∞.
Indeed, for anyi ∈ {1, 2}, let (ψEi

j )j∈Z an anisotropic Littlewood-Paley analysis of Besov spacesBαp,q(R
d, Ei).

By definition

supp(ψ̂Ei

1 ) ⊂ {ξ, 1 ≤ |ξ|E∗
i
≤ 4}

for j ∈ {1, 2}. Then there existsj0 ∈ Z such that for anyj ∈ Z, one has

supp(ψ̂E2

j ) ⊂ {ξ, 2j−1 ≤ |ξ|E∗
2
≤ 2j+1}

⊂

j+j0+ d
ρmin(D)

log2(j)⋃

l=j−j0−
d

ρmin(D)
log2(j)

{ξ, 2l−1 ≤ |ξ|E∗
1
≤ 2l+1}
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Hence

ψ̂E2

j f̂(ξ) = ψ̂E2

j

j+j0+ d
ρmin(D)

log2(j)∑

l=j−j0−
d

ρmin(D)
log2(j)

ψ̂E1

l f̂(ξ),

which implies

‖f ∗ ψE2

j ‖Lp ≤

j+j0+ d
ρmin(D) log2(j)∑

l=j−j0−
d

ρmin(D)
log2(j)

‖ψE2

j ∗ (ψE1

l ∗ f)‖Lp

≤ ‖ψ‖L1

j+j0+ d
ρmin(D)

log2(j)∑

l=j−j0−
d

ρmin(D)
log2(j)

‖ψE1

l ∗ f‖Lp

Then we can give the following upper bound of
J∑
j=1

2jsq

j
d

ρmin(D)

‖f ∗ ψE2

j ‖Lp :

J∑

j=1

2jsq

j
d

ρmin(D)

‖f ∗ ψE2

j ‖Lp ≤
J∑

j=1

2jsq

j
d

ρmin(D)

j+j0+ d
ρmin(D)

log2(j)∑

l=j−j0−
n

ρmin(D) log2(j)

‖(f ∗ ψE1

l )‖Lp

≤

J+j0+ d
ρmin(D)

log2(J)∑

l=1

‖f ∗ ψE1

l ‖Lp

l+j0+ d
ρmin(D)

log2(l)∑

j=l−j0−
n

ρmin(D)
log2(l)

2jsq

j

≤

J+j0+log2(J)∑

l=1

‖f ∗ ψE1

l ‖Lp2lsq log2(l) < +∞.

Let us now assume thatJ → ∞ which yields the inclusion

Bαp,q(R
d, E2) →֒ Bα

p,q,| log |
d

ρmin(D)
(Rd, E1).

PermutingE1 andE2 yields the other inclusion.

5.2 Local regularity in anisotropic Besov spaces of the studied field

In the previous section, we proved that we can restrict our study to diagonal Besov spaces. This point is crucial
for the proof of the regularity results enounced in Section 4. Indeed it allows us to use tools that are only defined
in the diagonal case, as anisotropic multi-resolution analysis and anisotropic wavelet bases.

The aim of the following subsection is to recall the constructions of these wavelet bases.

5.2.1 Orthonormal Wavelet bases of (diagonal) anisotropicspaces

In this section, we assume that the anisotropyD of the space is diagonal (with positive eigenvalues). We assume

thatD =



λ1 0

. . .
0 λd


 and - as it is the case for general anisotropic Besov spaces - thatTr(D) = d. Let us

first recall the definition given by Triebel in [35] of an anisotropic multi-resolution analysis.
Let {Vj , j ≥ 0} be a one-dimensional multi-resolution analysis ofL2(R) and let us denote byψF (resp.ψM )

the corresponding scaling function (resp. wavelet function).
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12 M.Clausel and B.Vedel: Two optimality results about sample path properties of OSGRF

Notation 5.5 We denote by{F,M}d
∗

the set

{F,M}d
∗

= {F,M}d \ {(F, · · · , F )}.

For j ∈ N, we define the setIj(D) of {F,M}d × Nd in the following way.

• If j = 0, I0(D) = {((F, · · · , F ), (0, · · · , 0))}.

• If j ≥ 1, Ij(D) is the set of all the elements(G, γ) with G ∈ {F,M}d
∗

andγ ∈ Nd such that for any
r ∈ {1, · · · , d} :

If Gr = F, γr = [(j − 1)λr],
If Gr = M, [(j − 1)λr] ≤ γr < [jλr ].

Finally, for j ∈ N and(G, γ) ∈ Ij(D), we will denote byDj,G,γ the matrix defined by

Dj,G,γ =



γ1 0

. . .
0 γd




Finally, let us define the family of wavelets as follows. Forj ∈ N, (G, γ) ∈ Ij(D) andk ∈ Zd, we set

Ψk
j,G,γ(x) = (ψ(G))(2Dj,G,γx− k) ,

with

ψ(G) = ψG1 ⊗ · · · ⊗ ψGd
.

The anisotropic wavelet bases yield a wavelet characterisation of anisotropic Besov spaces ( [34] and [35], The-
orem5.23).

Theorem 5.6 1. The family
{

2
Tr(Dj,G,γ )

2 Ψk
j,G,γ, j ∈ N, (G, γ) ∈ Ij(D), k ∈ Zd

}
is an orthonormal ba-

sis ofL2(Rd).

2. Let(Ψj,G,γ
k )j∈N,(G,γ)∈Ij(D),k∈Zd be the family constructed fromψF andψM Daubechies wavelets with, for

someu ∈ N,

ψF ∈ Cu(R), ψM ∈ Cu(R).

Let 0 < p, q ≤ ∞ and s ∈ R. There exists an integeru(s, p,D) such that ifu > u(s, p,D), for any
tempered distributionf the two following assertions are equivalent

(a) f ∈ Bsp,q(R
d, D),

(b) f =
∑
ckj,G,γΨ

k
j,G,γ with

∑

j,G,γ

2j(s−
d
p
)q

(∑

k

|ckj,G,γ |
p

) q
p

< +∞,

the convergence being inS′(Rd).

The above expansion is then unique and

ckj,G,γ =< f, 2Tr(Dj,G,γ)Ψk
j,G,γ > .

Remark 5.7 An analogous result is stated ( [35], Theorem5.24) replacing Daubechies wavelets by Meyer
wavelets. In that case,u = +∞.

We now prove regularity results about the sample path of{XρE0 ,H0(x)}x∈Rd based on wavelet characteriza-
tion of Besov spaces.
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5.2.2 Local regularity of the field{XE0,H0(x)}x∈Rd in anisotropic Besov spacesBsp,q(R
d, D0)

Assume that we are given a Gaussian field of the form (3){XE0,H0(x)}x∈Rd whereE0 is a matrix whose eigen-
values have positive real part andH0 ∈ (0, ρmin(E0)).
Defineε on (0,+∞] as follows :ε(p) = 1/2 if p = +∞, 0 otherwise. The aim of this section is to prove :

Proposition 5.8 Let1 < p ≤ +∞, 1 < q ≤ +∞. Then one has

1. For anyβ > 1/q+d/ρmin(E0), almost surely, the sample path of{XρE0 ,H0(x)}x∈Rd belongs toBH0

p,q,| log |β+ε(p)+1,loc
(Rd, D0),

2. For β = 1/q + d/ρmin(E0), almost surely, the sample path of{XρE0 ,H0(x)}x∈Rd does not belong to

BH0

p,q,| log |−β−ε(p)−1,loc
(Rd, D0).

Adapting to our setting a result of [26], we first remark that there existsC∞(Rd \{0}) (Rd, E0) pseudo-norms

Lemma 5.9 LetE0 be ad × d matrix with positive real parts of the eigenvalues. Letϕ be aC∞ function

compactly supported inRd \ {0}.The functionρ defined, forx ∈ Rd, byρ(x) =

∫

Rd

ϕ(a−E0x)da is a (Rd, E0)

pseudo-norm belonging toC∞(Rd \ {0}).

In [11], we proved that the sample path properties of the Gaussian field{XρE0 ,H0}x∈Rd do not depend on the
chosen(Rd, E0) pseudo-norm. Thus, we assume from now that the(Rd, E0) pseudo-norm| · |E0 used in the
construction of the field{XρE0 ,H0(x)}x∈Rd belongs toC∞(Rd \ {0}).

Our results come from the series expansion ofXρE0 ,H0 in a Meyer anisotropic wavelet basis (see Section 5.2.1
just above).
Denote for anyj ∈ N, (G, γ) ∈ Ij , ckj,G,γ =< XρE0 ,H0 , 2

Tr(Dj,G,γ)Ψk
j,G,γ > as above. Thereafter set

X
(1)
ρE0 ,H0

(x) =
∑

j,G,γ

∑

|k|<j2jd

ckj,G,γ(ω)Ψk
j,G,γ(x),

and

X
(2)
ρE0 ,H0

(x) =
∑

j,G,γ

∑

|k|>j2jd

ckj,G,γ(ω)Ψk
j,G,γ(x) .

We will investigate separately the sample path properties in anisotropic Besov spaces of the Gaussian fields
X

(1)
ρE0 ,H0

andX(1)
ρE0 ,H0

. We first prove that

Proposition 5.10 Let (p, q) ∈ (1,+∞]2.

1. Almost surely, for anyβ > 1/q + d/ρmin(E0), the sample path of the field{X(1)
ρE0 ,H0

(x)}x∈Rd belongs to

BH0

p,q,| log |β+ε(p)+1(R
d, D0).

2. Almost surely, forβ = 1/q + d/ρmin(E0) the sample path of the field{X(1)
ρE0 ,H0

(x)}x∈Rd does not belong

toBH0

p,q,| log |−β−ε(p)−1(R
d, D0).

Proof 5.11 The proof uses several technics introduced in [10]. Set

gkj,G,γ =
ckj,G,γ

E(|ckj,G,γ |
2)1/2

(7)

for anyj ∈ N, (G, γ) ∈ Ij , k ∈ Γj(D0) = {k ∈ Z2, |k|D0 ≤ j2j}.
Let us distinguish the two casesp 6= ∞ andp = ∞.
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14 M.Clausel and B.Vedel: Two optimality results about sample path properties of OSGRF

If p 6= ∞, the definition of the sequence(gkj,G,γ) and Lemma A.1 imply that surely there exists someC1, C2 > 0
such that for anyj,G, γ


∑

k∈Γj

|ckj,G,γ |
p




1/p

≥ C12
j/p2−2jH0/pj−d/ρmin(E0)−1


 1

nj

∑

k∈Γj

|gkj,G,γ |
p




1/p

, (8)

and

∑

k∈Γj

|ckj,G,γ |
p




1/p

≤ C22
j/p2−2jH0/pjd/ρmin(E0)+1


 1

nj

∑

k∈Γj

|gkj,G,γ |
p




1/p

. (9)

Lemma A.5 and inequalities (8),(8) then yield the required results for the casep <∞.
If p = ∞, the definition of the sequence(gkj,G,γ) and Lemma A.1 imply that surely there exists someC1, C2 > 0
such that for anyj,G, γ

sup
k∈Γj

|ckj,G,γ | ≥ C12
−2jH0j1/2−d/ρmin(E0)−1

(
1√

log(nj)
sup
k∈Γj

|gkj,G,γ |

)
, (10)

and

sup
k∈Γj

|ckj,G,γ | ≤ C22
−2jH0j1/2+d/ρmin(E0)+1

(
1√

log(nj)
sup
k∈Γj

|gkj,G,γ |

)
. (11)

Lemma A.7 and inequalities (10), (11) then yield the required results for the casep = ∞.

Proposition 5.8 can then be directly deduced from the following proposition :

Proposition 5.12 Almost surely, the sample path of the field{X
(2)
ρE0 ,H0

(x)}x∈Rd areBH
′

p,q,loc(R
d, E0) for any

0 < H0 < H ′ < ρmin(D0) = ρmin(E0) .

Then, the sample path smoothness of{XρE0 ,H0(x)}x∈Rd in anisotropic Besov spaces of anisotropyD0 are those

of the field{X(1)
ρE0 ,H0

(x)}x∈Rd .

Proof 5.13 Using the transference results of [35] (see Theorem 5.28) and the usual embedding of isotropic
Besov spaces defined on bounded domains one remarks that

Cs+εloc (Rd, E0) ⊂ Bsp,q,loc(R
d, E0) ,

for any(p, q) ∈ (1,+∞]2 and any(s, ε) ∈ (0,+∞)2. It then suffices to prove the result forp = q = ∞.
Let now consider0 < H < H ′ < 1, ε > 0 andϕ ∈ D(Rd). We may assume thatsupp(ϕ) ⊂ BE0(0, 1) =

{x, |x|E0 ≤ 1} and0 ≤ ϕ ≤ 1. We denote byY the random fieldϕX(2)
ρE0 ,H0

. We want to give an upper bound of

|Y (x+ h) − Y (x)| for any givenx, h in BE0(0, 1).
Let us first remark that

Y (x + h) − Y (x) =
∑
j,G,γ

∑
|k|E0>j2

j

ckj,G,γ(ω)(ϕ(x + h) − ϕ(x))Ψk
j,G,γ(x)

+
∑
j,G,γ

∑
|k|>j2jd

ckj,G,γ(ω)ϕ(x + h)(Ψk
j,G,γ(x+ h) − Ψk

j,G,γ(x)) .

Let ε = 1 −H ′/ρmin(E0). Sinceϕ ∈ B1−ε
∞,∞,loc(R

d) andx, h belong to the compact setBE0(0, 1), Lemma A.7
and the fast decay of the wavelets imply that almost surely

∣∣∣∣∣
∑
j,G,γ

∑
|k|E0>j2

j

ckj,G,γ(ω)(ϕ(x + h) − ϕ(x))Ψk
j,G,γ(x)

∣∣∣∣∣
≤ |h|1−ε‖ϕ‖B1−ε

∞,∞(BE0 (0,1))

∑
j,G,γ

j1/2+d/ρmin(E0)2−jH0
∑

|k|E0>j2
j

1

(1+|k−2Dj,G,γ x|)M
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for someM > 0.
Remark now that

|k|E0 ≥ j2j ≥ 2j ≥ |x|E0

Then there exists someα > 0 such that forj sufficiently large and anyx in BE0(0, 1)

|k − 2Dj,G,γx| ≥ |k|α/2

Then
∣∣∣∣∣
∑
j,G,γ

∑
|k|E0>j2

j

ckj,G,γ(ω)(ϕ(x + h) − ϕ(x))Ψk
j,G,γ(x)

∣∣∣∣∣
≤ |h|1−ε‖ϕ‖B1−ε

∞,∞(BE0(0,1))

∑
j,G,γ

j1/2+d/2ρmin(E0)2−jH0
∑

|k|E0>j2
j

1
(1+|k|α)M ≤ C|h|1−ε ≤ C|h|H

′

E0

Further, by the same approach we prove that almost surely
∣∣∣∣∣
∑
j,G,γ

∑
|k|>j2jd

ckj,G,γ(ω)ϕ(x + h)(Ψk
j,G,γ(x+ h) − Ψk

j,G,γ(x))

∣∣∣∣∣
≤ ‖ϕ‖L∞(BE0(0,1))

∑
j,G,γ

j1/2+d/(2ρmin(E0))2−jH0 |2Dj,G,γh| sup
2−Dj,G,γ y∈[x,x+h]

∑
|k|E0>j2

j
1

(1+|k−2Dj,G,γ y|)M
.

The end of the proof is exactly the same as above remarking that

|2Dj,G,γh| ≤ jδ2j |h|
ρmin(E0)
E0

for someδ > 0.

5.3 Proof of regularity results in anisotropic Besov spaceswith an anisotropy unrelated to the one of the
field

The following Proposition extends the results of Proposition 5.8

Proposition 5.14 Let1 < p ≤ +∞, 1 < q ≤ +∞ andβ > 1/q + d/ρmin(D) + 2d/ρmin(E0) + ε(p).

1. Almost surely the sample path of{XρE0 ,H0(x)}x∈Rd belongs toB
H0

λm

λ0
m

p,q,| log |β ,loc
(Rd, E),

2. Almost surely the sample path of{XρE0 ,H0(x)}x∈Rd does not belong toB
H0

λm

λ0
m

p,q,| log |−β ,loc
(Rd, E).

The proof is made in several steps. First we need to compare Besov spaces with different anisotropies.

5.3.1 A comparison result between Besov spaces with different anisotropies

Recall thatD0 andD are assumed to be two diagonal matrices of the form :

D0 =



λ0

1Idd1 0
. . .

0 λ0
mIddm


 , D =



λ1Idd1 0

. . .
0 λmIddm


 , (12)

with

λm
λ0
m

≤ · · · ≤
λ1

λ0
1

. (13)

In this section the assumptionTr(D0) = Tr(D) = d is not required. We first need a comparison result between
between Besov spaces with different anisotropies in the diagonal case :
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16 M.Clausel and B.Vedel: Two optimality results about sample path properties of OSGRF

Proposition 5.15 The notations and assumptions are as above. For anyα > 0, β ∈ R andp, q ∈ (0,+∞],
one has the following embedding

Bαp,q,| log |β (Rd, D0) →֒ B
αλm

λ0
m

p,q,| log |β
(Rd, D).

The proof is straightforward and based on finite differencescharacterization of Besov spaces given in Theorem
5.8 (ii) of [35].

5.3.2 Proof of Proposition 5.14

1. It is a straigthforward consequence of Propositions 5.1 and 5.15.

2. Recall that the Gaussian field{XρE0 ,H0(x)}x∈Rd is defined by its harmonizable representation :

XρE0 ,H0(x) =

∫
(ei<x,ξ> − 1)

ρE0(ξ)
H0+d

2

dWξ

where the pseudo-normρE0 can be chosen of the form

ρE0 = ρ1 + · · · + ρm,

where for any1 ≤ ℓ ≤ m, ρℓ is a(Rdℓ , Eℓ) pseudo-norm.
Set{Xm(xm)}xm∈Rdm = {X(0, · · · , 0, xm)}xm∈Rdm . Remark that this field has the same finite dimen-
sional margin than the fieldYm defined as follows

Ym(xm) =

∫

Rdm

(ei<xm,ξm> − 1)

ρ̃m(ξm)H+ dm
2

dŴξm

with

ρ̃m
−(H+ dm

2 )
(ξm) =

∫

Rd1×···×R
dm−1

dξ1 · · · dξm−1

ρ(ξ)H+ d
2

.

Remark thatYm is in fact an OSRGF of the form (3) with exponentE0 = λ0
mIdRdm and Hurst indexH0.

Then apply the non local regularity results of Section 5.2 tothe OSRGFYm. Then, deduce that

a.s. Ym(·) 6∈ BH0

p,q,loc, 1

| log |d

(Rd, λ0
mIdRdm )

and thus using Proposition 5.15 withD0 = λ0
mIdRdm andD = λmIdRdm

a.s. Ym(·) 6∈ B
H0

λm

λ0
m

p,q,loc, 1

| log |d

(Rd, λmIdRdm ).

The conclusion comes from Proposition 5.1 and from the following Fubini Lemma which can be derived
from the characterization by difference of Besov spacesBsp,p,| log |N (Rd, D) (see [35]) :

Lemma 5.16 Lets > 0,N ∈ R and0 < p ≤ +∞. If f is a continuous function belonging toBsp,p(R
d, D)

thenfℓ defined onRdℓ by

fℓ(xℓ) = f(x0
1, · · · , xℓ)

belongs toBsp,p(R
dℓ , Dℓ).
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5.4 Proof of the two optimality results

Theorem 4.2 results directly from Proposition 5.14. We justprove Theorem 4.3. Remark that since we are dealing
with critical exponent of the field{XE0,H0(x)}x∈Rd in anisotropic Besov spaces, we use the results of [11] and

assume thatE0 equals its real diagonalizable partD0 =

(
λ0

min 0
0 λ0

max

)
.

SinceTr(D0) = Tr(D) only two cases may appear:ρmax(D) ≤ ρmax(D0) andρmin(D) ≤ ρmin(D0).
First case : ρmax(D) ≤ ρmax(D0). Assume that forα > H0, the sample paths of{XD0,H0(x)}x∈Rd belong
to Bαp,q(R

d, D). Then, by Proposition 5.15 almost surely the sample paths of{XD0,H0(x)}x∈Rd belong to

B
α

ρmax(D)
p,q (Rd). By a similar approach to Proposition 5.14 above, consider{Y (h)}h∈R = {XD0,H0(he

0
max)}h∈R

with e0max an eigenvector ofD0 related to the higher eigenvalueρmax(D0). Then by Fubini Lemma 5.16, the
critical exponent isH0/ρmax(D0). Thusα/ρmax(D) > H0/ρmax(D0) that yields a contradiction.
Second caseρmin(D) ≤ ρmin(D0) :
One can apply a similar approach for{Y (h)}h∈R = {XD0,H0(hemin)}h∈R with emin an eigenvector ofD related
to the lower eigenvalue ofD.
Remark that the critical exponent ofY in any isotropic Besov spaces is lower thanH0/ρmin(D0). Indeed,

Y (h) =

∫

Rd

eihemin.ξ − 1

|ξ|H0+1
D

dŴ (ξ).

HenceY has the same finite dimensional margin than

Ỹ (h) =

∫

R

(eiht − 1)φ(t)dŴ (t)

whereφ(t) =

(∫
V ⊥
min

1

|ζ|
2H0+2

D0
+|temin|

2H0+2

D0

dζ

) 1
2

andV ⊥
min = V ect < emin >⊥. Remark then that for|t|

sufficiently large,φ(t) ≥ C(emin)

|t|
H0

ρmin(D0)
+1

2

. By the regularity comparison results of [11] about Gaussian fields,

we deduce the required result. By the Fubini Lemma 5.16, if weassume thatα > H0 it yields the required
contradiction.

A Technical lemmas

Our results about smoothness of the sample path are based on the following lemma

Lemma A.1 The wavelet coefficients of the random field{XρE0 ,H0(x)}x∈Rd are weakly dependent in the
following sense

1. There exists someC0 > 0 such for anyj ≥ 1, (G, γ) ∈ Ij and(k, k′) ∈ (Zd)2

|E(ckj,G,γc
k′

j,G,γ)| ≤ C0
j2d/ρmin2−2jH0

1 + |k − k′|
. (14)

2. There exists someC1, C2 > 0 such that for anyj ≥ 1, (G, γ) ∈ Ij and anyk ∈ (Zd)

C1j
−d/ρmin(E0)2−2jH0 ≤ E(|ckj,G,γ |

2) ≤ C2j
d/ρmin(E0)2−2jH0 . (15)

Proof A.2 We use the Meyer wavelet basis whose Fourier transform is compactly supported with0 6∈ supp(ψ̂(G)).
One has for anyj ≥ 1, (G, γ) ∈ Ij and for allk ∈ Zd

ckj,G,γ =

∫

Rd

ei2
−D∗

j,G,γ kξψ̂(G)(2−D
∗
j,G,γ ξ)ρE0(ξ)

−H0−d/2dŴ (ξ).
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This formula implies that (setζ = 2−D
∗
j,G,γ ξ)

E(|ckj,G,γ |
2) = 2jTr(Dj,G,γ )

∫

Rd

|ψ̂(G)(ζ)|2ρE∗
0
(2D

∗
j,G,γ ζ)−2H0−ddζ .

Since2(j−2)d ≤ Tr(Dj,G,γ) ≤ 2jd, using Lemma 5.3 and the inequalitiesC12
j ≤ |2D

∗
j,G,γ ζ|D0 ≤ C22

j imply
that

E(|ckj,G,γ |
2) ≥ C12

−2j(H0+d)2jd
∫

Rd

|ψ̂(G)(ζ)|2|ζ|−2H0−d
D∗

0
(1 + log(|ζ|D∗

0
) + j)−d/ρmin(E0)dζ ,

and

E(|ckj,G,γ |
2) ≤ C22

−2j(H0+d)2jd
∫

Rd

|ψ̂(G)(ζ)|2|ζ|−2H0−d
D∗

0
(1 + log(|ζ|D∗

0
) + j)d/ρmin(E0)dζ .

We then proved inequalities (15).
To prove inequality (14) remark that for anyℓ ∈ {1, · · · , d}

(kℓ − k′ℓ)E(ckj,G,γc
k′

j,G,γ) =

∫

Rd

(kℓ − k′ℓ)e
i2

−D∗
j,G,γ (k−k′)ξ|ψ̂(G)(2−D

∗
j,G,γ ξ)|2ρE0(ξ)

−2H0−ddξ.

Setζ = 2−D
∗
j,G,γ ξ and integrate by parts with respect toζℓ. Hence

(kℓ − k′ℓ)E(ckj,G,γc
k′

j,G,γ) = 2jTr(Dj,G,γ )

∫

Rd

(kℓ − k′ℓ)e
i(k−k′)ζ |ψ̂(G)(ζ)|2ρE0(2

D∗
j,G,γ ζ)−2H0−ddζ.

Recall that the pseudo–norm may be assumed to beC∞(Rd \ {0}). Sinceψ̂(G) is compactly supported

(kℓ − k′ℓ)E(ckj,G,γc
k′

j,G,γ) = −2jTr(Dj,G,γ)
∫

Rd e
i(k−k′)ζ ∂

∂ζℓ

(
|ψ̂(G)(ζ)|2ρE0(2

D∗
j,G,γ ζ)−2H0−d

)
dζ

= −2jTr(Dj,G,γ)
∫

Rd e
i(k−k′)ζ

(
∂
∂ζℓ

|ψ̂(G)(ζ)|2
)
ρE0(2

D∗
j,G,γ ζ)−2H0−ddζ

−2jTr(Dj,G,γ)
∫

Rd

ei(k−k′)ζ |ψ̂(G)(ζ)|2

ρE0(2
D∗

j,G,γ ζ)2H0+d+1

(
2γℓ ∂

∂ζℓ
(ρE0)(2

D∗
j,G,γ ζ)

)
dζ .

An approach similar to the proof of inequalities (15) yields

2jTr(Dj,G,γ)

∣∣∣∣
∫

Rd

ei(k−k
′)ζ

(
∂

∂ζℓ
|ψ̂(G)(ζ)|2

)
ρE0(2

D∗
j,G,γ ζ)−2H0−ddζ

∣∣∣∣ ≤ Cjd/ρmin(E0)2−2jH0 . (16)

Further, differentiate the homogeneity relationship satisfied byρE∗
0

and deduce that for anya > 0 andz ∈ Rd

aE
∗
0 (
−−→
grad(ρE∗

0
))(aE

∗
0 z) = a(

−−→
grad(ρE∗

0
))(z) . (17)

For anyy ∈ Rd \ {0}, let r = |y|E∗
0
. Then setj = log2(r) and remark that|Θ|E∗

0
= |2−jE

∗
0 y|E∗

0
∈ [1/2, 2] and

hence thatΘ belongs to the compact setC(1/2, 2, E∗
0) = {θ, |θ|E∗

0
∈ [1/2, 2]}. Relationship (17) applied with

a = 2j andz = Θ then implies

2D
∗
j,G,γ

−−→
grad(ρE∗

0
))(2jE

∗
0 Θ) = 2−jE

∗
0+D∗

j,G,γ 2j(
−−−−−−−→
grad(ρE∗

0
)(Θ))

Take the norm of each member of the equality and deduce that for anyy ∈ Rd \ {0} satisfyingj = log2 |y|E∗
0

|2D
∗
j,G,γ

−−→
grad(ρE∗

0
))(y)| ≤ C2j|2−jE

∗
0+D∗

j,G,γ |

whereC = supΘ∈C(1/2,2,E∗
0 ) |

−−→
grad(ρE∗

0
)(Θ)|.

Lemma 2.1 of [7] and the definition ofj imply that

|2D
∗
j,G,γ

−−→
grad(ρE∗

0
))(y)| ≤ C2j|j|d/ρmin ≤ C|y|∗E0

| log(|y|∗E0
)|d/ρmin(E0)
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Set nowy = 2D
∗
j,G,γ ζ. One has

|2D
∗
j,G,γ (

−−→
grad(ρE∗

0
))(2D

∗
j,G,γ ζ)| ≤ C|2D

∗
j,G,γ ζ|∗E0

| log(|2D
∗
j,G,γ ζ|∗E0

)|d/ρmin(E0) ≤ C2j(j+| log(|ζ|∗E0
|)|)2d/ρmin(E0)|ζ|∗E0

.

Since for anyℓ ∈ {1, · · · , d}

2γℓ

∣∣∣∣
(
∂

∂ζℓ
(ρE∗

0
)

)
(2D

∗
j,G,γ ζ)

∣∣∣∣ ≤
∣∣∣2D∗

j,G,γ (
−−→
grad(ρE∗

0
))(2D

∗
j,G,γ ζ)

∣∣∣

it yields the following inequality

∣∣∣∣∣2
jTr(Dj,G,γ)

∫

Rd

ei(k−k
′)ζ |ψ̂(G)(ζ)|2

ρE0(2
D∗

j,G,γ ζ)2H0+d+1

(
2γℓ

∂

∂ζℓ
(ρE0)(2

D∗
j,G,γ ζ)

)
dζ

∣∣∣∣∣ ≤ 2−2jH0 |j|2d/ρmin(E0) .

(18)

Combining inequalities (16) and (18) then yield inequality(14).

Remark now that

Lemma A.3 Let D0 an admissible diagonal anisotropy satisfyingTr(D0) = d and Γj(D0) = {k ∈
Z2, |k|D0 ≤ j2j}. There exists someC1, C2 > 0 such that

C1j
d2jd ≤ card(Γj(D0)) ≤ jd2jd .

Proof A.4 Indeed, since the norms| · |ℓ1 and| · |ℓ∞ on Rd are equivalent, there exists someC1, C2 > 0 such
that

C1 max
ℓ

|kℓ|
1/λℓ ≤ |k|D0 ≤ C2 max

ℓ
|kℓ|

1/λℓ .

The conclusion follows since it is quite clear since that

card{k,max
ℓ

|kℓ|
1/λℓ ≤ j2j} = card{k,max

ℓ
|kℓ| ≤ jλℓ2jλℓ} =

∏

ℓ

(
jλℓ2jλℓ

)
= jd2d

using the fact thatλ1 + · · · + λℓ = d.

The proof of Proposition 5.10 is then based on the two following results which are a slight modification of
Theorem II.1 and II.7 of [10]. We recall the proofs for completeness.
We denote

cp = E(|gj,G,γ |
p) .

We can thus state a central limit theorem for the sequence(gkj,G,γ)j∈N,(G,γ)∈Ij,k∈Γj
which is a slight modified

version of Lemma II.4 of [10]

Lemma A.5 Let p ∈ (1,+∞) and(gkj,G,γ) the Gaussian sequence defined by (7). Then almost surely when
j → ∞

2−nj


∑

k∈Γj

|gj,G,γ|
p


→ cp .

Proof A.6 By Lemma A.1 the sequence(gkj,G,γ) is weakly correlated in the sense of [10]–that is satisfies the
assumption (H) of [10]. We follow the main line of [10] and first give an upper bound of

E

∣∣∣∣∣∣
∑

k∈Γj

(|gj,G,γ|
p − cp)

∣∣∣∣∣∣

2

.
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Using the same approach that [10] (see Lemma II.3) we get that

E

∣∣∣∣∣∣
∑

k∈Γj

(|gj,G,γ|
p − cp)

∣∣∣∣∣∣

2

≤ Cjc2p
∑

(k,k′)∈Γ2
j

1

(1 + |k − k′|)2
,

with Cj = j2d/ρmin(E0) by weak correlation of the wavelet coefficients. Setℓ = k − k′. Hence

∑

(k,k′)∈Γ2
j

1

(1 + |k − k′|)2
≤
∑

k∈Γj

∑

ℓ∈2.Γj

1

(1 + |ℓ|)2
≤ Cjj2

j
∑

ℓ∈2.Γj

1

(1 + |ℓ|)2

Remark now that

∑

ℓ∈2.Γj

1

(1 + |ℓ|)2
≤
∑

ℓ∈2.Γj

1

(1 + |ℓ|D0)
2/ρmax

≤ jd−δ2j(d−δ)

with δ = 2/ρmax(E0) > 0 by comparison with an integral and Proposition 2.3 of [8].
Thereafter the end of the proof is exactly the same than in Theorem II.1 of [10].

In an analogous way, one can give a result on the asymptotic behavior of

1√
| log(nj)|

(
max
k∈Γj

|gj,G,γ |

)
.

Lemma A.7 Almost surely

0 < lim inf
j→∞

1√
| log(nj)|

(
max
k∈Γj

|gj,G,γ |

)
≤ lim sup

j→∞

1√
| log(nj)|

(
max
k∈Γj

|gj,G,γ|

)
<∞

Proof A.8 The proof is exactly the same than these of Lemmas II.8 and II.10 of [10].
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[25] ÔKSENDAL, B.,ZHANG, T. (2000), Multiparameter fractional Brownian motion andquasi-linear sto- chastic partial

differential equations.Stoch. Stoch. Rep.71 141–163.
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