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We study the sample paths properties of Operator scalingskaurandom fields. Such fields are anisotropic

generalizations of self-similar fields. Some characterjatoperties of the anisotropy are revealed by the regu-
larity of the sample paths. The sharpest way of measuringggmess is related to these anisotropies and thus
to the geometry of these fields.
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1 Introduction and motivations

Random fields are now used for modeling in a wide range of sfieareas including physics, engineering,
hydrology, biology, economics and finance (see [29] andiiBdgraphy). An important requirement is that the
data thus modelled present strong anisotropies whichftiverbave to be presentin the model. Many anisotropic
random fields have therefore been proposed as natural miodedsious areas such as image processing, hy-
drology, geostatistics and spatial statistics (see, fang®e, Davies and Hall ( [14]), Bonami and Estrade ( [4]),
Benson and al.([3])). Let us also quote the example of Lemgoan fields, deeply studied by Durand and Jaffard
(see [16]), which is the only known model of anisotropic riftdctal random field. In many cases, Gaussian
models have turned to be relevant when investigating amigiat problems. For example the stochastic model
of surface waves is usually assumed to be Gaussian and igssugly accurate (see [21]). More generally
anisotropic Gaussian random fields are involved in manyrstbencrete situations and then arise naturally in
stochastic partial differential equations (see, e.g.aBa[13], Mueller and Tribe [22fbksendal and Zhang [25],
Nualart [24]).

In many situations, the data present invariant featuressacthe scales (see for example [1]). These two
requirements (anisotropy and self-similarity) may seentraalictory, since the classical notion of self-simibarit
defined for a random fieldX (z)},cgrs ONRY by

(X (a2)}pera = {a™ X (2)} pepa, (1)

for someH, € R (called the Hurst index) is by construction isotropic and tieen to be changed in order to fit
anisotropic situations. To this end, several extensiorsetifsimilarity property in an anisotropic setting have
been proposed. In [19], Hudson and Mason defined operafesigglar processe$X (t) }+cr With values inR<.
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2 M.Clausel and B.Vedel: Two optimality results about sargath properties of OSGRF

In [20], Kamont introduced Fractional Brownian Sheets Wahsatisfies different scaling properties according
the coordinate axes. More recently, in [8] Biermé&, Meeaschand Scheffler introduced the notion of Operator
Scaling Random Fields (OSRF). These fields satisfy thevidatig anisotropic scaling relation :

(X (aP02)} epa = {00 X (2)} epa- 2)

for some matrixF, (called an exponent or an anisotropy of the field) whose &gjers have a positive real part
and some, > 0 (called an Hurst index of the field). The usual notion of séffilarity is extended replacing
usual scaling (corresponding to the cad®) = Id) by a linear scalinginvolving the matrixE, (see figure 1
below). It allows to define new classes of random fields witl geometry and structure.

E<(1) ?),Ae{1,~-~,10} EG _11),)\6{1,~-~,10} E:(é 192),)\6{1,---,10}

Fig. 1

Action of a linear scaling: — A\®x on the smallest ellipsis.

This new class of random fields have been introduced in ocderadel various phenomena such as fracture
surfaces (see [27]) or sedimentary aquifers (see [3]).heuantore in [8], the authors construct a large class of
Operator Scaling Stable Random Fields with stationaryeimants presenting both a moving average and an
harmonizable representation of these fields.

In order to use such models in practice, the first problem igtover the parameteid, and £, from the
inspection of one sample paths. Even if we consider the modgitioned above in the Gaussian case, the
problem of identification of an exponent of self-similarityy (which in some case is not unique) and of an Hurst
index Hy is an open problem.

The first step in the resolution of this question involves @dentification of some specific features of expo-
nents and indices which can be recovered on sample paths.p@per is a first step : we will prove that from
the regularity point of view these exponents and Hurst iesligatisfy what we call optimality properties. More
precisely, we prove that (see Theorems 4.3 and 4.2), the hhalesx H, maximizes the local critical exponent of
the field in specific functional spaces related with the anigy matrix £, among all possible critical exponents
in general anisotropic functional spaces.

Therefore, the results of the present paper open the wayetmtlowing strategy to recover the Hurst index.
One first have to consider a discretized version of the sdt pbasible anisotropies. In each case an estimator of
the critical exponent related with these anisotropies bdwetgiven. Therefore, one has to locate the maximum
of all these estimators—which can be based on anisotropidratic variations—and to identify the corresponding
values of the anisotropy. The problem can thus be reforrdiatterms of finding extreme values of some multi-
variate Gaussian series related to the set of discreteteop$es (see [17,28] for some references about extremes
and [32] for some reference about extremes of multivaraties). The study of these estimators from a statistical
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point of view will be the purpose of a forthcoming paper.

Our two optimality results come from sample paths propsrtiethe model under study in an anisotropic
setting. This approach is natural : In [20], Kamont studige tegularity of the sample paths of the well-known
anisotropic Fractional Brownian Sheet in anisotropicddilspaces related to Fractional Brownian Sheet. More-
over, some results of regularity in specific anisotropidded spaces related to matrk¥ have already be estab-
lished for operator scaling self-similar random fields (@hmay be not Gaussian) in [7] or in the more general
setting of strongly non deterministic anisotropic Gaussields in [36]. We then extend already existing results
by measuring smoothness in general anisotropic spacesnessarily related to the exponent matffix of the
field.

This paper is organized as follows. In Section 2, we brieftalesome facts about Operator Scaling Random
Gaussian Fields (OSRGF) and describe the constructior] of fBe model. In Section 3, we present the differ-
ent concepts used for measuring smoothness in an anisofeiping and especially anisotropic Besov spaces.
Section 4 is devoted to the statement of our optimality agdleity results. Finally, Section 5 contains proofs
of the results stated in Section 4.

For any matrix) let us define

puin(M) = | min, ([Re(N)]). puas(M) = | maxc (|Re(3)).

whereSp(M ) denotes the spectrum of mati.
For any reak > 0, ™ denotes the matrix
M*log"(a
aM = exp(M log(a)) = Z ki%()
k>0 ’

In the following pages, we denot&" the collection of matrices af/;(IR) whose eigenvalues have positive real
part.

2 Presentation of the studied model

The existence of operator scaling stable random fieldsjglrahdom fields satisfying relationship (2), is proved
in [8]. The following Theorem (Theorerm1 and Corollaryt.2 of [8]) completes this result by yielding a practical
way to construct a Operator Scaling Stable Random Field @3Rh stationary increments for arfy, € £+
andH, € (0, pmin(Ep)). We state it only in the Gaussian case having in mind the proldf the estimation of
the Hurst indext, and the anisotropyy.

Theorem 2.1 Let £, be in£T and p a continuous function with positive values such that forzall¢ 0,
p(z) # 0. Assume that is Ef-homogeneous that is :

Va > 0, V¢ € RY, p(aog) = ap(€).

Then the Gaussian field

Tr(Eq)

Xyfo) = [ (@< = ple) o E ), @

exists and is stochastically continuous if and onl¥fif € (0, pmin(Eo)). Moreover this field has the following
properties :

1. Stationary increments :

Vh € R, {Xp(z+h) — X,(h )}xe]Rd L {Xp(m)}weRd
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4 M.Clausel and B.Vedel: Two optimality results about sargath properties of OSGRF

2. The operator scaling relation (2) is satisfied.

Remark 2.2 The assumption of homogeneity on the functiois necessary to recover linear self-similarity
properties of the Gaussian fieldX,(z)},cre. The assumption of continuity op allows to ensure that the
constructed field is stochastically continuous.

Remark 2.3 In general, the couplgy, Ey) of an OSRF is not unique. Indeed A, andE, are respectively
an Hurst index and an exponent of the OSR¥F(z)},.cra, then for any\ > 0 so doAH, and\Ej.
Uniqueness of the Hurst ind€¥%, can be recovered by choosing the following normalizationdg: T'r(Ey) =
d. However, even under this assumptidfy, is not necessarily unique. Nevertheless remark that tHeliago-
nalizable real part of the matrik, is unique (see Section 5.2 for a definition). We refer to Ré&n2at0 of [8]
for more details on the structure of the set of exponents @aRF.

Remark that Theorem 2.1 relies on the existenc{phomogeneous functions. Constructions of such func-
tions have been proposed in [8] via an integral formula (Téen2.11). An alternative construction which is
more fitted for numerical simulations can be found in [12].

3 Anisotropic concepts of smoothness

Our main goal here is to study the sample paths propertiebigfctass of Gaussian fields in well adapted
anisotropic functional spaces. This approach is quiterab{see [7, 20]) since the studied model is anisotropic.
To this end, suitable concepts of anisotropic smoothnesseseded. The aim of this Section is to give some back-
ground about the appropriate anisotropic functional spadisotropic Besov spaces. These spaces generalize
classical (isotropic) Besov spaces and have been studfat@tlel with them (see [5, 9] for a complete account
on the results presented in this Section. The definition &fadiropic Besov spaces is based on the concept of
pseudo-norm. We first recall some well known facts about gieerorms which can be found with more details

in [26].

3.1 Preliminary results about pseudo-norms

In order to introduce anisotropic functional spaces, asarpic topology ofR? is needed. We need to introduce
a slight variant of the notion introduced by Lemarie in [28® the one used in [26] is fitted to the case of discrete
dilatations.

Definition 3.1 Let £ € £*. A function p defined onR? is a (R?, ) pseudo-norm if it satisfies the three
following properties :

1. pis continuous oY,
2. pis E-homogeneous.e. p(az) = ap(r) Vr € RY, Va > 0,

3. pis strictly positive orR? \ {0}.
For any(R%, F') pseudo-norm, define the anisotropic sph&fe,) as

S§(p) = {z € R% p(x) = 1}. 4)
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Examples of spheres (p).

Fig. 2

Proposition 3.2 For all z € R\ {0}, there exists an unique cougle §) € R* x S (p) such thatr = r04.
MoreoverS2 (p) is a compact oR¢ and the map

(r,0) — x = rFop

is an homeomorphism frof. x S5 (p) to R\ {0}.
The term "pseudo-norm” is justified by the following Progasi :
Proposition 3.3 Letp a (R?, E) pseudo-norm. There exists a constant- 0 such that

p(z +y) < Clp(z) +p(y), Vz,yeR:

The following key property allows to define an anisotropipdtngy onR¢ based on pseudo-norms and then
anisotropic functional spaces :

Proposition 3.4 Let p; and p, be two(R?, E) pseudo-norms. They are equivalent in the following sense :
There exists a constant > 0 such that

1
5P1(33) < pa(x) < Cpy(x), VreR™L
In particular, any topologies oR“ related with two differentR?, ) pseudo-norms are equivalent.

3.2 Anisotropic Besov spaces

Let E be a matrix with positive real part of the eigenvalues. Lebua (R¢, E*)-pseudo-norm, denoted by z-.
Forz, € R% andr > 0, By.,. (z0,7) denotes the anisotropic ball of centgrand radius-

By . (xo,7) = {x € R, |x — g

Ex < ’I“}.

Definition 3.5 Lety € S(R?) be such that
VF (&) = 1if [¢] - < 1,05 (&) = 0if ¢

Forj e N, let

e > 2.

VE(€) = vE(27IF ) —pE (270D ),
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M.Clausel and B.Vedel: Two optimality results about sargath properties of OSGRF
Then

35

7=0

is an anisotropic partition of the unity witthp(@ﬁ) C By, (0,277 \ By, (0,27
The anisotropic Besov spacBg’,q(Rd, E) are then defined as follows
Definition 3.6 Let0 < p,q¢ < c0,s € Rand

71).
11

B3 ,(24,5) anfw 19, g

Then

B; (RYLE) = {f € S'(RY),||f]

ngq(Rd,E) < +OO}

The matrixZ is called the anisotropy of the Besov spagks, R¢
In a more general way, iV € R, we define

E).

N (@R E) =
7=0
and

Z]NQJW”JC * w ||Lp(Rn)a

S
p,q,| log [N

(R%, E) = {f € S'(RY),

Remark 3.7 Let E € £ and|

. q,\log\N(Rd’E) < +OO}

a (R4, E*)-pseudo-norm. For any > 0, |
norm. Hence for any > 0, B, 4 (RY, )\E)

é* is a(R?, AE*)-pseudo-
B;,q(Rd, E).
So, without loss of generality, we assume in the sequelfhéE) = d.
As it is the case for isotropic spaces, anisotropic HolgecesC*(R?, E) can be defined as particular Besov
spaces.
Definition 3.8 Let s be inR and N € R. The anisotropic Holder spac€§(R?, E) andC‘log‘N(Rd, E) are
defined by
C°(RY, E) = B3, (RY,E) and Cj v (R, E) = B, 100~ (R% E).
Proposition 3.9 Let0 < s < pmin(E) @andN € R. Then
[f(z+h) — f()]
[/l Lo (may + sup sup (T );
Lo (Re) |h|p<1zeRd |h|E| 10g(|h|E)|N
and the norni| f|| 5+ o defined above are equivalent norm<’i |~ (R4, E).
oo, | log

Remark 3.10 Anisotropic Holder spaces admit a characterization bydidifferences under the general as-
in this special setting.

sumptions > 0. Here, we only need to deal with the cdse s < p..in(E) and have thus stated Proposition 3.9

Let us comment Proposition 3.9. Let< s < pmin(F) andN € R. A bounded functiory belongs to the
Holder spac€, v (R?, E) if and only if : For anyr € (0,1), © € Si(| - |r) andz € R
|f(x +7P0) -

()] < Cor®|log(r)| ™

Copyright line will be provided by the publisher
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for someCy > 0.
Hence, a functionf belongs to the Holder spaccq?’loglN(Rd,E) if and only if its restrictionfo along any
parametric curve of the form

r>0—rfe,

with © € S%(| - |g) is in the usual Holder spack,  ~(R) and||fel cs. n(®) does not depend of. Roughly

speaking, the anisotropic “directional” regularity in aayisotropic “direction” has to be larger thanin other
words, we replace straight lines of isotropic setting byesmwith parametric equation> 0 — r*© adapted to
anisotropic setting.

15¢ 1 15}
1t 1 1t
05h 1 05t
L ‘ ‘ ‘ . . ‘ . i
2 45 4 45 0 05 1 15 2

Fig. 3

icli ; . . 1 -1
"Isotropic lines” and "anisotropic lines” in the cage= (1 1 )

4 Statement of our results

First in Section 4.1, we state our optimality results andabirize in some sense an anisotr@fyand an Hurst
index of the fieldH,. These results come from an accurate study of sample patipenies of the OSRGF
{Xp,.Ho () }zera IN @nisotropic Besov spaces (see in Section 4.2). But befoyestatement let us give some
definitions and notations.

In this sectionp, denotes gR?, Ey) pseudo-norm{ X, ,(z)},cr: is the OSRGF with exponert, and
Hurst indexH,, defined by (3).

We assume - without loss of generality - that any anisotrdpthe field £, and any anisotropys of the
analyzing spaceB;  (R?, E) satisfyT'r(Ey) = Tr(E) = d. Let us denote by the set of matrices af/4(R)
satisfyingTr(E) = d whose eigenvalues have positive real parts.

Our results are based on local sample path properties ofahestan field X, m, ()} cpre. We first need
some definitions.

Definition 4.1 Let E € £ be a fixed anisotropyp, ¢, s) € (1, +oc]? x (0, +o0c) andf € LY (R?).

loc

The functionf belongs taBg', ,,.(R?, E) if for any ¢ € D(R?), the functiony f belongs taBy' | 1OglN(JRd, E).
The spaceaB;‘_q_‘log‘N_loc(Rd,E) can be defined in an analogous way for apyq, s, N) € (0,+00]? x

(0,400) x R.
The anisotropic local critical exponentin anisotropic 8espaces3; ,(R?, E) ofthe OSRGR X . 1, (%)} yera
is then defined by

aXpEO,HUJOC(Evpa q) = Sup{sa XPEO,HO(') € B;,q,loc(Rdv E>} :

In the special case = ¢ = oo, this exponentis also called the anisotropic local crigsg@onent in anisotropic
Holder spaces of the OSRQE .11, () },eres @nd is denoted by x Joc(E).

PEO,HO
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8 M.Clausel and B.Vedel: Two optimality results about sargath properties of OSGRF

4.1 Two optimality results
We get a first general result :

Theorem 4.2 Let(p, q) € (1, +oc]? and £, a matrix whose eigenvalues have positive real parts. Theost
surely

aXpEO,HO,loc(E()vpa q) = Sup{aXpEO,HO,loc(E;pv Q>a E e 5d+7 E CommUting WithE()}'

that is the valueZ = E, maximizes the anisotropic local critical exponent of theRGE { X, 1, (7) }zere
among all possible anisotropic local critical exponent inigotropic Besov spaces with an anisotrafgycom-
muting withE.

Remark The assumptionZ and £y are commuting’ implies that the two matricEsand D, of Theorem 4.2
admit the same spectral decomposition. Hence, in fact weeprthat any anisotropy matrik, maximize the
critical exponent among matrices having the same speat@rdposition. Thus, in the general case dimension
we implicitly assumed that the spectral decomposition @nopy matrix is well-known.

In dimension two, we have a stronger optimality result atamisotropy matrixzy and Hurst index,. Note,
that this case is interesting when dealing with anisotropages.

Theorem 4.3 Let(p, q) € (1,+00]? and E, a matrix whose eigenvalues have positive real parts. Theost
surely

aXpEO,HOJOC(EOvpa q) = Sup{aXpEO,HUJOC(Eapv Q>a E e 53_}
In fact, Theorem 4.3 contains two main results :

e The critical exponent of the fielflX,, rm,(7)},cra in anisotropic Besov spao@;,q(Rd, Ey), and more
generally in anisotropic Besov spaBg,q(Rd, Ey) equals the associated Hurst indéy.

e Any anisotropyFy of the field { X, w,(z)},cre maximizes this critical exponent among all possible
anisotropy analysis matrix. In fact, the 'best way’ of me@sgy smoothness of the fieldX . 1, () },era
is to measure smoothness along the anisotropic 'directions0 — 0 © related to the genuine geometry
of the field.

4.2 Sample paths properties of the OSRGR X, 1, () }.ere IN anisotropic Besov spaces

In order to prove Theorem 4.2 and Theorem 4.3, we investitpgtdocal regularity of the sample path of the
field { X, #,(7)}.cre IN general anisotropic Besov spaces. But before any stateme first need some
background about the concept of real diagonalizable parsguare matrix. This notion is based on real additive
Jordan decomposition of a square matrix (see for e.g. to Leehtchap 9 of [18] where a multiplicative version
of Proposition 4.4 is given) :

Proposition 4.4 Any matrixM of M,(R) can be decomposed into a sum of three commuting real matrices

M=D+S+N,

whereD is a diagonalizable matrix if/4(R), S is a diagonalizable matrix in/,(C) with zero or imaginary
complex eigenvalues, and is a nilpotent matrix. MatrixD is called the real diagonalizable part dff, S its
imaginary semi-simple part, andl its nilpotent part.

Now we are given tw@ommuting matricesEy, E of Ej. Let Dy (respD) be the real diagonalizable part of
matrix Fy (respFE). Since matriced’, and E are commuting, so do matricé% and D. Furthermore, matrices
Dy andD are diagonalizable in/,;(IR) then they are simultaneously diagonalizable. Up to a chahbasis, we
may assume thdd, and D are two diagonal matrices. More precisely, suppose that

A0 Tdy, 0 MIdg, 0
Dy = ’ D = ’ (5)
0 A0 Tdy 0 Amldg

m m

Copyright line will be provided by the publisher
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with

>

A
:)” <. < _(1)
>‘m >‘1

(6)

SinceTr(Ey) = Tr(E) = d, one has\,,/\%, < 1.

m
The regularity results about sample path of the fighd,, r,(7)},cre are summed up in the following
theorem.

Theorem 45Let]l < p < +o00, 1 < ¢ < +oo. Almost surely the anisotropic local critical exponent
ax, . my.loc(E, p, q) in anisotropic Besov spacés;  (R?, E) of the OSRGR X, i, ()} ,era Satisfies

A’H’L
o < Ho.

m

aX,,EO,HO,lOC(E7pa q) = HO

In particular, in the special cas& = Fy, ax,, HOJOC(E,p, q)Ho.
o

In other words Theorem 4.5 asserts that when one measuralsrégularity of the sample paths along
anisotropic directions different from those associatedricanisotropy of the field?y, one loses smoothness.
The further the anisotropic direction of measure from theujige anisotropic direction associated to the field are,
the smaller the anisotropic local critical exponent is. sTéuisotropic local critical exponent can take any value
in the rang€0, Hy).

The special casp = ¢ = +oc yields us the following result about anisotropic Holdari@gularity of the
sample paths.

Corollary 4.6 Almost surely the anisotropic local critical exponent aé #ample paths dfX ., #,(z)}.era
in anisotropic Hblder spaces equaIHO% and is always lower thaii{,. In particular, if E = Ej this critical
exponent equals the Hurst indék,. '

Remark 4.7 This estimate on anisotropic local critical exponent waeady known in the cas€ = Ej
(see [7]).

Theorem 4.5 allows us to obtain regularity results whickergtthose proved in the cage= ¢ = ~o in
the usual isotropic setting. Since matridégandd are commuting, we can apply the above result to the case
E = Id. Note that in this casa?, = pmax(Eo). We obtain the following Proposition :

m
Proposition 4.8 Almost surely the local critical exponent of the sample path{ X, 1, (%)} cre in clas-
sical Besov spaces equdﬁm.
In particular, forp = ¢ = oo, almost surely the local critical exponent of the samplépat{ X, , 1, (7)},cpre
in classical Hlder spaces equaﬁ()m.

Remark 4.9 In the special casg = ¢ = oo, we recover results about classic Holderian regularityaaly
established in Theorem.4 of [8]. Recall that Theoren.4 of [8] is based on directional regularity results
about the Gaussian fielflX,,, .x,} and comes from an accurate estimate of the variogram ,, (h) =

; o

E(| X, .m, (h)[?) along special directions linked to the spectral decomjawsiif matrix E,. Here our approach
is based on wavelet technics.

5 Complements and proofs

5.1 Role of the real diagonalizable part of the anisotropy of the analysing spaceﬁ;ﬂ(Rd, E)

We will first prove that measuring smoothness in the genezabB spaceB;q(Rd, E) may actually be deduced
from the special case where matfikis diagonalizable. To this end, we show the following embeg@roperty:

Copyright line will be provided by the publisher



10 M.Clausel and B.Vedel: Two optimality results about sknmath properties of OSGRF

Proposition 5.1 Assume thaf; € Ej and B, € 5:[ have the same real diagonalizable pdrt For any
a > 0andany(p, q) € (1,+00]? one has,

B~ . (Rd,El)@Bg,q(Rd,Eg)%B"‘ . (R E).

p,a;|log | Pmin(P) .| log | Pmin(P)

As a direct consequence, we obtain Corollary 5.2. Note thiatrésult does not depend on the studied Gaus-
sian field but of the involved functional spaces. Hence, &sdoot give any information about the anisotropic
properties of the field.

Corollary 5.2 The anisotropic local critical exponent
aX,lOC(E7p) Q) = sup{s > 0; X() € B;,q,loc(Rdv E)},

of any Gaussian field X (x)},cr« in anisotropic Besov spacds; ,(R?, E) depends only on the real diagonal-
izable part ofE.

Proof of Proposition 5.1 relies on the following lemma :

Lemma 5.3 Assume thaf; and £, are two matrices of* having the same real diagonalizable pabt
Then there exists two positive constantsindc, such that, for ale € R9,

)_ Pmiz(D) < |x )pmﬁ(D) .

1]zl gy (1 + |log(|z] =) By < colz|py (1 + [log(|x|ky)

Proof 5.4 Using polar coordinates associateddp, one has, for: ¢ R,
x=rP10,(r,0) € RY x So(E}).

DenoteF; = F1 — D, F» = FE> — D and remark that those two matrices have only pure imagiriggnealues.
By Lemma2.1 of [8], it comes that for any > 0

By = |rP2p=Pp=ta Dyl g

|

E3

< 7“|7“7F2 rf1e

k3

1 1
S Cr max(|7"_F2* 7"F1* O] Pmin(D)—¢ R |’[“_F2* 7"F1* O] Pmax D)+ )

< Crmax(||r—F2rf
d—1
< Cr(1+ [log(r)]) TP

d

< Cr(1 + |log(r)|) pmin ™).

1 1
Pmin(D)—¢ ||r_F2 rE1 || Fmax (DY T2 )

Using two anisotropic Littlewood-Paley analysis ass@datespectively to matrices;, F» and D and the
lemma above we deduce the following embedding stated ind3itign 5.1 :

B . (R Ey) — BY (RY, Ey) — B . (RYE).

p,q,—| log ‘Pmin(D) P,q,| 10g|ﬂmin(D)

foranya > 0,1 < p,q < 4o0.
Indeed, for any € {1, 2}, let (wfi)jez an anisotropic Littlewood-Paley analysis of Besov sp@%;([&d, E;).
By definition

supp(¥F) C {€,1 < |¢

for j € {1,2}. Then there existg € Z such that for any € Z, one has

By <4}

supp(¢72) € {&27! < |¢|p; <27}
j+jo+m log, (4)
c U {6,271 < |¢|g; <21}

l:j—jo—md)(m log, ()
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Hence

Jtdot,—Lpy loga (4)
E E oy
V() = ) Z [ F©),
l:j*jO*m log, (J)

which implies

J+jo+ 5Ly loga (4)

> 146572 % (W7 * f)| e

l=j—jo—m log, ()

IN

1 * 472 Lo

J+jo +m log, (j)

< Il > 1™ * fllos

l:j—jo—m log, ()

1f %9 :

Then we can give the following upper bound
JE1 j Pmm( )

jJrjOer log, (7)

J 2,», T 9isq
Z If e wi?ler < 30— > 1 %)
- ijm Pmin (D) j=1 ijIllrl(D) I=j~jo— —"(5y logs (5)
J+jo+ Ly logy () ; I+jot+ 4y logy (1) 0isg
< > 1f * ™ e >
I=1 J=l—jo— 5y logy (1)
J+jo+logy(J)
< Y I e logy (D) < +oo.

=1

Let us now assume thdt— oo which yields the inclusion

2) — 3 1)
BS (RY E B® R4 E
p,q, ‘ log ‘ /’m]n(D)

PermutingE; andE, yields the other inclusion.

5.2 Local regularity in anisotropic Besov spaces of the studd field

In the previous section, we proved that we can restrict audysto diagonal Besov spaces. This point is crucial
for the proof of the regularity results enounced in Sectiomdeed it allows us to use tools that are only defined
in the diagonal case, as anisotropic multi-resolutionysisland anisotropic wavelet bases.

The aim of the following subsection is to recall the conginre of these wavelet bases.

5.2.1 Orthonormal Wavelet bases of (diagonal) anisotropispaces

In this section, we assume that the anisotrépgf the space is diagonal (with positive eigenvalues). Warass
A1 0

thatD = and - as it is the case for general anisotropic Besov spabesFt(D) = d. Let us

0 Ad
first recall the definition given by Triebel in [35] of an anigzpic multi-resolution analysis.
Let{V;,j > 0} be a one-dimensional multi-resolution analysig€.8fR) and let us denote by’ (resp.,)™)
the corresponding scaling function (resp. wavelet fumjtio
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12 M.Clausel and B.Vedel: Two optimality results about sknmath properties of OSGRF

Notation 5.5 We denote by{ F, M }¢" the set
{FvM}d* = {F,M}d\{(F, aF)}
Forj € N, we define the sal/ (D) of { F, M }¢ x N% in the following way.
o If j =0, IO(D) - {((Fv 7F)7(0a"' ,0))}

e If j > 1, I7(D) is the set of all the elements’, ) with G € {F, M}? andy € N? such that for any
re{l,---,d}:

If G, =F,v =[— DAl
If G'r = M; [(] - 1))\7'] < Tr < [.7)\,]
Finally, for j € Nand(G,~) € I/(D), we will denote byD;  , the matrix defined by
71 0
Djan = .
0 Vd
Finally, let us define the family of wavelets as follows. Fa N, (G,v) € I/(D) andk € Z%, we set

‘IlfG’v(m) — (¢(G))(2Dj,c,wm —k),
with
YD =tpg, @ - @Yg, -

The anisotropic wavelet bases yield a wavelet charactemisaf anisotropic Besov spaces ( [34] and [35], The-
orem>5.23).
Tr(Dj G,~)

Theorem 5.6 1. The family{Qf \I/jGﬁ, jEN, (G,y) e /(D) ke Zd} is an orthonormal ba-
sis of L2(R?).

2. Let(\If{%’G’W)jeN,(GW)GU(D),kezd be the family constructed froghz and,; Daubechies wavelets with, for
someu € N,

Yrp € CYR), ¥ € C*(R).

Let0 < p,q¢ < oo ands € R. There exists an integer(s, p, D) such that ifu > wu(s,p, D), for any
tempered distributiorf the two following assertions are equivalent

@) f € B; (R, D),
() f =3 ckg Whe  with

Z 2i(s=$)a <Z |c§7cﬂ|p> < +o0,

3,Gy k
the convergence being &/ (R?).
The above expansion is then unique and

k _ Tr(Dj,c~) gk
Ciay =< f,2 e \Ijj7G7’Y >

Remark 5.7 An analogous result is stated ( [35], Theorér4) replacing Daubechies wavelets by Meyer
wavelets. In that case, = +oo.

We now prove regularity results about the sample pathXof,,  u,(z)}.cr« based on wavelet characteriza-
tion of Besov spaces.
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5.2.2 Local regularity of the field { Xz, 11, ()} ,cra in anisotropic Besov spaces; ,(R?, D)

Assume that we are given a Gaussian field of the forr{ 8y, #, (¢)}.era WhereEj is a matrix whose eigen-
values have positive real part afk} € (0, pmin(Eo))-
Definee on (0, +o00] as follows :e(p) = 1/2if p = 400, 0 otherwise. The aim of this section is to prove :

Proposition 5.8 Let1 < p < 400, 1 < g < 4o00. Then one has

1. Foranyf > 1/q+d/ pmin(Eo), almost surely, the sample path{of, 1, (%)} zepa belongs taB*’ (R4, Dy),

p,q,| log |3+6(P)+1 loc

2. For 8 = 1/q + d/pmin(Eo), almost surely, the sample path X, r,(7)},cre does not belong to
B (R4, Dy).

p,q,| log | A=) =1 loc

Adapting to our setting a result of [26], we first remark there exist€ > (R4 \ {0}) (R, Ey) pseudo-norms

Lemma 5.9 Let Ey be ad x d matrix with positive real parts of the eigenvalues. Lebe aC> function
compactly supported iR? \ {0}.The functiorp defined, forz € R4, by p(z) = / o(a=Pox)dais a (R, Ep)
pseudo-norm belonging @& (R? \ {0}). .

In [11], we proved that the sample path properties of the Gandield{ X, #,},crs do notdepend on the

chosen(R?, E) pseudo-norm. Thus, we assume from now that(fk& E,) pseudo-norm - |z, used in the
construction of the field X, 7, (2)},crs belongs taC> (R \ {0}).

Our results come from the series expansioXpf,  m, in a Meyer anisotropic wavelet basis (see Section 5.2.1
just above).

Denote for anyj € N, (G,~) € I;, cJ Gy

/()2:)0 Ho Z Z _] G ’y ,G,'y(x)v

J,G . |k| <294

Tr(D; k
=< Xy, 1y, 277 Pi6) Wk > as above. Thereafter set

and

X2 @ =3 D e @) ¥a, @)

7,G .y |k|>j2id

We will investigate separately the sample path propertieanisotropic Besov spaces of the Gaussian fields

(1) (1) .
X/)EO,HO anprE Ho . We first prove that

Proposition 5.10 Let (p, ¢) € (1, +00]%.

1. Almost surely, for any > 1/q + d/pmin(Eop), the sample path of the fie{dX,()lE)mHO (x)},ere belongs to
H
Bp727| log |B+e(p)+1 (Rdv Dy).
2. Almost surely, fof3 = 1/q + d/pmin(Eo) the sample path of the f|el{dX’(1) 1, (%) }zcre does not belong
H
to BI)Z Hogl B—e(p)—1 (R aD())‘
Proof 5.11 The proof uses several technics introduced in [10]. Set

k %.6n
S <L B 7
95,6y E(jcF  [2)1/? @)

foranyj € N, (G,7) € I,k € I;(Do) = {k € Z2, [k|p, < j2'}.
Let us distinguish the two casgs# oo andp = oco.
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14 M.Clausel and B.Vedel: Two optimality results about sknmath properties of OSGRF

If p # oo, the definition of the sequencgj’ﬁgﬁ) and Lemma A.1 imply that surely there exists saMeCs > 0
such that for any, G, v

1/p 1/p
Do lkanal? > (29/Pg 2 Ho/p j=d/pmin(Fo) =1 ni > dfenl” ; (8)
ker; 7 ker;
and
1/p 1/p
Z |C§,G’v|p < 022j/p2—2J’Ho/z)jd/pmm(Eo)-S-l ni Z |g;§7Gﬁ|p ) (9)
ker; J ker;

Lemma A.5 and inequalities (8),(8) then yield the requireslits for the casg < oco.
If p = oo, the definition of the sequen@fﬂﬁ) and Lemma A.1 imply that surely there exists sameCs > 0
such that for any, G, v

Coif 1/9— ) _ 1
sup |ck | > Cy27 2 Ho j1/2=d/pmin(Bo) =L [ gup |gk [ ] (10)
kel log(n;) ker,

and

Sup |} | < o2~ 1/ pan (o) ( sup |g§ia,wl> - (1)
J

log(n;) ker;

Lemma A.7 and inequalities (10), (11) then yield the reqilinesults for the cage = oc.

Proposition 5.8 can then be directly deduced from the fahovproposition :
Proposition 5.12 Almost surely, the sample path of the fiémf)ilﬂo (2)},era are B2 (RY, Ey) for any

p,q;loc
0< HO < HI < pmin(DO) — pmin(EO) .

Then, the sample path smoothnes§.Xf,,  ,(7)},cra in anisotropic Besov spaces of anisotrapy are those
of the field{ X\ ;. (#)}seme-
Proof 5.13 Using the transference results of [35] (see Theorem 5.28)taa usual embedding of isotropic
Besov spaces defined on bounded domains one remarks that
Cite(RY, Ey) C BE

loc p,q,loc(

RY, Ey) |

forany(p, q) € (1, +occ]? and any(s, ) € (0, +00)?. It then suffices to prove the result for= ¢ = cc.
Let now consided < H < H' < 1, > 0 andyp € D(RY). We may assume thatupp(p) C Bg,(0,1) =
{z,|z|g, <1} and0 < ¢ < 1. We denote by the random fieIdoXIS?El7HO. We want to give an upper bound of
|Y (z 4+ h) — Y (x)| for any givenz, h in Bg,(0,1).
Let us first remark that
Y(@+h) -Y(@) = ¥ ¥ de,wle@+h)—¢@)¥q, (x)
5G|kl 5o >329
+ 2 X Gaawelz+)( T (x+h) -5, (2)).
7,Gy |k|>j2id

Lete =1 — H'/pmin(Eo). Sincep € B¢, (R%) andz, h belong to the compact sé, (0, 1), Lemma A.7

00,00,loc

and the fast decay of the wavelets imply that almost surely

> oy +h) —e@)¥ ()

J,G |k gy >527

< |l gi-e S j1/2+d/pmin(Bo)g—iHo  § L
Boose (B, (0:1)) 5,Gy k| 5 2520 (1+|k—2P3.G v )M
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for someM > 0.
Remark now that

|k|E0 Zij > 27 > |m|E0
Then there exists some> 0 such that forj sufficiently large and any in Bg, (0, 1)
|k — 2Pser| > [k|°/2

Then

X Y GoyWe@+h) - <P(93))‘I’§,G,y(fﬂ)‘

5.G k| g > 20
< |h|17€HQOHB&;ZO(BEO(O,I)) Z j1/2+d/2ﬂmin(E0)27‘7H0 2 W < C|h|17€ < C|h|go
: 7,Gy |k| 5y > 527

Further, by the same approach we prove that almost surely

XY o Welr+h)(Yg (¢ +h) -V, (2))
7,Gy k| >j2d
< ||90||L°°(BE0(0,1)) Z j1/2+d/(2pmin(Eo))2—jHo|2Dj,c,wh| sup

3.G .y 27 P3G y€Elz,+h]

1

The end of the proof is exactly the same as above remarkitg tha
Djy - Y /)min(E )
2556 h| < 5027 Al

for somed > 0.

5.3 Proof of regularity results in anisotropic Besov spacewith an anisotropy unrelated to the one of the
field

The following Proposition extends the results of Propogit.8
Proposition 5.14 Letl < p < +00,1 < ¢ < +ooandf > 1/q+ d/pmin(D) + 2d/ pmin(Eo) + £(p).

Am
1. Almost surely the sample path X, 1, (7)},crs belongs taB, 2 ﬁ)ﬁ;g P 1o REE),

Am

030
2. Almost surely the sample path X, (%)} ,crs do€s not belong t(Bp,qj;gg =5 oc

(RY, B).

The proof is made in several steps. First we need to compa@Bpaces with different anisotropies.

5.3.1 A comparison result between Besov spaces with differeanisotropies
Recall thatDy and D are assumed to be two diagonal matrices of the form :

A?Iddl 0 A ldg, 0
DO: ,D: s (12)
0 A?nI da,, 0 Amlda,,
with
A A1
Mmoo < 2 13
o STUS R (13)

In this section the assumptidir(Dy) = Tr(D) = d is not required. We first need a comparison result between
between Besov spaces with different anisotropies in thgodial case :
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16 M.Clausel and B.Vedel: Two optimality results about sknmath properties of OSGRF

Proposition 5.15 The notations and assumptions are as above. Forany 0, 8 € R andp, ¢ € (0, +o0],
one has the following embedding

Am,

By (RdaDo) - Bax?ﬁ

p,q;|log |# p,q;|log |#

(R, D).

The proof is straightforward and based on finite differeratesacterization of Besov spaces given in Theorem
5.8 (ii) of [35].

5.3.2 Proof of Proposition 5.14
1. Itis a straigthforward consequence of Propositions Bdl5a15.

2. Recall that the Gaussian fie{&(,,, 1, (7)},cr is defined by its harmonizable representation :
- (ei<x,§> _ 1)
Xppy Ho(T) = / PG

where the pseudo-norpy, can be chosen of the form

PE, = p1+ "+ Pm,

where for anyl < ¢ < m, p, is a(R%, E,) pseudo-norm.
Set{X,,(zm)}s, erim = {X(0,---,0,2m)},, cran. Remark that this field has the same finite dimen-
sional margin than the fieltl,,, defined as follows

(ei<wm,§m> _ 1) _

}/m(xm) = / N—de&n
Ridm P, (fm)HerT

with

— dm d&y - dém -
P (H+2)(€m>:/ 1 €i L
Rd1 x...xRIm—1 p(g)HJrz

Remark thaty,,, is in fact an OSRGF of the form (3) with exponeig = \? I'dr4,. and Hurst indext.
Then apply the non local regularity results of Section 5.h&dOSRGF,,. Then, deduce that

a.s. Y, (-) ¢ B L (RN Tdga,,)

. Y m
psa;toc, o g

and thus using Proposition 5.15 withy = \Y, Idga,. andD = \,, Idga.,

Ho Am

a.s. V()€ B ™ | (RY AnIdgan ).

T

The conclusion comes from Proposition 5.1 and from the ¥gtg Fubini Lemma which can be derived

from the characterization by difference of Besov spa’.@:}?g | log | (R4, D) (see [35]) :

Lemma5.16 Lets > 0, N € Rand0 < p < +o0. If f is a continuous function belonging ESM(Rd, D)
then f, defined orR% by

fo(@e) = f(af, -+ a)
belongs toB; (R, Dy).
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5.4 Proof of the two optimality results

Theorem 4.2 results directly from Proposition 5.14. We jprsive Theorem 4.3. Remark that since we are dealing

with critical exponent of the field X g, r, (v)}.cre In anisotropic Besov spaces, we use the results of [11] and
0

assume thak), equals its real diagonalizable pddy = <)“8in )\00 )

SinceT'r(Dy) = Tr(D) only two cases may appeahnax(D) < pmax(Do) andpmin(D) < pmin(Do).

First case : pmax(D) < pmax(Do). Assume that forv > Hy, the sample paths dfXp, g, (%) }.cra belong

to ng(Rd,D). Then, by Proposition 5.15 almost surely the sample path§Xaf, r, (z)}.cre belong to

Bpue=P)(R?), By a similar approach to Proposition 5.14 above, consjd@h) }ner = { X b, 1, (7€l ax) }rer
with €2 an eigenvector oD, related to the higher eigenvalyg,...(Do). Then by Fubini Lemma 5.16, the
critical exponent iy / pmax(Do). ThuSa/ pmax (D) > Ho/pmax(Do) that yields a contradiction.

Second cas@min(D) < pmin(Do) :

One can apply a similar approach far (7) } her = { X by, 17, (R€min) trer With enin an eigenvector ab related
to the lower eigenvalue ab.

Remark that the critical exponentBfin any isotropic Besov spaces is lower thdp/ pmin(Do). Indeed,

Y= [ v
CJre et '
HenceY has the same finite dimensional margin than

V(b = [ (" = 1)o0diT 1)

%
where¢(t) = (va R 1 2H0+2d§) andVE = Vect < emin >. Remark then that foft|

Do +|t€min|D0

T C(emin
sufficiently large,p(t) > (570)1
[t] Pmin (Do) * 2

we deduce the required result. By the Fubini Lemma 5.16, ifaggume thatv > H, it yields the required
contradiction.

By the regularity comparison results of [11] about Gausdields,

A Technical lemmas

Our results about smoothness of the sample path are baskd fmllbwing lemma

Lemma A.1 The wavelet coefficients of the random fi¢ld,, m,(z)},crs are weakly dependent in the
following sense

1. There exists som&, > 0 such for anyj > 1, (G,~) € I; and(k, k') € (Z%)?

i2d/ pmin 9—2jHo
k K’ J
IE(cS arCiaq)] < Com- (14)

2. There exists somé;, C» > 0 such that for any > 1, (G,~) € I; and anyk € (Z%)

Clj—d/pmm(EO)Q—QjHo < E(lciG,yP) < Cde/pmm(Eo)Q—QjHo ) (15)

Proof A.2 We use the Meyer wavelet basis whose Fourier transform ipaotty supported with ¢ Supp(’KZ(G)).
One has forany > 1, (G,~) € I, and for allk € Z¢

.o— D% = * o~
o= [ e TGO @ Pieng)pr, () AT (E).
R
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18 M.Clausel and B.Vedel: Two optimality results about sknmath properties of OSGRF

This formula implies that (set = 27 Pi.6.¢€)
Bllch . [?) = 277 Pso) [ [FOQR ppy (2P ()20

Since2U -2 < Tr(D; ¢.~) < 29, using Lemma 5.3 and the inequaliti€s2’ < [275.¢.+(|p, < C227 imply
that

E(|cf g, [?) > Cram2/ ot @i /R QP ™ (1 + log([¢pg) + )~/ P dC
and
E(|cf g [?) < Cp2- (ot did /R QPR + log([Clg) + )M PR dC

We then proved inequalities (15).
To prove inequality (14) remark that for afye {1,--- ,d}

(ke = KpB(CS 6, Chcn) = /RM — ke O KOS O (9Pl g) 2 ()20,
Set¢ = 2~ Pi.e~¢ and integrate by parts with respectto Hence

(ke = KB . ¢K ) = 277 P50 [ (= Kk XI5 () (205 002104,
Recall that the pseudo—norm may be assumed t&HER? \ {0}). Sincey(@) is compactly supported

(ke = KB g pchay) = —2TTPs0n) [ b0 (1O (Q)Ppg, (2P ()20 ag
= YT fo O (PP ) piy (250 ) 2 e
—9iTrDic) [, DL (27@%(/)E0)(2D;Gﬁ<)) dc .

D*
pig (277:6:7 ¢)2Ho 41

An approach similar to the proof of inequalities (15) yields

9ITT(D;,6.1)

[ (G BOOR ) pr 220y 20t | < Byt (a6
R4 14

Further, differentiate the homogeneity relationships$atd byp - and deduce that for any> 0 andz € R¢

—

a% (grad(pi; ) (a™ ) = a(grad(pg;))(2) - (17)

Foranyy € R?\ {0}, letr = |y|g;. Then setj = log,(r) and remark thal®|g; = [2770y|g; € [1/2,2] and
hence tha® belongs to the compact sét1/2,2, Ej) = {0, |0|g; € [1/2,2]}. Relationship (17) applied with
a =2’/ andz = © then implies

*

2D;

rgrad(pg ) (2770 0) = 27955+ Pic0 2 (grad(pr; )(O))

Take the norm of each member of the equality and deduce thahfg; € R? \ {0} satisfyingj = log, |y

Eg

2P5.agrad(pp; ) (y)| < C27[277FotPia|

whereC' = supgce(1)2,2,55) grad(pg: )(0)].
Lemma 2.1 of [7] and the definition gfimply that

250 grad(pz;)) ()] < O |j|*/emn < Clyls, gyl /7=
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Set nowy = 2P5.6.4(. One has
|2Pi:6 (grad(pp; )) (275 ¢)| < C|2Pi07 ¢, | log(|2P507 ¢, )| Y/ Pmin(Fo) < €27 (j+|log ([, |)) 2 Pmin B¢,

Since forany € {1,--- ,d}

27t

0 . . e .
(%(PES)) (QD”"G”C)‘ < ‘QD”"G”(grad(PES))(QD”*G”C)‘
¢

it yields the following inequality

ib—k)¢| (G ()2
FTr(Dj.G.~) € [ (O ( v 9 Dlg., )
2 / 2 5 (pm)(2750) ) d¢

* I
i PE, (2Dj*G’7C)2HO+d+1 :

(18)

Combining inequalities (16) and (18) then yield inequa(ity).
Remark now that

Lemma A.3 Let Dy an admissible diagonal anisotropy satisfyidy (Do) = d andT';j(Dy) = {k €
72, |k|p, < j27}. There exists som@;, Cy > 0 such that

015%27¢ < card(T'j(Dy)) < j427¢ .

Proof A.4 Indeed, since the nornjs |,, and| - |~ onR? are equivalent, there exists soifig, C, > 0 such
that

o m?x|k4|1/)‘@ < |k|p, < Cy m?x|k4|1/)‘@ :
The conclusion follows since it is quite clear since that

card{k,m{gx|k4|1“‘ <29} = card{k,m?x|k4| < jregirey = H (jr272) = 29
[
using the factthak; +--- + Ay = d.

The proof of Proposition 5.10 is then based on the two follmniesults which are a slight modification of
Theorem I1.1 and 11.7 of [10]. We recall the proofs for comrpleess.
We denote

& =E(lg5.641) -

We can thus state a central limit theorem for the sequégics ) e, (c.,v)e1, ker, Which is a slight modified
version of Lemma 1.4 of [10]

Lemma A5 Letp € (1,400) and (g}iGW) the Gaussian sequence defined by (7). Then almost surely when
J— 00

27" Z l9j.cAl" | = cp-
kel

Proof A.6 By Lemma A.1 the sequen(ﬁgﬁcﬂ) is weakly correlated in the sense of [10]-that is satisfies th

assumption (H) of [10]. We follow the main line of [10] and figive an upper bound of

2

E|Y (900" =)

keT;
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20 M.Clausel and B.Vedel: Two optimality results about sknmath properties of OSGRF

Using the same approach that [10] (see Lemma 11.3) we get that

2

1
E Z (l9j,6/" —cp)| < Cjcap Z (1+|k—k]2°

keT, (k,k")€r?

with C; = j24/Pmin(Eo) hy weak correlation of the wavelet coefficients. Bet k — k’. Hence

o 1
> s X X armr < X

(k,k’)el“? kel ¢e2.T; e2.T;

Remark now that

1 1 .
- < - - < ‘d*52j(d75)
2 TP = 2, T e =

Le2.T'; Le2.T';

with § = 2/pmax(Eo) > 0 by comparison with an integral and Proposition 2.3 of [8].
Thereafter the end of the proof is exactly the same than irofidme I1.1 of [10].

In an analogous way, one can give a result on the asymptdieva of

1
g0 (masloscat)

Lemma A.7 Almost surely

1 1
0 < liminf —— a ) < limsup ——— ( G ) < 00
J—00 |10g(nj)| (kGF |gj 7| j~>oop |10g(nj)| kEF |g] 7|

Proof A.8 The proof is exactly the same than these of Lemmas 1.8 ah@ df [10].
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