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Gaussian fields satisfying simultaneous
operator scaling relations

Marianne Clausel

Université Paris XII 61 avenue du Général de Gaulle 94010 Créteil
clausel@univ-paris12.fr

Summary. In this paper we define a special class of group self-similar Gaussian
fields. We present an harmonizable representation of m parameter group self-similar
Gaussian field by utilizing Haar measure of this group. These fields have also sta-
tionary rectangular increments according to special directions linked to co reduction
of matrices of the considered m parameter group.

1 Introduction

Random fields are a useful tool for modelling spatial phenomenon like envi-
ronmental fields, including for example, hydrology, geology, oceanography and
medical images. Many times the chosen model has to include some statisti-
cal dependence structure that might be present across the scales. Thus, an
usual assumption is self-similarity (see [Lamp62]), defined for a random field
{X(x)}x∈Rd on Rd by

{X(ax)}x∈Rd

(f.d.)
= {aHX(x)}x∈Rd

for some H ∈ R (called the Hurst index). As usual,
(f.d.)

= denotes equality
of all finite-dimensional marginal distributions. The most famous example of
self-similar processes is Fractional Brownian Motion (FBM) {BH(x)}x∈Rd ,
introduced in 1940 by Kolmogorov (see [Kolm40]) and first studied in the
famous paper of Mandelbrot and Van Ness (see [MVN68]).

Moreover in many cases, random fields have an anisotropic nature in the
sense that they have different geometric characteristics along different di-
rections (see, for example, Davies and Hall ([DH99]), Bonami and Estrade
([BE03]) and Benson, et al.([Ben06])). The classical notion of self-similarity–
by construction isotropic–has then to be changed in order to fit anisotropic
situations. For this reason, an increasing interest has been paid in defining a
suitable concept for anisotropic self-similarity. Many authors have developed
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techniques to handle anisotropy in the scaling : In [HM82] Hudson and Mason
introduced operator-self-similar processes {X(t)}t∈R with values in Rd. More-
over in [SL85, SL87] Schertzer and Lovejoy introduced a general concept of
scaling with respect to a one-parameter group (which may be a matricial one)
for random fields. These authors have in mind the particular case of linear
case and its application to the study to atmospheric stratification.

In [Kam96], A.Kamont introduced a first example of anisotropic self-
similar Gaussian field : Fractional Brownian Sheet (FBS). For any (H1, · · · , Hd)
in (0, 1)d, FBS with Hurst indices (H1, · · · , Hd)–denoted {BH1,··· ,Hd

(x)}x∈Rd–
can be defined through its harmonizable representation (see [ALP02]) :

BH1,··· ,Hd
(x) =

∫
Rd

(ei<x1,ξ1> − 1) · · · (ei<xd,ξd> − 1)
|ξ1|H1+

1
2 · · · |ξd|Hd+ 1

2
dŴξ1,··· ,ξd

, (1)

where dWx1,··· ,xd
is a Brownian measure on Rd and dŴξ1,··· ,ξd

its Fourier
transform. This definition implies that FBS satisfies simultaneous scaling
properties : For any (a1, · · · , ad) ∈ (R∗+)d

{BH1,··· ,Hd
(a1x1, · · · , xd)}x∈Rd

(f.d.)
= {aH1

1 BH1,··· ,Hd
(x)}x∈Rd

...

{BH1,··· ,Hd
(x1, · · · , adxd)}x∈Rd

(f.d.)
= {aHd

d BH1,··· ,Hd
(x)}x∈Rd

(2)

Moreover, it follows from definition (1) that FBS admits stationary rectangu-
lar increments according to the coordinate axes. For example in the bidimen-
sional case (d = 2) if we denote

∆h1,h2BH1,H2(x1, x2) = BH1,H2(x1 + h1, x2 + h2)−BH1,H2(x1 + h1, x2)
−BH1,H2(x1, x2 + h2) +BH1,H2(x1, x2)

then (Proposition 2 of [ALP02]) for any (x1, x2) ∈ R2 :

{∆h1,h2BH1,H2(x1, x2)}(h1,h2)∈R2
(f.d.)

= {∆h1,h2BH1,H2(0, 0)}(h1,h2)∈R2 .

Conversely, any Gaussian field {X(x)}x∈Rd of the form

X(x) =
∫

Rd

(ei<x1,ξ1> − 1) · · · (ei<xd,ξd> − 1)φ(ξ)dŴξ1,··· ,ξd
(3)

with
∫

min(1, |ξ1|2) · · ·min(1, |ξd|2)|φ(ξ)|2dξ < +∞, admits stationary rect-

angular increments according to the coordinate axes (see Section 3). Further-
more if, as in the case of FBS,

∀(a1, · · · , ad) ∈ (R∗+)d, |φ(a1 · · · adξ)|2 = a−2H1−1
1 · · · a−2Hd−1

d |φ(ξ)|2, (4)
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then the Gaussian field {X(x)}x∈Rd defined by (3) satisfies properties (2).

Another model of anisotropic self-similar random field is the class of Oper-
ator Scaling Random Fields (OSRF) introduced by H.Biermé, M.Meerschaert
and H.P.Scheffler in [BMS07]. These fields satisfy the following scaling relation
:

∀a > 0, {X(aEx)}x∈Rd

(f.d.)
= {aHX(x)}x∈Rd . (5)

for some matrix E (called an anisotropy of the field) whose eigenvalues have
a positive real part and some H > 0 (called an Hurst index of the field).
Remind that for any real a > 0, aE denotes the matrix aE = exp(E log(a)) =∑
k≥0

Ek logk(a)
k! . Moreover H.Biermé, M.Meerschaert and H.P.Scheffler defined

a special class of OSRF with stationary increments : For any matrix E with
positive real parts of the eigenvalues, any H ∈ (0, ρmin(E))–where ρmin(E) =

min
λ∈Sp(E)

(Re(λ))–Gaussian fields with stationary increments satisfying (5) can

be defined in the following way

X(x) =
∫

Rd

(ei<x,ξ> − 1)ρ(ξ)−(H+
T r(E)

2 )dŴξ,

where ρ is a (Rd, Et) pseudo-norm (see [PGL94]) that is a continuous function
defined on Rd \ {0} with positives values satisfying :

∀ξ ∈ Rd \ {0}, ρ(aE
t

ξ) = aρ(ξ).

Then, the main difficulty to overcome is to define a suitable (Rd, Et) pseudo-
norm. In [BMS07], for any matrix E whose eigenvalues have positive real
parts, is proved that

ρ(ξ) = (
∫
S0

∫ ∞
0

(1− cos(< ξ, rEθ >))
dr

r2
dµ(θ))

is a (Rd, Et) pseudo-norm (S0 denotes the unit sphere of Rd for a well-chosen
norm, and µ a finite measure on S0). We will generalize this result using an-
other approach based on Haar measure of an m parameter group.

Here, our purpose is to introduce another class of anisotropic Gaus-
sian fields satisfying given simultaneous operator scaling relations : For any
(a1, · · · , am) ∈ (R∗+)m

{X(aE1
1 x)}x∈Rd

(f.d.)
= {aH1

1 X(x)}x∈Rd ,
...

{X(aEm
m x)}x∈Rd

(f.d.)
= {aHm

m X(x)}x∈Rd , .

(6)

where E1, · · · , Em are m given pairwise commuting matrices. We now illus-
trate through an example the potential usefulness of this model.
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Example 1. Let us consider the two commuting matrices

E1 =

 1 1 0
−1 1 0
0 0 0

 , E2 =

 0 1 0
−1 0 0
0 0 1

 .

For any θ ∈ R, denote Rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
and remark that for any

positive numbers a1, a2 :

aE1
1 =

(
a1Rlog(a1) 0

0 1

)
, aE2

2 =
(
Rlog(a2) 0

0 a2

)
.

As a consequence of Theorem 1 (see Section 4), for all (H1, H2) ∈ (0, 1)2 we
can define an anisotropic field {X(x)}x∈R3 = {X(x1, x2, t)}(x1,x2,t)∈R3 such
that : ∀a1 ∈ R∗+, {X(aE1

1 x)}x∈R3
(f.d.)

= {aH1
1 X(x)}x∈R3 ,

∀a2 ∈ R∗+, {X(aE2
2 x)}x∈R3

(f.d.)
= {aH2

2 X(x)}x∈R3 .
(7)

Let us make some comments about these two scaling properties of field
{X(x)}x∈R3 . Assume that x1, x2 denote two space variables whereas t denotes
times. Then, the first scaling property means that at fixed time {X(x)}x∈R3

is a (maybe anisotropic) operator scaling Gaussian field. The second scaling
property means that anisotropy of the field evolves throughout time. In fact,
we defined a fixed time anisotropic Gaussian field whose anisotropy rotates
with time.

Our objective is now to define such Gaussian fields. In the two following Sec-
tions, we present our approach. We first consider the special case of Gaussian
fields satisfying simultaneous uncoupled relations.

2 A first example of field satisfying simultaneous
operator scaling properties

We first consider a particular case. Let (d1, · · · , dm) ∈ Nm such that d1 +
· · ·+dm = d, (E1, · · · , Em) m given matrices in (Md1(R), · · · ,Mdm

(R)) whose

eigenvalues have positive real parts and (H1, · · · , Hm) in
m∏
`=1

(0, ρmin(E`)).

Combining the model of FBS and this of OSRF, one can easily define a
Gaussian field {X(x1, · · · , xm)}(x1,··· ,xm)∈Rd1×···×Rdm satisfying the following
simultaneous operator scaling relations : For any (a1, · · · , am) ∈ (R∗+)m

{X(aE1
1 x1, · · · , xm)}x∈Rd

(f.d.)
= {aH1

1 X(x1, · · · , xm)}x∈Rd

...

{X(x1, · · · , aEm
m xm)}x∈Rd

(f.d.)
= {aHm

m X(x1, · · · , xm)}x∈Rd

(8)
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Indeed, the Gaussian field {X(x)}x∈Rd can be defined through its harmo-
nizable representation

X(x) = Re(
∫

Rd1×···×Rdm

m∏
`=1

((ei<x`,ξ`>−1)(e−i<y`,ξ`>−1)|φ`(ξ`)|2)dŴξ) (9)

where for any `, φ` denotes a (Rd` \ {0}, Et`) pseudo-norm. By construction,
the Gaussian field {X(x)}x∈Rd satisfies simultaneously the m operator scaling
relationships (8).
As FBS, this field does not admit stationary increments but satisfies a weaker
stationarity property : It admits rectangular stationary increments according
to some special directions.
Before giving a precise statement about stationarity properties of the field
{X(x)}x∈Rd , we first recall the notion of Gaussian field with rectangular sta-
tionary increments. Let us begin by defining the notion of rectangular incre-
ments of a function :

Definition 1. Let M1, · · · ,Mm m subspaces of Rd in direct sum, f a function
defined on Rd. For any x ∈ Rd and any (h1, · · · , hm) ∈M1× · · ·×Mm define

∆h1,··· ,hm
f(x) =

m∑
`=0

∑
1≤i1<···<i`≤m

(−1)m−`f(x+ hi1 + · · ·+ hi`).

with for ` = 0, f(x+ hi1 + · · ·+ hi`) = f(x).

Example 2. In the case m = 1, M1 = Rd ∆hf(x) = f(x+ h)− f(x).
In the case m = d = 2, M1 = R× {0}, M2 = {0} × R, if (h, k) ∈M1 ×M2

∆h,kf(x1, x2) = f(x1 + h, x2 + k)− f(x1 + h, x2)− f(x1, x2 + k) + f(x1, x2).

Definition 2. Let M1, · · · ,Mm m subspaces of Rd in direct sum. A Gaussian
field {X(x)}x∈Rd admits stationary rectangular increments according to the
directions M1, · · · ,Mm if for any x ∈ Rd

{∆h1,··· ,hm
X(x)}(h1,··· ,hm)∈M1×···×Mm

(L)
= {∆h1,··· ,hm

X(0)}(h1,··· ,hm)∈M1×···×Mm
.

Example 3. In the case m = 1 we recover the classical notion of a random field
with stationary increments.
Bidimensional FBS admits stationary rectangular increments according to the
directions M1 = R× {0} and M2 = {0} × R.

Here, in the example above, the Gaussian field defined by (9) admits sta-
tionary rectangular increments according to

M1 = Rd1 × · · · × {0Rdm}, · · · ,Mm = {0Rd1 } × · · · × Rdm .

We now use the special case introduced in this section in order to present
a general approach to define Gaussian fields satisfying the m given scaling
properties (6).
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3 A general approach

In the general case, we will formulate the problem as in Section 2 and de-
fine a Gaussian field {X(x)}x∈Rd which admits stationary rectangular incre-
ments according to some special directions (M1, · · · ,Mm′) in direct sum with
m′ ≥ m. These special directions follow from the simultaneous reduction of
matrices E1, · · · , Em (see Section 6.2 above) and then are invariant through
these matrices, that is : For any j in {1, · · · ,m}, for any ` in {1, · · · ,m′}
EjM` ⊂ M`. Subspaces (M1, · · · ,Mm′) will be called renormalization direc-
tions of Gaussian field {X(x)}x∈Rd and have to be defined.

After definition of these renormalization directions, the Gaussian field
{X(x)}x∈Rd will be defined as follows. We are given a function φ with positive
values satisfying the m following simultaneous properties : For any a1, · · · , am,
for almost any ξ in Rd

φ(a−E1
1 ξ) = a

H1+
T r(E1)

2
1 φ(ξ)

...

φ(a−Em
m ξ) = a

Hm+
T r(Em)

2
m φ(ξ)

(10)

Furthermore, in order that integral (12) exists, we assume that

∀x ∈ Rd,
∫

Rd

|φ(ξ)|2
∏
`

(min(1, | < ξ, x` > |2))dξ < +∞. (11)

Function |φ(ξ)|2 is then called a spectral density of Gaussian field {X(x)}x∈Rd .
Thereafter, for any x = (x1, · · · , xm′) ∈M1 × · · · ×Mm′ we set

X(x) = Re

∫
Rd

m′∏
`=1

(ei<x`,ξ> − 1)φ(ξ)dŴξ

 . (12)

The following proposition proves that the Gaussian field {X(x)}x∈Rd satisfies
the required properties

Proposition 1. Let (E1, · · · , Em) m pairwise commuting matrices. Assume
that there exist (M1, · · · ,Mm′) m′ subspaces of Rd in direct sum, invariant
through the action of matrices (E1, · · · , Em) and φ a function with positive
values satisfying properties (10) and condition (11). Then {X(x)}x∈Rd de-
fined by (12) is with stationary rectangular increments according to directions
M1, · · · ,Mm′ and satisfies the m simultaneous operator scaling relations (6).

Proof Indeed, since condition (11) is satisfied, {X(x)}x∈Rd defined by (12)
exists for any x ∈ Rd. Denote

X1 = Re

(∫
Rd

h1(ξ)dŴξ

)
, X2 = Re

(∫
Rd

h2(ξ)dŴξ

)
,
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and remark that using corollary 6.3.2 of [ST94], in the special case of Gaussian
random variables

E(X1X2) = Re

(∫
Rd

h1(ξ)h2(ξ)dξ
)
.

It is then sufficient to prove that {Y (x)}x∈Rd defined as

Y (x) =
∫

Rd

m′∏
`=1

(ei<x`,ξ> − 1)φ(ξ)dŴξ,

satisfies the required properties.
Then remark that the homogeneity properties (10) satisfied by φ imply that
{Y (x)}x∈Rd satisfies (6). Moreover, {Y (x)}x∈Rd admits stationary rectangu-
lar increments according to directions M1, · · · ,Mm′ . Indeed for any x ∈ Rd,
(h1, · · · , hm′) ∈M1 × · · · ×Mm′ , (k1, · · · , km′) ∈M1 × · · · ×Mm′

E(∆h1,··· ,hm′Y (x)∆k1,··· ,km′Y (x)) =
∫ m′∏

`=1

(ei<h`,ξ>−1)(e−i<k`,ξ>−1)|φ(ξ)|2dξ.

This expression does not depend on x, then the result follows.
Let us illustrate this proposition by giving an explicit construction of a Gaus-
sian field satisfying the two simultaneous operator scaling properties intro-
duced in example 1 :

Example 4. The notations are those of example 1. Our objective is to define a
Gaussian field satisfying the two simultaneous scaling properties (7). Having
Proposition 1 in mind, we consider

X(x1, x2, t) =
∫

R3
(ei(x1ξ

1
space+x2ξ

2
space)−1)(eitξtime−1)φ(ξ1space, ξ

2
space, ξtime)dŴξ.

It will be required that function φ satisfies (10) and (11). Let us set

φ(ξ1space, ξ
2
space, ξtime)

=

∣∣ξ1space cos(log(|ξspace| · |ξtime|))− ξ2space cos(log(|ξspace| · |ξtime|))
∣∣

|ξspace|H1+1|ξtime|H2+
1
2

One can easily check that φ fullfills the assumptions (10) and (11) of Proposi-
tion 1 and thus the Gaussian field {X(x)}x∈R3 satisfies the two simultaneous
scaling properties (7).

We now state the existence results proved in this paper.

4 Existence results

In order to state our existence results some hypotheses are needed about
matrices (E1, · · · , Em). We first recall what is real diagonalizable part of a
matrix.
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4.1 Real diagonalizable part of a matrix

As usual (see [HM82] ou [MS01]), our main tool will be complete additive
Jordan decomposition of a matrix. We refer to lemma 7.1, chap 9 of [Helg78]
:

Proposition 2. Any matrix M of Md(R) can be decomposed into a sum of
commuting real matrices M = D+S+N where D is a diagonalizable matrix in
Md(R), S is a diagonalizable matrix in Md(C) with zero or imaginary complex
eigenvalues, and N is a nilpotent matrix.
Matrix D is called the real diagonalizable part of M .

Below, we give examples of real diagonalizable part of a matrix E.

1. If E =

λ 0
. . .

0 λ

 or E =


λ 1 0

. . . . . .
. . . 1

0 λ

 then E admits λ as unique

eigenvalue and as real diagonalizable part D = λId where Id denotes the
identity matrix.

2. If E =

∆ 0
. . .

0 ∆

 or E =


∆ I2 0

. . . . . .
. . . I2

0 ∆

 with ∆ =
(
α −β
β α

)
, then

E admits exactly two conjugate complex eigenvalues λ1 = α + iβ, λ2 =
α− iβ. It implies that D = αId.

Recall that in general, a square real matrix is similar to a block diagonal ma-
trix where each block is a square matrix of the form above. Thus, from the
previous examples we can deduce the complete additive Jordan decomposi-
tion of any square real matrix. We now state our assumptions on matrices
E1, · · · , Em.

4.2 Assumptions on matrices E1, · · · , Em

Denote D1, · · · , Dm the real diagonalizable parts of matrices E1, · · · , Em.

Hypotheses 4.1 We assume that

1. Matrices E1, · · · , Em are pairwise commuting matrices.

2. Matrices (D1, · · · , Dm) are linearly independent matrices in Md(R).

Under these assumptions we now state our main result :
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Theorem 1. Assume that Hypotheses (4.1) are satisfied. Then for some C0 ∈
(0, 1) depending only on matrices E1, · · · , Em, for any ` ∈ {1, · · · ,m} and any
0 < H` < C0ρmin(E`) there exists m′ ≥ m, m′ subspaces M1, · · · ,Mm′ of Rd
in direct sum and a Gaussian field {X(x)}x∈Rd with rectangular stationary
increments according to the directions M1, · · · ,Mm′ satisfying the m simulta-
neous operator scaling properties :

∀(a1, · · · , am) ∈ (R∗+)m,


{X(aE1

1 x)}x∈Rd

(f.d.)
= {aH1

1 X(x)}x∈Rd

...

{X(aEm
m x)}x∈Rd

(f.d.)
= {aHm

m X(x)}x∈Rd

(13)

Before any proof of this result, we need first to reformulate our problem in
terms of group self-similarity. It will then allow us to use the concept of Haar
measure in order to define a spectral density of Gaussian field {X(x)}x∈Rd .

5 Reformulation of the problem in terms of group
self-similarity

In [KR03], S.Kolodynski and J.Rosinski defined the notion of group self-
similar random field. We adapt this definition to our setting

Definition 3. Let A a subgroup of Gld(R) and χ a continuous mapping from
A into R∗+.
The random field {X(x)}x∈Rd is A-self-similar with coefficient χ if

∀A ∈ A, {X(Ax)}x∈Rd

(f.d.)
= {χ(A)X(x)}x∈Rd . (14)

Remark 1. Remark that (see [KR03]) the self-similarity coefficient of a Gaus-
sian field is necessary an homomorphism from A into R∗+.

Our problem can now be reformulated in terms of group self-similarity. Let
us define the following m parameter group :

A = {aE1
1 · · · aEm

m , (a1, · · · , am) ∈ (R∗+)m}. (15)

Proposition 3. The two problems are equivalent :

1. Find sufficient conditions on H1, · · · , Hm for the existence of a Gaussian
field {X(x)}x∈Rd satisfying the simultaneous scaling properties (6).

2. Find sufficient conditions on homomorphism χ for the existence of a Gaus-
sian field {X(x)}x∈Rd A-self-similar with coefficient χ where A is the m
parameter group defined by (15).
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The proof of Proposition 3 is based on the complete description of the contin-
uous homomorphisms from A into R∗+. More precisely, one can easily check
that (a more detailed proof may be found in [Clau08]):

Proposition 4. If Hypotheses (4.1) are satisfied, the mapping (a1, · · · , am) 7→
aE1
1 · · · aEm

m is a bicontinous isomorphism from (R∗+)m into A.

Since the homomorphisms from (R∗+)m into R∗+ are well-known, if Hypotheses
(4.1) are satisfied, Proposition 4 directly implies that (a more detailed proof
may be found in [Clau08])

Proposition 5. Let A a subgroup of Gld(R) of the form (15). Assume that
Hypotheses (4.1) are satisfied. Then for any continuous homomorphism χ
from A into R∗+, there exists a unique (H1, · · · , Hm) ∈ (R∗+)m such that

∀(a1, · · · , am) ∈ (R∗+)m, χ(aE1
1 · · · aEm

m ) = aH1
1 · · · aHm

m .

Then any A-self-similar Gaussian field with coefficient χ, where χ is a contin-
uous mapping from A into R∗+, necessary satisfies

∀(a1, · · · , am) ∈ (R∗+)m, {X(aE1
1 · · · aEm

m x)}x∈Rd

(L)
= {aH1

1 · · · aHm
m X(x)}x∈Rd

for some (H1, · · · , Hm) ∈ (R∗+)m. We then proved Proposition 3.

Example 5. We now give examples of A-group self-similar Gaussian fields with
coefficient χ.

• FBM is group self-similar with A = {aId}a∈R∗+ and χ(aId) = aH .

• FBS is group self-similar with A being the group of diagonal matrices with

positive coefficients and χ(

λ1 0
. . .

0 λn

) = λH1
1 · · ·λHn

n .

• Any OSRF is group self-similar with A = {aE , a > 0}, χ(aE) = aH .

• The Gaussian field defined in Section 2 above is also group self-similar

with A = {

a
E1
1 0

. . .
0 aEm

m

 , ∀i ai > 0} , χ(

a
E1
1 0

. . .
0 aEm

m

) =
∏̀
aH`

` .

6 Definition of the desired Gaussian field

As announced in Section 3, we now define the desired Gaussian field in two
steps. We first define a suitable spectral density (see Section 6.1). Thereafter
using simultaneous reduction of matrices E1, · · · , Em we define renormaliza-
tion directions M1, · · · ,Mm′ (see Section 6.2). Finally in Section 6.3, we will
use Proposition 1 to prove that the Gaussian field we just defined satisfies the
required properties.
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6.1 Definition of a suitable spectral density

We reformulate the properties required on spectral density using group A
defined by (15)

Proposition 6. Let φ a function defined on Rd with positive values. The two
properties are equivalent :

1. Function |φ(ξ)|2 satisfies the m simultaneous relations (10).
2. Function |φ(ξ)|2 is A homogeneous with coefficient χ2(·)|det(·)| that is :

∀A ∈ A, a.e.ξ ∈ Rn, |φ((A−1)tξ)|2 = |χ(A)|2|det(A)||φ(ξ)|2, (16)

with χ(aE1
1 · · · aEm

m ) = aH1
1 · · · aHm

m .

We now define a suitable spectral density using a Haar measure µA of group
A. Let

|φ(ξ)|2 =
∫
A
χ(A)2|det(A)||ψ̂(−Atξ)|2dµA(A), (17)

where ψ ∈ Hm+1(Rd). As usual

Hm+1(Rd) = {f ∈ L2(Rd), |ξ|m+1f̂ ∈ L2(Rd)}.

Then, the invariance property of any Haar measure of group A implies that :

Proposition 7. Function |φ(ξ)|2 defined by (17), is an At homogeneous func-
tion with coefficient χ2(·)|det(·)|.

Remark 2. Proposition 7 does not prove that function |φ(ξ)|2 defined by (17)
is finite almost everywhere. The finitness of function |φ(ξ)|2 comes from the
existence of covariance function of the required Gaussian field.

Function |φ(ξ)|2 defined by (17) then satisfies the required properties of a spec-
tral density. We now give some details about the definition of renormalization
directions.

6.2 Definition of renormalization directions

In this Section, our purpose is to definem′ special subspaces of RdM1, · · · ,Mm′

in direct sum, invariant through matrices E1, · · · , Em such that hypotheses
of Proposition 1 are fullfilled. These subspaces will be called renormalization
directions and are invariant through group A. Proposition 1 then ensures the
existence of a Gaussian field satisfying the required properties. Moreover (see
Section 2) if

A = {diag(aE1
1 , . . . , aEm

m ), (a1, · · · , am) ∈ (R∗+)m}, (18)

with (E1, · · · , Em) ∈Md1(R)×· · ·×Mdm(R), whose eigenvalues have positive
real parts (see Section 2), we can choose as renormalization directions
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M1 = Rd1 × · · · × {0}, · · · ,Mm = {0} × · · · × Rdm .

Now we want to extend the approach of Section 2 to the general case. In order
to define renormalization directions, we simultaneously diagonalize matrices
D1, · · · , Dm using the following Proposition :

Proposition 8. Let E1, · · · , Em be m pairwise commuting square matrices.
Denote D1, · · · , Dm their real diagonalizable parts. Then

1. Matrices D1, · · · , Dm are pairwise commuting and then simultaneously di-
agonalizable.

2. Matrices E1, · · · , Em are all commuting with matrices D1, · · · , Dm.

Definition of renormalization directions will follow from this simultaneous
reduction of matrices D1, · · · , Dm. The following notation will be needed :

Notation 2 Let A the group defined by (15). Then denote

AD = {aD1
1 · · · aDm

m , (a1, · · · , am) ∈ (R∗+)m}.

We can reduce simultaneously matrices of group AD :

Proposition 9. Assume that Hypotheses 4.1 are fullfilled. There exists an
invertible matrix P such that

AD = {P ×diag(a∆1
1 , . . . , a∆m

m , a
Dm+1

1
1 ..a

Dm+1
m

m )×P−1, (a1, · · · , am) ∈ (R∗+)m}

where

1. For any k ∈ {1, · · · ,m}, ∆k =
(
∆+
k 0

0 ∆−k

)
.

2. For any k ∈ {1, · · · ,m}, matrices ∆+
k ( resp ∆−k , D

m+1
` ) are diagonal ma-

trices with positive coefficients (resp negative, unspecified).

3. Matrices ∆+
k always exists for any k ∈ {1, · · · ,m} whereas matrices ∆−k ,

Dm+1
` can possibly not exist for some values of k or `.

Proof Proof detailed in in [Clau08].
Let us illustrate Proposition 9 through an example.

Example 6. Let us consider the following group

A = {aE1
1 aE2

2 , (a1, a2) ∈ (R∗+)2},

with E1 = D1 =

1 0 0
0 −2 0
0 0 5

 , E2 = D2 =

2 0 0
0 −4 0
0 0 1

.

Here A = AD, matrices D1 et D2 are diagonal and
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V ect < D1, D2 >= V ect <

(
∆ 0
0 5

)
,

(
2∆ 0
0 1

)
>, with ∆ =

(
1 0
0 −2

)
.

To prove that matrices (D1, D2) are linearly independent matrices remark

that (
(

1
5

)
,

(
2
1

)
) are linearly independent vectors. Since

V ect <

(
2
5

)
,

(
1
1

)
>= V ect <

(
1
0

)
,

(
0
1

)
>,

it implies that

V ect <

(
∆ 0
0 5

)
,

(
2∆ 0
0 1

)
>= V ect <

(
∆ 0
0 0

)
,

(
0 0
0 1

)
> .

Hence we deduce thatA = {

a1 0 0
0 a−2

1 0
0 0 a2

 , (a1, a2) ∈ (R∗+)2}. Thus we recover

the result of Proposition 9 with ∆+
1 =

(
1
)
, ∆−1 =

(
−2
)
, ∆+

2 =
(
2
)
.

Proposition 9 implies the following description of group A :

Proposition 10. We use notations of Proposition 9. Group A is of the form

A = {PaF1
1 · · · aFm

m P−1, (a1, · · · , am) ∈ (R∗+)m},

where for any `, matrix F` admits as real diagonalizable part the diagonal
matrix diag(0, · · · , 0, ∆`, 0, · · · , Dm+1

` ).

Proof Proof detailed in [Clau08].
Proposition 10 will allow us to define renormalization directions. Let us define
for any ` ∈ {1, · · · ,m}, W+

` = Rd
+
1 , W−` = Rd

−
1 ,Wm+1 = Rdm+1 . We then

choose as renormalization directions

∀` ∈ {1, · · · ,m}, V +
` = P−1W+

` , V
−
` = P−1W−` , Vm+1 = P−1Wm+1. (19)

These subspaces are all invariant through matrices E1, · · · , Em. The sets
V −l , Vm+1 can be possibly equal to {0}.

Notation 3 Denote M1, · · · ,Mm′ the m′ non zero sets within the spaces
V +

1 , · · · , V +
m , V

−
1 , · · · , V −m , Vm+1. Subspaces M1, · · · ,Mm′ are called non triv-

ial renormalization directions.

Example 7. In example 6 above, the renormalization directions are

M+
1 = R× {0} × {0}, M−1 = {0} × R× {0}, M+

2 = {0} × {0} × R.

In the following Section, we prove that this construction method is effective.
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6.3 Proof of Theorem 1

Consider function |φ(ξ)|2 defined by (17) and the renormalization directions
M1, · · · ,Mm′ defined in Section 6.2. We want to find sufficient conditions on
χ in order that condition (11) of Proposition 1 is fullfilled. Let us first remark
that :

Lemma 1. Let AP the following m parameter group

AP = P−1AP = {aF1
1 · · · aFm

m , (a1, · · · , am) ∈ (R∗+)m},

and χP defined as χP (AP ) = χ(PAPP−1) for any AP ∈ AP . Condition (11)
is satisfied iff for any x ∈ Rd the following integral∫

Rd

∏
`

(min(1, | < xW+
l
, ζ > |2) min(1, | < xW−l

, ζ > |2))|φP t(ζ)|2dζ, (20)

is finite with |φP t(·)|2 = |φ(P t·)|2 =
∫
χ2
P (AP )|det(AP )||ψ̂P (−AtP ·)|2dµAP

(AP )
and ψP (·) = ψ(P ·).

Remark 3. In the proof of the existence of the desired Gaussian field, one can
then replace A by AP , χ by χP and ψ by ψP .

Proof To prove this result, we perform the changes of variable ξ = P tζ, AP =
PAP−1.
This Lemma leads us to consider a special case :

Proposition 11. Notations are those of proposition 10. Assume that for any
i ∈ {1, · · · ,m}, −ρmin(∆−i ) < H ′i < ρmin(∆+

i ), with ρmin(∆−i ) = 0 if matrix
∆−i does not exist. Then condition 20 is satisfied for χP defined from AP into
R∗+ as χ(aF1

1 · · · aFm
m ) = a

H′1
1 · · · a

H′m
m .

Proof Proof detailed in [Clau08].
Lemma 1 and Proposition 11 then implies Theorem 1 (see [Clau08] for more
details).
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