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Gaussian fields satisfying simultaneous
operator scaling relations

Marianne Clausel

Université Paris XII 61 avenue du Général de Gaulle 94010 Créteil
clausel@univ-parisil2.fr

Summary. In this paper we define a special class of group self-similar Gaussian
fields. We present an harmonizable representation of m parameter group self-similar
Gaussian field by utilizing Haar measure of this group. These fields have also sta-
tionary rectangular increments according to special directions linked to co reduction
of matrices of the considered m parameter group.

1 Introduction

Random fields are a useful tool for modelling spatial phenomenon like envi-
ronmental fields, including for example, hydrology, geology, oceanography and
medical images. Many times the chosen model has to include some statisti-
cal dependence structure that might be present across the scales. Thus, an
usual assumption is self-similarity (see [Lamp62]), defined for a random field
[X(2)}ocns on RY by

(X (02)}aeme "2 {0t X (2)}pcpe

for some H € R (called the Hurst index). As usual, (4) denotes equality
of all finite-dimensional marginal distributions. The most famous example of
self-similar processes is Fractional Brownian Motion (FBM) {Bg(x)},cprd,
introduced in 1940 by Kolmogorov (see [Kolm40]) and first studied in the
famous paper of Mandelbrot and Van Ness (see [MVNG8]).

Moreover in many cases, random fields have an anisotropic nature in the
sense that they have different geometric characteristics along different di-
rections (see, for example, Davies and Hall ([DH99]), Bonami and Estrade
([BEO03]) and Benson, et al.([Ben06])). The classical notion of self-similarity—
by construction isotropic—has then to be changed in order to fit anisotropic
situations. For this reason, an increasing interest has been paid in defining a
suitable concept for anisotropic self-similarity. Many authors have developed
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techniques to handle anisotropy in the scaling : In [HM82] Hudson and Mason
introduced operator-self-similar processes { X (t)}scr with values in R%. More-
over in [SL85, SL87] Schertzer and Lovejoy introduced a general concept of
scaling with respect to a one-parameter group (which may be a matricial one)
for random fields. These authors have in mind the particular case of linear
case and its application to the study to atmospheric stratification.

In [Kam96], A.Kamont introduced a first example of anisotropic self-
similar Gaussian field : Fractional Brownian Sheet (FBS). For any (Hy,--- , Hg)
in (0,1)?, FBS with Hurst indices (Hy, - - , Hg)—denoted { B, ... m,(z)}ycra—
can be defined through its harmonizable representation (see [ALP02]) :

(ei<$1,f1> _ 1) .. (ei<1d7€d> _ 1) -
By, ... = - T dWe, ... ¢, 1
Hy oo Ha (2) /]Rd 6 [Hi+E . |eg|Hats £1, 584 (1)

where dW,, ... », is a Brownian measure on R? and dW&l,---,éd its Fourier
transform. This definition implies that FBS satisfies simultaneous scaling
properties : For any (a1,--- ,aq) € (Ri)d

(

f.d)
{BHl,-“,Hd(alxla co 7xd)}:c€Rd = {a{[lBle'-,Hd(x)}xE]Rd

: (2)
f.d.
{BH1,~~ ,Hd(l‘h T 7adxd)}x€Rd ( = ) {adeHl,m ,Hd(x)}IERd

Moreover, it follows from definition (1) that FBS admits stationary rectangu-
lar increments according to the coordinate axes. For example in the bidimen-
sional case (d = 2) if we denote

Apy o Ba, w1, (01, 22) = Br, m, (21 + ha, 22 + ho) — Ba, m, (01 + ha, 22)
—Bp, 1, (21,22 + h2) + B, 1, (21, 22)

then (Proposition 2 of [ALP02]) for any (z1,72) € R? :

(f.d)
{4y ho Bry 1, (21, 2) Y (hy ho)erz = {Ahy ho By 1,(0,0)} 1y ho)er2-

Conversely, any Gaussian field {X (z)},cra of the form

X(x) = /<f S (@S )ROAWe e (3)

with /min(l, |€1]%) -+ -min(1, |€4])|6(€)|?dé < 400, admits stationary rect-

angular increments according to the coordinate axes (see Section 3). Further-
more if, as in the case of FBS,

(a1, -+ aq) € (R, |d(ar -+~ agf)]* = ap 17107 (€))2, (4)
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then the Gaussian field {X (x)},cre defined by (3) satisfies properties (2).

Another model of anisotropic self-similar random field is the class of Oper-
ator Scaling Random Fields (OSRF) introduced by H.Biermé, M.Meerschaert
and H.P.Scheffler in [BMS07]. These fields satisfy the following scaling relation

Va > 0, {X(a"2)}ers =7 {0 X (0)}, o (5)

for some matrix E (called an anisotropy of the field) whose eigenvalues have
a positive real part and some H > 0 (called an Hurst index of the field).
Remind that for any real a > 0, a” denotes the matrix a” = exp(Elog(a)) =
k k

> %g!w). Moreover H.Biermé, M.Meerschaert and H.P.Scheffler defined
k>0

a special class of OSRF with stationary increments : For any matrix F with
positive real parts of the eigenvalues, any H € (0, ppmin(E))-where pmin(E) =

R Igli?E)(Re()\))fGaussian fields with stationary increments satisfying (5) can
€5p

be defined in the following way
i<x _ Tr(E)y —~
X(a) = [ (€50 = 1)p(e) T

where p is a (R?, E*) pseudo-norm (see [PGL94]) that is a continuous function
defined on R?\ {0} with positives values satisfying :

ve € R\ {0}, p(a®'€) = ap(€).

Then, the main difficulty to overcome is to define a suitable (R¢, E*) pseudo-
norm. In [BMSO07], for any matrix E whose eigenvalues have positive real
parts, is proved that

o =([ [ "1 cos(< €170 5)) " au(0))

is a (R?, B') pseudo-norm (Sp denotes the unit sphere of R for a well-chosen
norm, and g a finite measure on Sy). We will generalize this result using an-
other approach based on Haar measure of an m parameter group.

Here, our purpose is to introduce another class of anisotropic Gaus-
sian fields satisfying given simultaneous operator scaling relations : For any
(ah... ’am) c (R*-‘r)m

f.d.
(X (0P 2)}pene ") {0l X (@)} peme,

: (6)
(X (aBr2)}pens ") {aln X (@)} pepa,

where Fy,--- , E,, are m given pairwise commuting matrices. We now illus-
trate through an example the potential usefulness of this model.
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Ezample 1. Let us consider the two commuting matrices

110 010
Ei=1-110|,E;,=1|-100
000 001

cos(f) —sin(6)

For any # € R, denote Ry = (sin(@) cos(6)

) and remark that for any

positive numbers a1, as :

aEl — alRlog(al) 0 CLE2 _ Rlog(ag) 0
! 0 1)’ 2 0 as ’

As a consequence of Theorem 1 (see Section 4), for all (Hy, Ha) € (0,1)? we
can define an anisotropic field {X (2)},ers = {X(21,72,1)} (2, 25,4)er® such
that :
d.
Var € By (X (a0 boews 2 (o] X(@) bacre. (7)
. f.d.
Vas € R, {X (a22) }oems "= {0l X (2)}peps.

Let us make some comments about these two scaling properties of field
{X(2)}pers. Assume that 21, zo denote two space variables whereas t denotes
times. Then, the first scaling property means that at fixed time {X (z)},crs
is a (maybe anisotropic) operator scaling Gaussian field. The second scaling
property means that anisotropy of the field evolves throughout time. In fact,
we defined a fixed time anisotropic Gaussian field whose anisotropy rotates
with time.

Our objective is now to define such Gaussian fields. In the two following Sec-
tions, we present our approach. We first consider the special case of Gaussian
fields satisfying simultaneous uncoupled relations.

2 A first example of field satisfying simultaneous
operator scaling properties

We first consider a particular case. Let (di,- - ,d,,) € N™ such that d; +
<ootdy =d, (B, -, Ep) m given matrices in (Mg, (R), -+, My, (R)) whose

eigenvalues have positive real parts and (Hy, -+, Hp) in [](0, pmin(Er)).

=1
Combining the model of FBS and this of OSRF, one can easily define a

Gaussian field {X (21, ,%m)} (o1, 2 )eR4 x... xRam Satisfying the following
simultaneous operator scaling relations : For any (a1, -, an) € (RY)™
(f.d)
{(X(@ w1,z boers = a7 X (@1, ) Faera

(f.d.)
{X(‘Tla T 7arEerxm)};EE]Rd = {agmx(xla e 7xm)}I€Rd
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Indeed, the Gaussian field {X (z)},cre can be defined through its harmo-
nizable representation

m

X(z) = Re(/ ((e=merfe —1) (77 <V 8> —1) |y (&) ) d) (9)

R4 .- xRdm

where for any ¢, ¢, denotes a (R% \ {0}, E}) pseudo-norm. By construction,
the Gaussian field {X (x)},cra« satisfies simultaneously the m operator scaling
relationships (8).

As FBS, this field does not admit stationary increments but satisfies a weaker
stationarity property : It admits rectangular stationary increments according
to some special directions.

Before giving a precise statement about stationarity properties of the field
{X(2)}zera, we first recall the notion of Gaussian field with rectangular sta-
tionary increments. Let us begin by defining the notion of rectangular incre-
ments of a function :

Definition 1. Let M, - -- , M,, m subspaces of R? in direct sum, f a function
defined on R?. For any x € R? and any (hy,--+ ,hm) € My X - X M, define

Apy o by f(2) :Z Z (=1 f (@ + hiy + -+ hyy).
£=0 1<i1 <--<ig<m
with for € =0, f(x + hy + -+ hi,) = f(x).
Ezample 2. In the case m = 1, My = R? A, f(x) = f(z + h) — f(x).
In the case m =d =2, M; =R x {0}, My = {0} x R, if (h, k) € My x M>
Appf(zr,22) = f(21 + bz + k) — f(21 + h,22) — f(21, 22 + k) + (21, 22).

Definition 2. Let My, --- , M,, m subspaces of R® in direct sum. A Gaussian
field {X (z)},ere admits stationary rectangular increments according to the
directions My, --- , M,, if for any x € R?

(L)
{An o e X ()} h o )My oo M = 1R o X(0) F (hy ove o)€My X oo x My -

Ezample 3. In the case m = 1 we recover the classical notion of a random field
with stationary increments.

Bidimensional FBS admits stationary rectangular increments according to the
directions M7 = R x {0} and My = {0} x R.

Here, in the example above, the Gaussian field defined by (9) admits sta-
tionary rectangular increments according to

Mlszl X"'X{ORdm},"' 7Mm:{0Rd1}X"'XRdm.

We now use the special case introduced in this section in order to present
a general approach to define Gaussian fields satisfying the m given scaling
properties (6).
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3 A general approach

In the general case, we will formulate the problem as in Section 2 and de-
fine a Gaussian field {X (z)},cpe which admits stationary rectangular incre-
ments according to some special directions (M, - -+ , M,,/) in direct sum with
m’ > m. These special directions follow from the simultaneous reduction of
matrices Ey,--- , Epn, (see Section 6.2 above) and then are invariant through
these matrices, that is : For any j in {1,--- ,m}, for any ¢ in {1,---,m'}
E;M; C M,. Subspaces (M, --- , M, ) will be called renormalization direc-
tions of Gaussian field {X (x)},cre and have to be defined.

After definition of these renormalization directions, the Gaussian field
{X(2)}zera will be defined as follows. We are given a function ¢ with positive
values satisfying the m following simultaneous properties : For any a1, - - , G,
for almost any ¢ in R?

Tr(Ey)

$layre) =a T 4(e)

- _ HpIrEm
Pay,"8) =am™ 7 ()
Furthermore, in order that integral (12) exists, we assume that
Vr € Rd,/ 6(&) [[(min(1,| < & 2 > [*))d < +o0. (11)
Rd ;

Function |¢(€)|? is then called a spectral density of Gaussian field { X (z)},cpe-

Thereafter, for any x = (21, ,Zpm) € My X -+ X My, we set
X(x) = Re / H(ei<”’5> - 1)¢(§)dW5 . (12)
RY 21

The following proposition proves that the Gaussian field {X (x)},cgae satisfies
the required properties

Proposition 1. Let (Ey,--- , E,;,) m pairwise commuting matrices. Assume
that there exist (My,--- , M) m' subspaces of R? in direct sum, invariant
through the action of matrices (Ey, -+ ,Ep) and ¢ a function with positive
values satisfying properties (10) and condition (11). Then {X(x)},cpre de-
fined by (12) is with stationary rectangular increments according to directions
My, -+, M, and satisfies the m simultaneous operator scaling relations (6).

Proof Indeed, since condition (11) is satisfied, {X (2)},cgre defined by (12)
exists for any = € R?. Denote

X, = Re (/R hl(g)dW5> , X2 = Re (/}R hz(f)dW§> ,
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and remark that using corollary 6.3.2 of [ST94], in the special case of Gaussian
random variables

E(X1X2) = Re (/Rd hi1(€)ha( )dg) .

It is then sufficient to prove that {Y(x)}xE]Rd defined as

0= H S )p(€)dVe,

satisfies the required properties.

Then remark that the homogeneity properties (10) satisfied by ¢ imply that
{Y(2)},cra satisfies (6). Moreover, {Y (z)},cre admits stationary rectangu-
lar increments according to directions My, - -- , M,, . Indeed for any = € R?,
(h1, - yhu) € My X oo X My, (K1, k) € My X o+ o X My

E(Apy oo, Y (@) Asy oo e, Y (2)) = / [T (<> —1) (e <kat> 1) 6 ()| *de.
=1

This expression does not depend on z, then the result follows.

Let us illustrate this proposition by giving an explicit construction of a Gaus-
sian field satisfying the two simultaneous operator scaling properties intro-
duced in example 1 :

Ezample 4. The notations are those of example 1. Our objective is to define a
Gaussian field satisfying the two simultaneous scaling properties (7). Having
Proposition 1 in mind, we consider

. 1 2 . . —~
X (2, m0,t) = /RS(EZ(arlésmceﬂQEspm)_1)(ezt£nmc_1)¢(§slpace’ggpace’&ime)dwg.
It will be required that function ¢ satisfies (10) and (11). Let us set
¢(€space7 space’gtlme)
|§space COS(IOg(|§Space| Etimel)) — space os(lo (|§SPaCE| : |ftzme‘))|
|§epace‘Hl+ ‘ﬁtzme|H %

One can easily check that ¢ fullfills the assumptions (10) and (11) of Proposi-
tion 1 and thus the Gaussian field {X (x)},crs satisfies the two simultaneous
scaling properties (7).

We now state the existence results proved in this paper.

4 Existence results

In order to state our existence results some hypotheses are needed about
matrices (Fy,---, E,). We first recall what is real diagonalizable part of a
matrix.
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4.1 Real diagonalizable part of a matrix

As usual (see [HM82] ou [MS01]), our main tool will be complete additive
Jordan decomposition of a matrix. We refer to lemma 7.1, chap 9 of [Helg78]

Proposition 2. Any matrix M of Mg(R) can be decomposed into a sum of
commuting real matrices M = D+S+N where D is a diagonalizable matriz in
M4(R), S is a diagonalizable matriz in Mq(C) with zero or imaginary complex
etgenvalues, and N s a nilpotent matriz.

Matriz D is called the real diagonalizable part of M.

Below, we give examples of real diagonalizable part of a matrix F.

Al 0
A 0 o
1. f E = or B = C then E admits A\ as unique
0 A

eigenvalue and as real diagonalizable part D = AId where Id denotes the
identity matrix.

AL, 0
A 0 o
2.1 F = or E = C with A = (g:f),then
0o A I
0 A

FE admits exactly two conjugate complex eigenvalues A\ = a + i3, Ay =
a — i8. It implies that D = ald.

Recall that in general, a square real matrix is similar to a block diagonal ma-
trix where each block is a square matrix of the form above. Thus, from the
previous examples we can deduce the complete additive Jordan decomposi-
tion of any square real matrix. We now state our assumptions on matrices
Ei,-- ,En.

4.2 Assumptions on matrices Fi,--- , E,,

Denote Dy, -+, Dy, the real diagonalizable parts of matrices Fy,- -, Ep,.
Hypotheses 4.1 We assume that

1. Matrices E1,--- , Ey, are pairwise commuting matrices.

2. Matrices (D1, -+ ,Dp,) are linearly independent matrices in Mg(R).

Under these assumptions we now state our main result :
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Theorem 1. Assume that Hypotheses (4.1) are satisfied. Then for some Cqy €
(0,1) depending only on matrices Ey,- -+ , Ep,, for any £ € {1,--- ;m} and any
0 < Hy < Copmin(Ey) there exists m’ > m, m’ subspaces My,--- , My, of RY
in direct sum and a Gaussian field {X (z)}yera with rectangular stationary
increments according to the directions My, - -+ , My, satisfying the m simulta-
neous operator scaling properties :

(X(@P ) oere "2 {0l X (@)} pepe
V(ay, - ,am) € (R})™, : (13)
(X (aBna)}pepe =2 {aln X ()} pepo

Before any proof of this result, we need first to reformulate our problem in
terms of group self-similarity. It will then allow us to use the concept of Haar
measure in order to define a spectral density of Gaussian field {X (x)},cpa.

5 Reformulation of the problem in terms of group
self-similarity

In [KRO3], S.Kolodynski and J.Rosinski defined the notion of group self-
similar random field. We adapt this definition to our setting

Definition 3. Let A a subgroup of Gl4(R) and x a continuous mapping from
A into R .
The random field {X ()} epra s A-self-similar with coefficient x if

VA € A, {X(A) }oeme "2 ((A)X (2)}ucpe. (14)

Remark 1. Remark that (see [KR03]) the self-similarity coefficient of a Gaus-
sian field is necessary an homomorphism from A into R

Our problem can now be reformulated in terms of group self-similarity. Let
us define the following m parameter group :

Az{afl---afb’",(al,--- Jam) € (R7)™}. (15)

Proposition 3. The two problems are equivalent :

1. Find sufficient conditions on Hy,--- , Hy, for the existence of a Gaussian
field {X (x)}era satisfying the simultaneous scaling properties (6).

2. Find sufficient conditions on homomorphism x for the existence of a Gaus-
sian field {X (z)}ypera A-self-similar with coefficient x where A is the m
parameter group defined by (15).
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The proof of Proposition 3 is based on the complete description of the contin-
uous homomorphisms from 4 into R . More precisely, one can easily check
that (a more detailed proof may be found in [Clau08]):

Proposition 4. If Hypotheses (4.1) are satisfied, the mapping (a1, -+ , am) —
af’* -+ -alrm is a bicontinous isomorphism from (R%)™ into A.

Since the homomorphisms from (R )™ into R are well-known, if Hypotheses
(4.1) are satisfied, Proposition 4 directly implies that (a more detailed proof

may be found in [Clau08])

Proposition 5. Let A a subgroup of Gly(R) of the form (15). Assume that
Hypotheses (4.1) are satisfied. Then for any continuous homomorphism x

from A into RY., there exists a unique (Hy,--- ,Hy,) € (R%)™ such that
V(ar, -+ am) € (RY)™, x(ar* - -apm) = a’ - afim.

Then any A-self-similar Gaussian field with coefficient y, where y is a contin-
uous mapping from A into R , necessary satisfies

*\m 1 m “)
V(ar, - am) € (RL)™, {X (a7 -+ afm @) }pera = {a7" - afi" X (2)}pera
for some (Hy,---, H,,) € (R%)™. We then proved Proposition 3.

Ezxample 5. We now give examples of A-group self-similar Gaussian fields with
coefficient x.

e FBM is group self-similar with A = {ald}qer: and x(ald) = a'l.
e F'BS is group self-similar with A being the group of diagonal matrices with
A1 0
positive coefficients and x/( Y= A \Hn
0 An
e Any OSRF is group self-similar with A = {a® a > 0}, x(a®) = a®.

e The Gaussian field defined in Section 2 above is also group self-similar

at’ 0 at 0
with A = { ,Via; >0}, x( ) = [Taf".
0 alm 0 alm ‘

6 Definition of the desired Gaussian field

As announced in Section 3, we now define the desired Gaussian field in two
steps. We first define a suitable spectral density (see Section 6.1). Thereafter
using simultaneous reduction of matrices Eq,--- , E,, we define renormaliza-
tion directions My, - -, M, (see Section 6.2). Finally in Section 6.3, we will
use Proposition 1 to prove that the Gaussian field we just defined satisfies the
required properties.
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6.1 Definition of a suitable spectral density

We reformulate the properties required on spectral density using group A
defined by (15)

Proposition 6. Let ¢ a function defined on R? with positive values. The two
properties are equivalent :

1. Function |¢(€)|? satisfies the m simultaneous relations (10).
2. Function |¢(€)]? is A homogeneous with coefficient x?(-)| det(-)| that is :

VA€ A aeg €R", [o((AT) €)= [x(A)P|det(A)][o()*,  (16)

Hl.-

with X(afl cealmy = ap Ho,

SO

We now define a suitable spectral density using a Haar measure p 4 of group
A. Let

GO = [ X4 det(A) [G(-A'E) P a(A) a7)
where ¢ € H™H1(R9). As usual

H™ L (RY) = {f € L2(RY), [¢"*1F e LAY}
Then, the invariance property of any Haar measure of group A implies that :

Proposition 7. Function |¢(&)|? defined by (17), is an A homogeneous func-
tion with coefficient x2(-)| det(-)|.

Remark 2. Proposition 7 does not prove that function |¢(€)[? defined by (17)
is finite almost everywhere. The finitness of function |¢(£)|? comes from the
existence of covariance function of the required Gaussian field.

Function |¢(€)|? defined by (17) then satisfies the required properties of a spec-
tral density. We now give some details about the definition of renormalization
directions.

6.2 Definition of renormalization directions

In this Section, our purpose is to define m/ special subspaces of R My, - - -, My
in direct sum, invariant through matrices E1,--- , E,, such that hypotheses
of Proposition 1 are fullfilled. These subspaces will be called renormalization
directions and are invariant through group A. Proposition 1 then ensures the
existence of a Gaussian field satisfying the required properties. Moreover (see
Section 2) if

A = {diag(alE17' sy aim)v (ala e 7CLm) € (Ri)m}7 (18)

with (B, -+, Ep) € Mg, (R) x---x My (R), whose eigenvalues have positive
real parts (see Section 2), we can choose as renormalization directions
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My =R% x - x {0}, , M, = {0} x - x R,

Now we want to extend the approach of Section 2 to the general case. In order
to define renormalization directions, we simultaneously diagonalize matrices

Dy, .-+, Dy, using the following Proposition :
Proposition 8. Let Ey, -+, E,, be m pairwise commuting square matrices.
Denote Dy, - -+, D, their real diagonalizable parts. Then
1. Matrices D1, - -+ , Dy, are paitrwise commuting and then simultaneously di-
agonalizable.
2. Matrices Fn,--- , Ep, are all commuting with matrices Dy, -+ , Dy, .

Definition of renormalization directions will follow from this simultaneous
reduction of matrices D1, - , D,,. The following notation will be needed :

Notation 2 Let A the group defined by (15). Then denote
Ap = {a’?l e ar?Lmv (ala T ,(Lm) € (Ri)m}
We can reduce simultaneously matrices of group Ap :

Proposition 9. Assume that Hypotheses 4.1 are fullfilled. There exists an
invertible matrixz P such that

Ap = {P xdiag(a™,...,a5m a;"  .am™ )x P71 (a1, - ,am) € (RZ)™}

Ym0

where

Af 0
1.F07"cmyk€{17~-~,m},Ak:( k )
0 A;

2. For any k € {1,--- ,m}, matrices A} ( resp A}, D;**") are diagonal ma-
trices with positive coefficients (resp negative, unspecified).
3. Matrices A,Jcr always exists for any k € {1,--- ,m} whereas matrices A,

D;”H can possibly not exist for some values of k or £.

Proof Proof detailed in in [Clau08].
Let us illustrate Proposition 9 through an example.

Ezxample 6. Let us consider the following group

A= {a7"ay”, (a1,02) € (RY)},

100 200
WlthE1=D1: 0-20 ,E2:D2: 0-40
005 001

Here A = Ap, matrices D, et Dy are diagonal and
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A0 240 . 10
Vect < Di,Dy >=Vect < (0 5> ) ( 0 1> >, with A = <0 _2>.

To prove that matrices (D1, Dy) are linearly independent matrices remark

that ((1> , (?)) are linearly independent vectors. Since

5
2 1 1 0
Vect < <5) , <1> >= Vect < (0) , <1) >,
it implies that
A0 2A0 AQ 00
Vect < (0 5>,<0 1) >= Vect < (0 0>,(01) > .

aq 0 0
Hence we deduce that A = {[ 0 a7 0 | ,(a1,a2) € (R%)?}. Thus we recover
0 0 as

the result of Proposition 9 with A} = (1) VAT = (—2) VA = (2)
Proposition 9 implies the following description of group A :

Proposition 10. We use notations of Proposition 9. Group A is of the form
A= {Pafl o 'afrﬁlmpia (a17 e aa"m) € (Ri)m}a

where for any £, matrix Fy admits as real diagonalizable part the diagonal
matriz diag(0,---,0, Ay, 0, - ,DZ"'H).

Proof Proof detailed in [Clau08].
Proposition 10 will allow us to define renormalization directions. Let us define

for any € € {1,---,m}, W\ = RY W, = R%, W4y = R+, We then
choose as renormalization directions

vee{l,--- ,m}, V, =P "WV, =P W, Vi = P W (19)

These subspaces are all invariant through matrices Fq,---, E,,. The sets
V", Vins1 can be possibly equal to {0}.

Notation 3 Denote My,---,M,, the m' non zero sets within the spaces
Vi VeV Vo Vinar. Subspaces My, - -+ , My, are called non triv-

ial renormalization directions.
FEzample 7. In example 6 above, the renormalization directions are
M =R x {0} x {0}, M] = {0} x R x {0}, Mj” = {0} x {0} x R.

In the following Section, we prove that this construction method is effective.



14 Marianne Clausel
6.3 Proof of Theorem 1

Consider function |¢(€)|? defined by (17) and the renormalization directions
My, , M, defined in Section 6.2. We want to find sufficient conditions on
X in order that condition (11) of Proposition 1 is fullfilled. Let us first remark
that :

Lemma 1. Let Ap the following m parameter group
AP _ P—IAP — {afl .. .afr;m’ ((117 e ,am) c (Ri)m}7

and xp defined as xp(Ap) = x(PApP~1) for any Ap € Ap. Condition (11)
is satisfied iff for any x € R? the following integral

[ THwmin(L] < oy > PyminL] < oy o> P)lop OFK,  (20)
L

is finite with |$p: (-)* = [(P*)* = [ xB(Ap)| det(Ap)||dp(~Ab-) Pdpa, (Ap)
and Yp(-) = (P).

Remark 3. In the proof of the existence of the desired Gaussian field, one can
then replace A by Ap, x by xp and ¢ by ¢p.

Proof To prove this result, we perform the changes of variable £ = P!(, Ap =
PAP~.
This Lemma leads us to consider a special case :

Proposition 11. Notations are those of proposition 10. Assume that for any
ie{l,---,m}, —pmin(4;) < H] < pmin(Af), With pmin(A;) = 0 if matriz
A7 does not exist. Then condition 20 is satisfied for x p defined from Ap into
R% as x(af*---abm) = a?l Camm

Proof Proof detailed in [Clau08].

Lemma 1 and Proposition 11 then implies Theorem 1 (see [Clau08] for more
details).
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