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Abstract

The automatic summarization of speech recordings is

typically carried out as a two step process: the speech is

first decoded using an automatic speech recognition sys-

tem and the resulting text transcripts are processed to create

the summary. However, this approach might not be suitable

with adverse acoustic conditions or languages with limited

training resources. In order to address these limitations, we

propose in this paper an automatic speech summarization

method that is based on the automatic discovery of patterns

in the speech: recurrent acoustic patterns are first extracted

from the audio and then are clustered and ranked according

to the number of repetitions in the recording. This approach

allows us to build what we call a “Spoken WordCloud”

because of its similarity with text-based word-clouds. We

present an algorithm that achieves a cluster purity of up to

90% and an inverse purity of 71% in preliminary experi-

ments using a small dataset of connected spoken words.

1 Introduction

Automatic speech recognition (ASR) systems have tra-

ditionally been the cornerstone modules to extract informa-

tion from audio content. The transcript is first extracted and

then analyzed to obtain information (e.g. its topic, partic-

ular keywords, etc.) or even generate a summary. Exten-

sive research efforts have been devoted to improve ASR

over the years. However, speech recognition results are still

challenged by adverse acoustic conditions or when dealing

with languages with limited training resources. Recent re-

search addresses these limitations by analyzing the acous-

tic signal itself to find acoustic patterns that appear multi-

ple times along one or multiple recordings. This approach

was first proposed for speech by [11, 12] to augment ASR

transcripts, and has also been used as a new computational

model to avoid acoustic modeling by [13] or as a way to

summarize the most important information in the audio by

[6, 8].

In this paper we aim at automatically summarizing

acoustic data by finding the most representative and recur-

rent sequences in the input speech. Our goal is to obtain,

as a result of this process, the set of most often recurring

short acoustic words1 which represent the most prevalent

terms in the content. This could be used, for example, to

automatically classify the audio or to group it with simi-

lar content. In previous similar research, Jansen et al. [6]

consider that relevant recurrent information appears in long

(1 second) sequences which are considered relevant even

when appearing only twice in the audio. This assumption

limits the representative segments only to long repetitions,

which diverges from the WordCloud concept proposed here.

Similar to our approach, they pay special attention to a fast

implementation of the algorithm. Muscarielo et al. [8] in-

crementally perform a recurrent sequence discovery (which

they call “motifs”) by locally searching for repetitions in

the audio around defined time intervals. Aside from local

matches, they also keep a global library of long-term mo-

tifs. Like us, they aim at detecting short segments (> 0.6
seconds), but these are only stored as long-term library mo-

tifs if they occur at least twice within the local interval, thus

being prone to missing segments that might still be relevant

by occurring consistently over a long audio document but

never frequently enough within a particular local segment.

The approach proposed in this paper is inspired by the

algorithm proposed in [11, 12], where all recurrent short

(∼ 0.5 second) sequences are first found in the acoustic

data, and then clustered to form homogeneous groups. As

mentioned above, the main goal in [11] is to improve speech

recognition results by correcting the transcription of homo-

geneous segments clustered together. Therefore their effort

goes into maximizing cluster purity, without paying special

attention to inverse purity (i.e. how many clusters contain

homogeneous segments). However, our goal is to obtain a

set of the most representative spoken words in the acous-

tic data by building a list of the most recurrent acoustic

segments, ranked by the number of times they occur. The

1Although we refer to spoken words throughout the paper, as we do

not use any knowledge about the language being processed, we are in fact

detecting commonly repeated sequences which we hypothesize could cor-

respond to actual words in that language



proposed algorithm first extracts recurrent acoustic patterns

from the speech by using an extension of the Unbounded-

DTW algorithm proposed in [2]. Next, all found patterns

are clustered to form what we refer to as a “spoken Word-

Cloud” (given its similarity to text-based word-clouds). A

comparison with the algorithm in [11] shows that the pro-

posed approach is faster and more accurate when tested on

this task using a database composed of concatenated words

spoken in isolation.

2 Segmental-DTW-Based Clustering

The segmental-DTW-based clustering in [11, 12] was

shown to be able to find repeating sequences within an audio

document that could be used to augment the speech recog-

nition transcripts towards an information retrieval task. In

this section we briefly review the main key points of their

algorithm as we take is as the baseline for our system. In

a first step, unsupervised pattern discovery in speech is

performed using the so-called segmental-DTW algorithm.

Segmental-DTW works as follows: A distance matrix is

first constructed by storing the Euclidean distance between

all acoustic feature vectors of the two sequences to be com-

pared (these can be the same sequence in case we are look-

ing for repetitions in the same acoustic document). The

choice of acoustic feature vectors varies between standard

MFCC’s in [11, 12] to phone posteriorgrams in more recent

work by the same authors. Next, local optimum paths are

discovered by applying standard DTW within each of sev-

eral overlapping diagonal bands along the similarity matrix

by uniformly setting start-end points along the matrix axes,

and constraining the possible paths to a maximum deviation

from the diagonal between these start-end points. Finally,

for each band, the most similar subsequence – longer than a

predefined minimum length – is returned.

In a second step, repeating sequences are clustered as

follows: a similarity profile is first constructed by accu-

mulating the resulting scores from the matching sequences

with respect to time, and by then selecting the most re-

current sequences at the peaks of such profile. In their

implementation they do not delimit a start-end times for

the selected recurrent sequences. Finally in a third step,

these sequences are set to be the nodes of a graph where

its paths (and matching scores) correspond to the edges be-

tween nodes. This graph can also be represented as a sparse

similarity matrix as later explained in section 3.3. The graph

is clustered using the algorithm proposed in [9], which is

fast to compute and has been shown to work well for com-

munity clustering.

Although the algorithm proposed in this paper closely re-

sembles the general architecture proposed by [11, 12], their

proposal favors the creation of many clusters with few se-

quences in each, therefore with a high purity but low inverse

Figure 1. Spoken WorlClouds algorithm

blocks diagram

purity (refer to Section 4.1 for a definition). This makes

their algorithm not applicable to the creation of a “spoken

WordCloud”, where we are interested in a one-to-one re-

lationship between the clusters and the actual number of

unique repeating terms in the recordings.

3 Spoken WordCloud Algorithm

In this section we describe each of the building blocks

that conform the proposed “spoken WordCloud” algorithm.

As seen in Figure 1, the algorithm is composed of 3 main

modules: (1) First we perform an automatic pattern discov-

ery to detect audio segments longer than 0.5 seconds that

repeat over time. We do this by using the previously pro-

posed Unbounded Dynamic Time Warping (U-DTW) algo-

rithm [2] and extend it to process long audio recordings;

(2) Next, a similarity profile (see section 3.2) is created and

the most repeated segments (which we will refer as acoustic

words from now on) are obtained by finding the maxima of

the profile and extracting their start-end points; (3) Finally,

the three outputs of the algorithm are created: a “spoken

WordCloud” which is generated by clustering the repeated

words, a ranked list of the most recurrent words in the au-

dio, and the segments that appear in each of the clusters.

Note that the proposed approach differs from [11] in

three aspects: the pattern discovery algorithm, the pro-

cess to obtain the start-end positions of selected acoustic

words and the similarity metric between the different acous-

tic words in the clustering step (and the clustering algorithm

itself). In this section we describe in detail each of the afore-

mentioned differences.

3.1 Unbounded DTW (U-DTW) for Long
Sequences

The first necessary step for unsupervised pattern discov-

ery entails finding the acoustic sequences that repetitively



appear in the acoustic document over time. In [2] we pro-

posed the U-DTW algorithm that is able to find all repeated

sequences in an acoustic signal longer than a given mini-

mum duration. This algorithm differs from previous pro-

posals [11, 7] in that it avoids the evaluation of the com-

plete similarity matrix between the two sequences, hence

significantly reducing its computational cost. Unbounded

DTW leverages the minimum segment matching length set

by design in order to avoid computing similarities between

acoustic vectors which do not belong to a matching se-

quence. It computes an initial set of K similarities between

both sequences. These locations need to be chosen to en-

sure that the path along the matrix of any pair of matching

sequences will at least go through one of them. By care-

fully defining the locations where to compute these similar-

ities (which we call synchronization points) we can achieve

that K << N · M , where N and M are the sizes of both

compared sequences. Then, for every synchronization point

that we suspect belongs to a matching segment (i.e. with a

high similarity value) we perform a forward and backward

path search until the entire matching path is found or the

sequence is discarded because of being too short. Note that

this approach ensures that the similarity between pairs other

than the synchronization points is computed only when nec-

essary. For more information on the algorithm, please re-

fer to [2]. This algorithm automatically finds matching se-

quences in two acoustic segments but does not perform any

clustering of the results, which we address in the rest of the

paper.

A general problem of previous algorithms [2, 11, 7] is

the quadratic memory requirements of the similarity matri-

ces, which limit their efficiency and speed when processing

very long recordings (longer than 1 hour). In order to over-

come this problem without constraining the possible pat-

terns to be found, we automatically cut the sequence into

manageable adjacent chunks and perform U-DTW on each

of them with all the rest. As seen in Figure 2(a), an extra

margin around each chunk is added to allow for any possi-

ble paths to be found even if crossing the chunk’s borders.

This way we ensure that no matching sequences will be lost

when performing this modification to the original U-DTW

algorithm.

3.2 Similarity Profile and Word Extrac-
tion

Given a list of matching paths and their scores, we wish

to obtain the start-end times of the sequences in the speech

segments that are matched. These will become the acoustic

words that will be clustered and used to build the “Spoken

WordCloud”. We first compute a similarity profile, such

as in [11], for all detected matching paths by adding their

scores along time. This similarity profile contains, at any

given time, the sum of matching similarities for all match-

(a) (b)

Figure 2. (a) U-DTW for large scale: paths are

allowed to cross the borders of the chunk; (b)

U-DTW similarity measure example between

segment s1 and s2.

ing sequences that go through that instant. Therefore, the

higher the values in the profile, the more recurrent the pat-

terns are. Acoustic words are detected as each of the max-

ima in the similarity profile plot whose value is higher than

a predefined minimum threshold. Note that we choose the

maxima because we are using a similarity matrix, instead of

choosing the minima if we used a distance matrix.

In order to determine the start-end times of the found

acoustic words, we gather all matching paths that cross such

maxima and find the median values of all their starting and

ending times. Although simple, this method turns out to

be more robust than, for example, finding the local minima

at either side of the maxima or taking the average (proba-

bly because the selected time corresponds to existing paths

starting and ending times). In order to further constrain the

acoustic words, we perform a simple energy-based speech

activity detection on the input data and slightly adjust the

start-end times or cut acoustic words in two when they in-

terfere with a silence region.

3.3 Similarity Matrix Between Acoustic
Words

All found acoustic words are clustered in order to find

the most recurrent words. The simplest strategy would be

to cluster together those acoustic words that share the most

common matching segments. However, this would not re-

turn optimum results for our WordCloud as similar acoustic

words are usually composed of an overlapping (but quite

different) set of matching sequences. In this section we

define an appropriate similarity measure between acoustic

words and in the next section we explain possible cluster-

ing strategies that lead to more desirable WordClouds.

In [11], the authors use the similarity obtained between

matching segments in the pattern discovery step, setting to

0 the similarity of all unmatched pairs. We shall denote this

similarity Kp. Note that by ignoring the similarity between

pairs that have not been matched during the discovery step,



some important information might get lost. Hence and in

addition to testing Kp, we propose to build a full similarity

matrix KU (s1, s2) between any pair of acoustic words s1
and s2 by using the metric in Eq. 1.

KU (s1, s2) =
e1 − b1

|s1|
·
e2 − b2

|s2|
· udtw(s1, s2) (1)

where |s∗| is the size (in frames) of sequence s∗, b∗ and e∗
correspond to the optimum starting and ending points of the

best U-DTW path computed between the two sequences,

and udtw(s1, s2) is the total U-DTW score similarity, aver-

aged by the path length (See Figure 2(b)). Note that within

U-DTW we use the dot product, therefore udtw and the fi-

nal similarity always fall within the [0, 1] interval.

3.4 Clustering

In this paper, we evaluate two different clustering tech-

niques: graph clustering and spectral clustering. The graph

clustering technique was used in [11]. We have imple-

mented it by means of the Normalized Cuts algorithm [4].

Note that this is different from the implementation in [11]

because they require setting the value of a threshold (which

leads to an unknown a priori number of final clusters) while

in Normalized Cuts the final number of clusters is defined

a priori. In general, graph clustering is commonly used for

large scale clustering such as pixels in images. Its main in-

terest with respect to standard spectral clustering techniques

is that it is less computationally demanding as it does not

require to perform a prior factorization of the similarity ma-

trix.

Conversely, spectral clustering performs the classifica-

tion of the segments in a smaller meaningful linear subspace

[10]. In other words, a singular value decomposition of the

similarity matrix is first performed in order to get its eigen-

vectors and eigenvalues. Then the matrix is projected on a

small number of eigenvectors having the biggest eigenval-

ues in order to get the Principal Components of the matrix

(PCA). Finally a standard clustering technique such as k-

means can be applied on the projected segments. The possi-

ble limitation of this approach is an intractable dimensional-

ity reduction when too many segments have to be clustered.

In such cases one can use the large scale extension of this

method as proposed in [5].

Note that the dimensionality reduction used in spectral

clustering is useful to regularize the acoustic words by fre-

quency. For instance, words that appear a lot will corre-

spond to a principal direction, whereas unique or rare words

are neglected by the dimensionality reduction. Such behav-

ior is interesting when clustering a long speech segment if

we want to extract only the most recurrent acoustic words.

This dimensionality reduction can also be seen as a smooth-

ing of the similarity matrix which helps in separating the

acoustic words.

4 Experiments

4.1 Experimental Setup

In our experiments we used the MAMI dataset (see [3]),

which we are making publicly available to the community2

. It consists of recordings from 23 different speakers,

each one uttering 47 different words, 5 times each, using

a mobile phone in a noisy environment. Results using this

database should be considered preliminary, given that they

do not take into account the co-articulation effects of pro-

nouncing several words together in natural speech. On the

contrary, the background conditions in which each word

is recorded are not ensured to be constant, unlike in other

datasets like lecture recordings. We are planning on evalu-

ating the proposed approach on larger datasets in our future

work.

For each speaker we create a single long feature stream

by concatenating the 235 spoken words, and apply a simple

energy-based speech/silence detector to filter out silence.

The presence of silence is a big problem for unsupervised

word discovery as all silence regions look very much alike.

Note that no bias is introduced by the concatenation of

words as the silence detector separates the words and the

paths cannot cross the silences. For each file we extract 20

dimensional Mel-Frequency Cepstral Coefficients (MFCC)

features every 20ms. As MFCC are speaker dependent we

treat all speakers independently in our experiment, leaving

the multi-speaker case to future work.

The performance measures used for the evaluation of

the clustering are purity, inverse purity and F-score as ex-

plained in [1]. The purity focuses on the frequency of the

most common category in each cluster. This is important

as we want to prioritize having only one class of acoustic

words in every given cluster. On the contrary, purity does

not take into account how spread the acoustic words from

a given class are in the clustering. For instance having one

cluster per acoustic word would lead to a purity value of 1
but this is not desirable for a WordCloud application. There-

fore, we also compute the inverse purity, which measures

how accurate is the grouping of the acoustic words into the

real classes. Finally, the F-score takes into account both the

purity and the grouping of the true classes together.

One application of a spoken WordCloud is a sum-

mary of the spoken content with only the most represen-

tative/recurring acoustic words. Hence, it is of interest that

these few acoustic words be as pure as possible. For this

reason we also compute these metrics only on the n biggest

clusters. In our experiments, we keep the n = 40 biggest

2http://mm2.tid.es/mamidb/mamidb.tar.gz



Method Pur. IPur. Fsc. time (m)

Segmental DTW 0.757 0.556 0.645 110

Unbounded DTW 0.802 0.587 0.675 70

Table 1. Comparison between Segmental
DTW and Unbounded DTW for Unsupervised

Pattern Discovery.

clusters, which is slightly less than the real number of dif-

ferent words in the MAMI database for each speaker. Note

that all results correspond to the average over the 23 sub-

jects in the database.

4.2 Segmental vs. Unbounded DTW

In this section we compare Segmental-DTW and

Unbounded-DTW for unsupervised pattern discovery and

posterior clustering. We use a pipeline similar to the one

used in [11]. All the parameters are exactly the same for

both algorithms except for the path detection threshold that

has been set to 0.7 for U-DTW and 0.6 for Segmental-DTW

in order to obtain a similar number of paths in the pattern

discovery step. The minimum path size is set to 0.4 seconds

for both, and the minimum similarity for a maximum in the

similarity profile to be considered as an acoustic word is set

to 1. This means that at least 2 paths crossing the sequence

are necessary to consider a sequence to be a word. An Ncuts

graph clustering is used with 60 clusters in both cases.

Results are shown in Table 1. The purity, the inverse

purity and the F-score are all better with U-DTW (∼ 4%
absolute improvement). Furthermore, the last column of

the table shows the execution time – in minutes – for the

pattern recognition on all 23 subjects, showing that the U-

DTW is 40% quicker than Segmental-DTW. Here the time

needed for word detection and clustering is neglected due to

the small number of words (≈ 1 min per subject). All these

results show the advantage of using U-DTW for pattern de-

tection and posterior clustering over the Segmental-DTW

algorithm for the WordCloud task.

4.3 Similarity and Clustering

In this section we investigate the use of the proposed

similarity measures and two different clustering strategies

(graph and spectral) using the U-DTW algorithm. From the

obtained acoustic words we first compute the standard sim-

ilarity matrix KP proposed by [11] and the U-DTW simi-

larity matrix KU proposed in section 3.3. We then compare

the clusters using each similarity matrix and also using the

average of the two. Both the graph and spectral clustering

algorithms are set to find 60 clusters.

Results are shown on Table 2. First, we observe that

on this dataset, the spectral clustering works better than the
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Figure 3. Purity, inverse Purity and F-score

for different number of clusters with KU +KP

and spectral clustering.

graph clustering. Concerning the similarity measure, the U-

DTW measure alone is not as good as the standard one, but

combining the two leads to a purity improvement of 2% ab-

solute. Note that the three measures used (purity, inverse

purity and F-score) show similar improvements for the dif-

ferent clustering approaches and similarity measures. This

shows that we are not promoting one aspect of the clustering

over others, but rather evaluating the global efficiency.

Previous results correspond to a fixed number of over-

all clusters, but in a real life application, the total number of

spoken words is usually not known a priori. Figure 3 shows

results for different numbers of clusters when using the best

method (KU + KP for similarity and spectral clustering).

The dotted lines correspond to the results of keeping only

n = 40 biggest clusters. We can see that when the number

of clusters increases the purity increases and the inverse pu-

rity decreases. But when keeping only the 40 biggest clus-

ters, the purity remains more constant while the inverse pu-

rity still increases, leading to an overall better F-score. This

shows that regardless of the total number of clusters we use

in the clustering of a speech recording, our final WordCloud

(containing only the n-best clusters) will usually be a good

summarization of that recording.

5 Conclusions and Future Work

Automatic speech recognition (ASR) systems have tra-

ditionally been the cornerstone modules to extract infor-

mation from audio content. However, ASR may be very

challenging under adverse acoustic conditions or for lan-

guages with limited resources. Recent research address the

problem by looking directly at the signal and finding repet-

itive content that can be later used, for example, to help

improve ASR results or to summarize the acoustic content



Graph Spectral

Sim. Meas. Pur. Pur.40 IPur. IPur.40 Fsc. Pur. Pur.40 IPur. IPur.40 Fsc.

KP 0.80 0.78 0.59 0.67 0.68 0.88 0.86 0.69 0.80 0.74

KU 0.82 0.81 0.61 0.71 0.69 0.86 0.84 0.68 0.78 0.73

KP +KU 0.84 0.84 0.62 0.72 0.71 0.90 0.89 0.71 0.82 0.77

Table 2. Results obtained for different similarity measures and clustering (60 clusters).

with representative acoustic snippets. In this paper we are

interested in obtaining a representation of the most preva-

lent spoken words in the acoustic input by building a list of

the most recurrent acoustic segments, ranked by the number

of times they occur. We refer to the output of our system as

“Spoken WordClouds” given its similarity with text-based

word-clouds. We have proposed important modifications to

a well known pattern discovery and clustering algorithm,

originally used to improve ASR, to make it more suitable

for this application. First, we have used U-DTW for un-

supervised pattern discovery with good results in terms of

computational time and clustering performances. Next we

have investigated the use of a new similarity measure be-

tween acoustic words and the use of two different cluster-

ing algorithm. We have evaluated the proposed approach

in a small database and obtained up to 90% cluster purity

and 71% inverse purity. Future work will entail testing the

algorithm on recorded lectures and meetings, working on

a speaker-independent version and evaluating the meaning-

fulness of the obtained WordClouds as a summary of the

content.
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