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ABSTRACT approach, we propose to use both labels and probabilities as

This paper addresses the pattern classification problesn ari"Put thus leaming simultaneously a classifier and a prob-

ing when available target data include some uncertainty inz—ibIIIStIC output. Note that the output of our classifier may

formation. Target data considered here is either quafati be transformed to probability estimations without using an

(a class label) or quantitative (an estimation of the pamter :’nappl?g algzgorlthijn.f_ SUM blem f lati
probability). Our main contribution is a SVM inspired for- n section = we detine our New proviem formuration

mulation of this problem allowing to take into account class(referred to as P-SVM) to deal with certain and probabilis-

label through a hinge loss as well as probability estimases u ;L(;r:wik:/?ésrksgglfgﬁ\;fr% rigg?](t)sntr?edaesss%ncki):;;heu;\:jhrzltiec
ing e-insensitive cost function together with a minimum norm P d

(maximum margin) objective. This formulation shows a dualpmblem' Finally, in section 5 we compare its performanoes t

form leading to a quadratic problem and allows the use of éhe classical SVM formulation (C-SVM) over different data

representer theorem and associated kernel. The solutien prSetS to demonsirate its potental.

vided can be used for both decision and posterior probgbilit

estimation. Based on empirical evidence our method outper- 2. PROBLEM FORMULATION
forms regular SVM in terms of probability predictions and _
classification performances. We present below a new formulation for the two-class clas-

i i sification problem dealing with uncertain labels. Létbe a
~ Index Terms— support vector machines, maximal mar- taa¢yre space. We defirie;, 1;)i—1..., the learning dataset of
gin algorithm, uncertain labels. input vectorgz;);—1...., € X along with their corresponding
labels(l;)i=1...m, the latter of which being
1. INTRODUCTION e class labelsi; =y; € {—1,+1}fori = 1...n (in
classification),
e real values:l; = p; € [0,1]fori = n+1...m (in
regression).

In the mainstream supervised classification scheme, an ex-
pert is required for labelling a set of data used then as éput
for training the classifier. However, even for an experts thi ) ) ) o
labeling task is likely to be difficult in many applications ~ i» @ssociated to point; allows to consider uncertainties
the end the training data set may contain inaccurate class@80ut pointz;'s class. We define it as the posterior probabil-
for some examples, which leads to non robust classifiers[1{y for class 1.
For instance, this is often the case in medical imaging where pi=pla;) =PY; =1 X; = x).
radiologists have to outline what they think are malignaniye gefine the associated pattern recognition problem as
tissues over medical images without access to the reference . 1 9

) . . . min 5 llwl| 1)
histopatologic information. We propose to deal with these w
yncertainties by introduping probabilis_,tic labels ir] tearn- subject to {yi(wT:ci 1) > 1, i=1..n
ing stage so as to: 1. stick to the real life annotation proble s <wTa b b<st i=ntl.m
2. avoid discarding uncertain data, 3. balance the influence v ! -
of uncertain data in the classification process. Where boundaries;”, z;" directly depend om;. This for-
Our study focuses on the widely used Support Vector Mamulation consists in minimizing the complexity of the model
chines (SVM) two-class classification problem [2]. Thiswhile forcing good classification and good probability esti
method aims a finding the separating hyperplane maximizingnation (close tg;). Obviously, ifn = m, we are brought
the margin between the examples of both classes. Sevetahck to the classical SVM problem formulation.
mappings from SVM scores to class membership proba- Following the idea of soft margin introduced in regular
bilities have been proposed in the literature [3, 4]. In ourSVM to deal with the case of inseparable data, we introduce



slack variablest;. This measure the degree of misclassifi-¢* leads to the following optimality conditions:
cation of the datunx; thus relaxing hard constraints of the

initial optimization problem which becomes 0 <o <C, i=1..n
0 <uf <C, i=n+1l.m
o uin 2Hw||2+02&+0 Z & +&H @ 0 <u <C, i=n+1l.m
s ’ i=1 i=n—+1 n m
_ e T T s
SUbjeCt to w = E%yz% -;1(:“’1 1y )xz
yilw @ )T— ¢ Lo yla = X (uf —u7)
z; =& Sw ai+b<z '+, i=n+l.m i=n1
0<é&, i=1.n

wheree; =[1...1 0...0 ]Tande; =1[0...0 1...1 ]T.

n times (m-n) times n times (m-n) times

b ) defined | " Calculations simplifications then lead to
arameter€' andC are predefined positive real num eISCON-| (4 b ¢, 6= ¢+, a0, B, iyt 7~ ) =

trolling the relative weighting of classification and reggmn

0 < ¢ ando < &, i=n+1l.m

performances T _ - +
Let e be the labelling precision antdthe confidence we have W W Zl %+ _ZH Hi %i _ZH Hi =
. . . . 1= =N =n

in the labelling. Let’s defing = ¢ + ¢. Then, the regression

problem consists in finding optimal parameterandb such Finally, letT = [ ... an g T 117 be a
s e Qg e o Pt -

that 1 vector of dimensio2m — n. Then
| @y Pil<n
1 + e alw x;
Tw=TTGT
Thus constraining the probability prediction for pointto ~ Where
remain around tom within distancen [5, 6, 7]. K, - K, K,
The boundaries (where " z; + b = +1), define parameter G=| - K, K3 — Kj
as: Ky — K3 K3
=In(: -1
a=In(; = 1) with
max (0, p; — < —2L1 < min(p; +7,1), K = YT T )i ns
Finaliy: (0,pi —n) T4 o—a@ it (pi+m,1) K1 - (yTyJ:g .x,J) =1
=z < U}T.’L‘i +b < Zz‘+’ 2 = (xl xjyz)z:L..n,j:n-ﬁ-l...m;
Kz = ($1T$j)i,j:n+1...m7
wherez;” = — > In(5-1 — 1) andz" = — 2 In(53 — 1). The dual formulation becomes
min %I‘TGF —é'r,
3. DUAL FORMULATION r T
f'r=0
. ~ + + p— —
We can rewrite the problem in its dual form, introducing La- with €= [L,_lz “Zni1 " T Zm 21 P
grange multipliers. We are looking for a stationary poirt fo ntimes _mtimes n-mtimes 3)
the Lagrange functiofi defined as with  fT=[y",—1---—1, 1...1 ]
L — ot T —
(w, 0,667, o, Bp™, n™ 7 y7) = n-m times n-m times
and 0<I'<[C...C C...C (C...C|T
2||w|\2+CZ§z+C Z & +&H n timesn-m timesn-m times
i=n+1
Zaz yi(w' @i +0) — (1 - &) Zﬂl& 4. KERNELIZATION
_ Z M{((w 24 b)— (27 — &) — Z & Forr_nulauons (2 ar_1d (3) can be easﬂ){ generallzed_by _mtro—
i1 i1 ducing kernel functions. Lét be a positive kernel satisfying
m e . m o Mercer’s condition and H the associated Reproducing Kernel
- Z pi (7 + &) — (w zi +b)) — Z Y & Hilbert Space (RKHS). Within this framework equation (2)
i=n+l i=n+l1 becomes
witha >0,8>0,u" >0,u~ 204" >0andy™ >0 +C +C +&f 4
Computing the derivatives df with respect tav, b, £, £~ and fib 5 5 ,£+ 2 HfHH ;& i ;1 S8 @



subject to This datasetz!, y!);—;. . is used to train the C-SVM

classifier.
yi(f(x) +0) >1-¢, i=1.n b) We define another data set’, !),_; ., such that, for
5 =& Sflw)+b<zf g i=ntlom i=1...m,
0=& . t=l.n it Pyl=1z) > 1-n, theng! = 1,
0<¢& and0 <¢&; i=n+1l.m if Pyl=1z) < 7, theng! = —1,
j¢ = P(y' =1|z}) otherwise
Formulation (3) remains identical, with v (i = 1az) (6)
gl - (Ziyjk(xi,xj))i,jzl...m If the probability values are sufficiently close to 0 or
K2 - (k(mi’xj)yi)i:L-ﬂJ:"“---m’ 1 (closeness being defined by the precision and confi-
3 = (k(zi,25))ij=nt1..m) dence), we admit that they belong respectively to class -1
or 1. This probabilistic datasét!, 4!),_; .. is used to
5. EXAMPLES train the P-SVM algorithm.

. We compare our two approaches using the tegti$et ;. ,¢.
In order to experimentally evaluate the proposed method foks e know the true probabilitigs? (y! = 1|2t))i_1. nt, We
) 2 =l...n"

handling uncertain labels in SVM classification, we havesir_nCan estimate the probability prediction error (KL). Figure

ulated different data sets described beI0\2/v. Ir21 'Fhese nealeri 1 shows the probability predictions performances improve-
examples, a RBF kerné{(u, v) = e~ lluvll/ze is used and  ment shown by the P-SVM: the true probabilities (black) and
C = C = 100. We implemented our method using the SVM- p_gy\ estimations (red) are quasi-superimposed (KL=0.2)

KM Toolbox [8]. We compare the classification performancesyhereas Platt's estimations are less accurate (KL=11.3).
and probabilistic predictions of the C-SVM and P-SVM ap-

proaches. Inthe first case, probabilities are estimatedimgu !
Platt’s scaling algorithm [3] while in the second case, prob
bilities are directly estimated via the formula defined i (2
Py =1]z) = m Performances are evaluated by Egﬂ;
computing o6 4 02 o oz o4 os
e Accuracy (Acc) x
Proportion of well predicted examples in the test set
(for evaluating classification). PO=10), = PO=L10p_ gyl

e Kullback Leibler distance (KL) ' A
i P P = 1 €T; }
Dir(PIQ) = 3 Py = 1la:) log( LW =10, o

Q(yZ — 1|$1) -0.6 -04 -02 0 02 04 06

i=1 x
for probability distributions P and Q (for evaluating
probability estimation).

o
©

P(y=1[x)

probability
o o
o

~

C-SVM + Platt

o
N

o

IPO=11)e = PO=LX0c_gym + prad

o
-
o

probability
o
[

o
=)
a

Fig. 1. Probability estimations comparison. Top plot shows
the true posterior probabilities with C-SVM and P-SVM esti-
mations overlaying. Lower plot shows the distance between
5.1. Probability estimation true probabilities and estimations.

We generate two unidimensional datasets, labelled '+1" and _
-1’, from normal distributions of variances?,= ¢?=0.3  5-2. Noise robustness

— —_ ), l
ahnd lmeansﬂ,é—-o.s and_“zlo_go"r"dLefS(xi)izl--h”l denote yq generate two 2D datasets, labelled '+1’and’-1", from-nor
the leaming data set(=200) and(xf);—1...« the test set mal distributions of variances? ;=0?=0.7 and meang_; =

s Ji=1 .
_(” '10001' We compuk:el, for eacr: pOtE,lLt, 1”5 tlr:ue prﬁbabll- (-0.3, -0.5) andu;=(+0.3, +0.5). As in the previous experi-

:ty P(yi o +1|$ii tk()) ”edo_ng to class + ol rom NEere on, ment, we compute class 1’ membership probability for each
earning data are labelled in two ways, as Tollows point z! of the learning data set. We simulate classification

a) Fori =1...n!, we get the regular SVM dataset by sim- €TOr by artificially adding a centered uniform noiseof am-
ply using a probability of 0.5 as the threshold for assign-Plitude 0.1), to the probabilities, such thatfor= 1. .. 7,

ing class labelg); associated to point;. This is what P(y; = 1|z;) = P(y; = 1|z3) + 6.

would be done in practical cases when the data contairwe then label learning data following the same scheme as de
class membership probabilities and a SVM classifier is 9 9

used. scribed in (5) and (6). Figure 2 shows the margin location
and probabilities estimations using the two methods over a
if Pyl=1lz) > 05, then ¢yl =1, 5 grid of values. Far from learning data points, both probabil
if p(yé — 1|;1;§) < 0.5, then yf = _1 () ity estimations are less accurate, this being directlydahto



the choice of a gaussian kernel. However, P-SVM classifica
tion and probability estimations obtained for 1000 teshfmi
are clearly more alike the ground truth (Acg/mm = 99% ,
KLp.sym = 3.6) than C-SVM (Ace.sym = 95%, Klc.sym =
95). Contrary to P-SVM which, by combining both classifi-
cation and regression, predicts good probabilities, C-S¥YM
sensitive to classification noise and is no more converging t
the Bayes rule as seen in [1].

P-SVM probability estimates

Fig. 2: Probability estimations of C-SVM and P-SVM over a
grid using noisy learning data (uniform noise, amplitudg 0.
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Fig. 3: Noise impact on P-SVM and C-SVM classification
performances

ing both SVM classification and regression loss. Experimen-
tal results show that our formulation can perform very wall o
simulated data for discrimination as well as posterior prob
bility estimation. This approach will soon be applied omgli

cal data thus allowing to assess its usefulness in compster a
sisted diagnosis for prostate cancer. Note that this fraomew
initially designed for probabilistic labels can also be g
ized to other dataset involving quantitative data as it can b
used for instance to estimate a conditional cumulativeidist
bution function.
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