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A Polynomial Solution to the Model Matching Problem of Nonlinear
Time-delay Systems

Miroslav Halás and Claude H. Moog

Abstract— In this paper the model matching problem is
considered for single input single output nonlinear systems with
delays. A full characterization for its solvability is provided
within a simple class of compensators. The approach is deve-
loped by means of the transfer functions of nonlinear time-delay
systems. The state elimination problem for the systems given
by their state-space representation is discussed as well.

I. INTRODUCTION

An algebraic formalism of differential forms, originally
developed for nonlinear systems without delays [6], [2], was
recently extended to the case of time-delay systems [22],
[24], [25], [26], [31] and was shown to be effective in
solving control problems like accessibility and observability,
disturbance decoupling, feedback linearization and others.
On the other side, in the case of systems without delays,
there exists, in comparison to the machinery of one-forms,
an alternative approach in which the system properties are
described by skew polynomials from non-commutative poly-
nomial rings. Such polynomials act as differential [33], [34]
or shift [20] operators on the differentials of the system
inputs and outputs. The polynomial approach to nonlinear
systems shows a great similarity to methods well known from
the linear theory, see for instance [30]. In particular, one can
introduce even a notion of a transfer function of a nonlinear
system as was recently shown in [10], [13], [14], [15], [32].
Such a concept is equivalent to that of [7] for linear time-
varying systems which allows us to associate to a nonlinear
system the tangent (or variational) linear system, see for
instance [8], over Kähler differentials [19] except that now
the time-varying coefficients of the polynomials are not nec-
essarily independent [21]. The transfer function formalism of
nonlinear systems generalizes well known results valid for
linear time invariant systems and was, for instance, already
employed in [29] to investigate some structural properties
of nonlinear systems, in [18] to study the nonlinear model
matching problem, in [16] to study the observer design and
in [17] to study the realization problem of nonlinear systems.
The polynomial approach to nonlinear systems and the notion
of a transfer function was recently carried over also to the
case of time-delay systems [11], [12] where some basic

M. Halás is with Institute of Control and Industrial Informatics, Fac. of
Electrical Engineering and IT, Slovak University of Technology, Ilkovičova
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properties were discussed. In this paper, the model matching
problem of nonlinear time-delay systems is solved within
such a transfer function formalism. As it was done in [12], a
more detailed discussion is provided below, concerning also
structural properties as the notions of a relative degree and a
relative shift. In addition, we also depict a possible solution
to the state elimination problem for the nonlinear time-delay
case.

II. TRANSFER FUNCTIONS OF NONLINEAR TIME-DELAY
SYSTEMS

We will use the algebraic formalism of [22], [24], [25],
[26], [31] which extends the concept of differential one-
forms to the case of time-delay systems and of [11], [12]
which introduces transfer functions of nonlinear time-delay
systems.

In this paper we restrict our attention to the SISO nonlinear
time-delay systems defined by an input-output equation of
the form

y(n)(t) = ϕ({y(k)(t− i), u(l)(t− j)}) (1)

where 0 ≤ k ≤ n − 1; 0 ≤ l ≤ n; i, j ≥ 0 and u ∈ R
and y ∈ R denote input and output to the system and ϕ
is assumed to be an element of the field of meromorphic
functions K.
Note that it is not restrictive to assume i, j ∈ N as all
commensurable delays can be considered as multiples of an
elementary delay h [25].

Remark 1: In the case of systems without delays even
if one starts with a state-space representation it is always
possible to eliminate the state variables to get an input-output
equation, see for instance [6]. However, it is not completely
clear how one can carry over the idea of the state elimination
procedure to the time-delay case. A special case is discussed
in Appendix I. In the general case, possible drawbacks may
be met in the state elimination process for system (10). For
the sake of simplicity, here we assume that the system (10)
admits an input-output equation of the form (1).

The Ore algebra K[δ, s] of polynomials in s and δ over K
with the usual addition, and the (non-commutative) multipli-
cations given by the commutation rules

sa(t) = a(t)s + ȧ(t)
δa(t) = a(t− 1)δ (2)

sδ = δs

where a(t) ∈ K, represents the ring of linear differential
time-delay operators that act over the vector space of one-



forms E = spanK{dξ(t); ξ(t) ∈ K} in the following way∑
i,j

aijδ
jsi

 v(t) =
∑
i,j

aijv
(i)(t− j)

for any v(t) ∈ E .
The commutation rules (2) actually represent the rule for
differentiating and, respectively, time-delaying.

Proposition 1 (Ore condition): For all non-zero a, b ∈
K[δ, s], there exist non-zero a1, b1 ∈ K[δ, s] such that a1b =
b1a.

Thus, the ring K[δ, s] can be embedded to the non-
commutative quotient field K〈δ, s〉 by defining quotients
[27], [28] as

a

b
= b−1 · a

The addition and multiplication in K〈δ, s〉 are defined as

a1

b1
+

a2

b2
=

β2a1 + β1a2

β2b1

where β2b1 = β1b2 by Ore condition and
a1

b1
· a2

b2
=

α1a2

β2b1
(3)

where β2a1 = α1b2 again by Ore condition.
Due to the non-commutative multiplications (2) they, of
course, differ from the usual rules. In particular, in case of
the multiplication (3) we, in general, cannot simply multiply
numerators and denominators, nor cancel them in a usual
manner. We neither can commute them as the multiplication
in K〈δ, s〉 is non-commutative as well.

Once the fraction of two skew polynomials is defined we
can introduce the transfer function of the nonlinear time-
delay system (1) as an element F (δ, s) ∈ K〈δ, s〉 such that
dy(t) = F (δ, s)du(t).

After differentiating (1) we get

dy(n)(t)−
n−1∑
k=0
i≥0

∂φ

∂y(k)(t− i)
dy(k)(t− i) =

=
n−1∑
k=0
j≥0

∂φ

∂u(k)(t− j)
du(k)(t− j)

or alternatively

a(δ, s)dy(t) = b(δ, s)du(t) (4)

where a(δ, s) = sn −
∑n−1

k=0,i≥0
∂φ

∂y(k)(t−i)
δisk and b(δ, s) =∑n−1

k=0,j≥0
∂φ

∂u(k)(t−j)
δjsk are in K[δ, s]. Then

F (δ, s) =
b(δ, s)
a(δ, s)

(5)

=
bm(δ)sm + · · ·+ b1(δ)s + b0(δ)

sn + an−1(δ)sn−1 + · · ·+ a1(δ)s + a0(δ)

where m = max{i ≥ 0; ∂ϕ/∂u(i) 6= 0}.
Example 1: Consider the system

ÿ(t) = ẏ(t− 1)u(t− 1)

After differentiating

dÿ(t)− u(t− 1)dẏ(t− 1) = ẏ(t− 1)du(t− 1)
(s2 − u(t− 1)δs)dy(t) = ẏ(t− 1)δdu(t)

and the transfer function is

F (δ, s) =
ẏ(t− 1)δ

s2 − u(t− 1)δs
(6)

The reader is referred to [10], [11], [12], [13], [14], [15],
[18] for more detailed description of the transfer function
formalism in nonlinear control theory and to [3], [4], [5],
[11], [12] for more detailed description of Ore rings and
Ore algebras.

III. STRUCTURAL PROPERTIES

Transfer functions of control systems are well known from
linear theory. Their use is the most natural for a several
control problems, for they give the insight into the system
structure. Recently, it was shown that such an algebraic for-
malism can be generalized also to nonlinear systems without
delays [10], [14] and even to the time-delay case [12]. In
this section we, in comparison to [12], discuss additional
structural properties of transfer functions of nonlinear time-
delay systems.

In dealing with polynomials from K[δ, s] we define their
(highest) degrees and lowest degrees in s and in δ as

degsa(δ, s) = max
{

k ≥ 0;
∂a(δ, s)

∂sk
6= 0

}
degδa(δ, s) = max

{
k ≥ 0;

∂a(δ, s)
∂δk

6= 0
}

low degsa(δ, s) = min
{

k ≥ 0;
∂a(δ, s)

∂sk
6= 0

}
low degδa(δ, s) = min

{
k ≥ 0;

∂a(δ, s)
∂δk

6= 0
}

where 0 6= a(δ, s) ∈ K[δ, s]. If a(δ, s) = 0 then define
degsa(δ, s) = degδa(δ, s) = −∞ and low degsa(δ, s) =
low degδa(δ, s) = ∞.

A. Structural indices

Certain structural indices of a control system play a key
role in solving a number of control problems. One of them
is represented by the notion of a relative degree, originally
introduced for the case of systems without delays. It can be
easily extended also to the time-delay case [26]:

Definition 1: The relative degree of the system (10) is
defined as

ρ = min
{

k ≥ 0;
∂y(k)(t)
∂u(t− j)

6= 0 for some j ≥ 0
}

It is straightforward to show that the relative degree is given
as the difference between orders of polynomials in s in
denominator and numerator of the transfer function (5)

ρ = rel degs F (δ, s) = degsa(δ, s)− degsb(δ, s)

as in the linear case.
Another important structural index in the time-delay case

is given by the notion of a relative shift [24], [26]:



Definition 2: Assume that the relative degree ρ of the
system (10) is finite. Then the relative shift of this system is
defined as

µ = min
{

k ≥ 0;
∂y(ρ)(t)

∂u(t− k)
6= 0

}
It can be shown that in terms of the transfer function (5) it
means

µ = degδbm(δ)

where bm(δ) is the leading coefficient of b(δ, s) in s.
Example 2: Consider the system from Example 1 with the

transfer function (6). Then

ρ = rel degs F (δ, s) = 2
µ = degδ ẏ(t− 1)δ = 1

Remark 2: Note that in comparison to the relative degree,
the relative shift is not the difference between orders of
polynomials in δ in denominator and numerator of the
transfer function (5), µ 6= rel degδ F (δ, s) = degδa(δ, s) −
degδb(δ, s), which does not play such an important role as
the notion of the relative shift.

B. Accessibility

An important notion, concerning additional structural
properties of a given system, is the notion of accessibility. It
is related mainly to the possibility of controlling the system
and can be carried over also to the time-delay case [22], [23]:

Definition 3: The system (1) is said to be accessible if
there does not exist any non-constant autonomous function.

One possibility how to study the accessibility is to intro-
duce the notion of an autonomous element. In the case of
system without delays this results in the equivalence of the
two following conditions:
• There does not exist any non-constant autonomous

function for system.
• System does not have any autonomous elements.

For linear time-delay systems both definitions are equivalent
to the property that the system is torsion free over the ring
R[δ,d/dt], [9]. However, in the case of nonlinear time-delay
systems their equivalence remains an open problem [23].
The accessibility filtration, employing the notion of an au-
tonomous element, was introduced for nonlinear systems
without delays in [6]. Recently, it was extended to the time-
delay case as well [22], [23]. However, it should be noticed
that the submodules Hk are, in general, infinite dimensional
for time-delay systems, which represents a major drawback
of their practical computation. Therefore, an alternative way
to compute this filtration was studied [23].
However, another alternative accessibility condition can be
stated in terms of polynomials a(δ, s) and b(δ, s) in (4).

Proposition 1: The system (1) is accessible if polynomials
a(δ, s) and b(δ, s) have no nontrivial common left factors.

Proof: It was shown in [11] that a(δ, s) and b(δ, s) have
no common left factors if and only if system does not have
any autonomous elements, following the same line as in [33].
2

C. Observability

Following the lines in [29] also the observability condition
can be stated in terms of polynomials.

Proposition 2: The system (10) is observable if and only
if

degsa(δ, s) = n
Sketch of the proof: If the system is not observable
one obtains, by eliminating the state variables in (10), see
Remark 1 and Appendix I, an input-output equation of the
form

y(r)(t) = ϕ({y(k)(t− i), u(l)(t− j);
0 ≤ k ≤ r − 1; 0 ≤ l ≤ r; i, j ≥ 0})

where r < n and then degsa(δ, s) = r. 2

IV. MODEL MATCHING PROBLEM

The transfer function approach to the model matching
problem is the most natural, in comparison with the state
space approaches. For the nonlinear system without delays
it was recently considered in [18]. As in linear case, it is
stated as the equality of the transfer functions of the model
and of the compensated system. Here, we extend some basic
ideas of [18] to the time-delay case.

Consider a nonlinear system F and a model G described
by the transfer functions

F (δ, s) =
bF (δ, s)
aF (δ, s)

G(δ, s) =
bG(δ, s)
aG(δ, s)

respectively. Find a (proper) feedforward compensator R,
described by the transfer function

R(δ, s)

such that the transfer function of the compensated system
coincides with that of the model G

G(δ, s) = F (δ, s) ·R(δ, s)

Proposition 3: Given F (δ, s) 6= 0 and G(δ, s), there exists
a feedforward compensator R(δ, s) which solves the model
matching problem if aR(δ, s)du − bR(δ, s)dv is integrable,
where bR(δ,s)

aR(δ,s) = F−1(δ, s) ·G(δ, s).
Proof: By the transfer function algebra [12] we get

G(δ, s) = F (δ, s) ·R(δ, s)

Hence, the compensator

R(δ, s) = F−1(δ, s) ·G(δ, s) =
bR(δ, s)
aR(δ, s)

(7)

Clearly, the existence of such a compensator is determined by
the integrability of the compensator’s equation aR(δ, s)du =
bR(δ, s)dv. 2

Example 3: Given the system F

ẏ(t) = u̇(t− 1) + u2(t− 2)



with the transfer function

F (δ, s) =
δs + 2u(t− 2)δ2

s

Consider the following three models

G(δ, s) =
δ

s

G′(δ, s) =
δ

s + 1

G′′(δ, s) =
δ

s + 2y(t)

By (7) and (3) we get the following transfer functions of the
compensators

R(δ, s) =
s

δs + 2u(t− 2)δ2
· δ

s

=
δ

δs + 2u(t− 2)δ2

R′(δ, s) =
s

δs + 2u(t− 2)δ2
· δ

s + 1

=
δs

(s + 1)(δs + 2u(t− 2)δ2)

R′′(δ, s) =
s

δs + 2u(t− 2)δ2
· δ

s + 2y(t)

=
δs− ẏ(t)

y(t)δ

(s + 2y(t)− ẏ(t)
y(t) )(δs + 2u(t− 2)δ2)

While R(δ, s) and R′(δ, s) result in the integrable compen-
sators

R : u̇(t) = −u2(t− 1) + v(t)
R′ : ü(t) = −2u(t− 1)u̇(t− 1)− u̇(t)−

−u2(t− 1) + v̇(t)

R′′(δ, s) does not.
Remark that in multiplying transfer functions one always has
to follow the rule (3) which, in general, yields a different
result from the standard multiplication, as can be seen for
instance in the case of R′′(δ, s).

Remark 3: Note that in contrast to what happens in the
linear case, a class of nonlinear systems for which the
solution in terms of a feedforward compensator exists is,
due to the integrability condition, quite restricted.

A. Properness of the compensator

Obviously, we are interested in finding a solution in a
class of proper compensators. However, in comparison to
what happens in the case of systems without delays [18]
here, it is not sufficient to restrict just the relative degrees of
the model and of the system by the standard inequality

rel degs G(δ, s) ≥ rel degs F (δ, s)

even in the linear case.
Example 4: Consider the system

F (δ, s) =
δ2

s− δ

and the model
G(δ, s) =

δ

s2

However, even if rel degs G(δ, s) = 2 ≥ rel degs F (δ, s) = 1
the compensator

R(δ, s) = F−1(δ, s) ·G(δ, s) =
s− δ

δ2
· δ

s2
=

s− δ

δs2

is nonproper

ü(t− 1) = v̇(t)− v(t− 1)
ü(t) = v̇(t + 1)− v(t)

Here, the necessary and sufficient condition, under which
the compensator becomes proper, is more involved. Clearly,
to satisfy the propernes of the compensator R the highest
derivative of its output has to depend only on the past values
of its output, input and their derivatives

du(k)(t− l) ∈ spanK{du(i1)(t− j),dv(i2)(t− j);
0 ≤ i1 ≤ k − 1; 0 ≤ i2 ≤ k, j ≥ l} (8)

for some l ≥ 0.
Remark 4: Note that in the linear time-delay systems

the properness of the compensator (7) is satisfied by the
requirement that anR

(δ), which is the leading coefficient of
aR(δ, s) in s, contains a nonzero constant term [30]. That
is, low degδanR

(δ) = 0. However, in that case the solution
is, in general, given by a compensator from the class of
systems of a neutral type. Such solutions are out of the
scope of this paper, as we restricted our attention to systems,
models and compensators respectively of the form (1). From
this point of view, the condition (8) means that the leading
coefficient contains only a nonzero constant term; that is,
degδanR

(δ) = 0.
Clearly, the condition (8), in terms of the transfer function

(7), means that in addition to degsaR(δ, s) ≥ degsbR(δ, s)
also powers of δ in aR(δ, s) and bR(δ, s) have to be taken
into account. Namely

degδanR
(δ) ≤ min {low degδaR(δ, s), low degδbR(δ, s)}

(9)
where anR

(δ) is the leading coefficient of aR(δ, s) in s.
When coming back to the transfer functions F (δ, s) and
G(δ, s) one concludes that

Proposition 4: R(δ, s) is proper (causal) if and only if
• rel degs G(δ, s) ≥ rel degs F (δ, s)
• µF ≤ min {low degδbF (δ, s), low degδbG(δ, s)}

where µF is the relative shift of the system F .
Proof: For rel degs G(δ, s) ≥ rel degs F (δ, s) it follows the
same line as in [18]. For the second part note firstly that
µF = degδbmF

(δ) where bmF
(δ) is the leading coefficient

of bF (δ, s) in s. Now, from (7) it follows that

degδanR
(δ) = degδbmF

(δ) + degδanG
(δ)

low degδaR(δ) = low degδbF (δ) + low degδaG(δ)
low degδbR(δ) = low degδaF (δ) + low degδbG(δ)

where anG
(δ) is the leading coefficient of aG(δ, s) in s.

Since both the system and the model are considered to



be of the form (1) note, however, that degδanG
(δ) =

low degδaG(δ) = low degδaF (δ) = 0 which means that
µF ≤ min {low degδbF (δ, s), low degδbG(δ, s)} is equiva-
lent to (9). 2

Note that in Example 4 we have µF = 2,
low degδbF (δ, s) = 2 and low degδbG(δ, s) = 1 and in
Example 3 we have µF = 1, low degδbF (δ, s) = 1 and for
all G, G′ and G′′ low degδbG(δ, s) = low degδbG′(δ, s) =
low degδbG′′(δ, s) = 1.

V. CONCLUSIONS

In this paper, several problems are discussed within the
transfer function formalism of nonlinear time-delay systems.
Mainly, the structural properties of the transfer functions and
the model matching problem. In the model matching problem
it was shown that the existence of the compensator requires
a restrictive integrability condition and that its properness
requires to restrict not only the relative degrees, as in the case
without delays [18], but the relative shift and a zero structure
of both the system and the model as well. A preliminary
result relating the state elimination problem for the nonlinear
time-delay case was also given.
In conclusion, the paper depicts basic ideas in a quite wide
range of problems relating the nonlinear time-delay systems
and opens the others that are worth to be studied, as for
instance finding a solution to the model matching problem
of nonlinear time-delay systems allowing the compensator
to be a system of a neutral type, or considering the more
general class of feedback compensators, etc.

APPENDIX I
STATE ELIMINATION FOR SISO NONLINEAR TIME-DELAY

SYSTEMS

Consider the nonlinear time-delay system of the form

ẋ(t) = f({x(t− i), u(t− j); i, j ≥ 0})
y(t) = g({x(t− i), u(t− j); i, j ≥ 0}) (10)

where x ∈ Rn, u ∈ R and y ∈ R.
To find an input-output equation for the system (10) we will
try to carry over the idea of the state elimination procedure
known for the systems without delays, where an input-output
representation is constructed by applying a suitable change
of coordinates [6], also to the time-delay case. However, as
the system (10) is the subject of two operators, in comparison
to what happens in the case of systems without delays we
may not be able to find such a change of coordinates.

Example 5: Consider the system

ẋ(t) = u(t)
y(t) = x(t)x(t− 1)

Following the lines of [6]

ẏ(t) = u(t)x(t− 1) + x(t)u(t− 1)

However, one cannot go any further, since from y(t) =
x(t)x(t− 1) one cannot express x(t).

Remark 5: It was shown in [1] that it is possible to derive
N independent equations over K in N variables xi(t − j),

i = 1, . . . , n, j ≥ 0, for some N which may be greater than
n. For instance, in the previous example one considers

y(t) = x(t)x(t− 1)
y(t− 1) = x(t− 1)x(t− 2)
ẏ(t− 1) = u(t− 1)x(t− 2) + x(t− 1)u(t− 2)

However, in that case it yields, in general, an input-output
equation representing a system of a neutral type, i.e. not
being of the form (1). Thus, for our purpose a stronger result
is needed.

In what follows we present the state elimination procedure
extended to a class of systems with delays.
State elimination procedure:
Let s denote the minimum nonnegative integer such that

rankK[δ]

 c0(δ)
...

cs−1(δ)

 = rankK[δ]

 c0(δ)
...

cs(δ)


where ci(δ) ∈ K1×n[δ] and di(δ) ∈ K[δ] are such that

dy(i)(t) = ci(δ)dx(t) + di(δ)du(t)

for i = 0, . . . , s. If c0(δ) = 0 we define s = 0 and y(t) =
g(·) is the input-output equation. Note that c0(δ)

...
cs−1(δ)


is, in fact, an observability matrix and if s < n the system
(10) is not observable.
Clearly, to eliminate the state variables in y(s)(t) = g(s)(·)
we must have that c(δ) ∈ spanK[δ]{c0(δ), . . . , cs−1(δ)}.
Then the input-output relation we are looking for can be
found. That is

y(s)(t) = ϕ({y(k)(t− i), u(l)(t− j)}) (11)

where 0 ≤ k ≤ s− 1; 0 ≤ l ≤ s; i, j ≥ 0.
Example 6: Consider the system

ẋ1(t) = x1(t)x2(t− 1)
ẋ2(t) = x2(t)u(t)
y(t) = 1/x1(t)

We have ẏ(t) = −x2(t− 1)/x1(t), ÿ(t) = −x2(t− 1)u(t−
1)/x1(t) + x2

2(t− 1)/x1(t) and

x1(t) = 1/y(t)
x2(t) = −ẏ(t + 1)/y(t + 1)

Finally

ÿ(t) = ẏ(t)u(t− 1)− ẏ2(t)/y(t)
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Laplace et des matrices de transfert, Linear Algebra and its Appli-
cations, vol. 203, 1994, pp 429-442.
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