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A Polynomial Solution to the Model Matching Problem of Nonlinear Time-delay Systems

In this paper the model matching problem is considered for single input single output nonlinear systems with delays. A full characterization for its solvability is provided within a simple class of compensators. The approach is developed by means of the transfer functions of nonlinear time-delay systems. The state elimination problem for the systems given by their state-space representation is discussed as well.

I. INTRODUCTION

An algebraic formalism of differential forms, originally developed for nonlinear systems without delays [START_REF] Conte | Algebraic Methods for Nonlinear Control Systems[END_REF], [START_REF] Aranda-Bricaire | Linearization of discretetime systems[END_REF], was recently extended to the case of time-delay systems [START_REF] Márquez-Martínez | Note sur l'accessibilité des systèmes non linéaires à retards[END_REF], [START_REF] Márquez-Martínez | Input-Output Feedback Linearization of Time-Delay Systems[END_REF], [START_REF] Márquez-Martínez | The structure of nonlinear time-delay systems[END_REF], [START_REF] Moog | The disturbance decoupling problem for timedelay nonlinear systems[END_REF], [START_REF] Xia | Analysis of nonlinear time-delay systems using modules over noncommutative rings[END_REF] and was shown to be effective in solving control problems like accessibility and observability, disturbance decoupling, feedback linearization and others. On the other side, in the case of systems without delays, there exists, in comparison to the machinery of one-forms, an alternative approach in which the system properties are described by skew polynomials from non-commutative polynomial rings. Such polynomials act as differential [START_REF] Zheng | A polynomial approach to nonlinear system controllability[END_REF], [START_REF] Zheng | Common factors and controllability of nonlinear systems[END_REF] or shift [START_REF] Kotta | Irreducibility conditions for nonlinear input-output difference equations[END_REF] operators on the differentials of the system inputs and outputs. The polynomial approach to nonlinear systems shows a great similarity to methods well known from the linear theory, see for instance [START_REF] Picard | Model Matching for Linear Systems with Delays and 2D Systems[END_REF]. In particular, one can introduce even a notion of a transfer function of a nonlinear system as was recently shown in [START_REF] Halás | An algebraic framework generalizing the concept of transfer functions to nonlinear systems[END_REF], [START_REF] Halás | Symbolic computation for nonlinear systems using quotients over skew polynomial ring[END_REF], [START_REF] Halás | Extension of the concept of transfer function to discrete-time nonlinear control systems[END_REF], [START_REF] Halás | Transfer Functions of Discrete-time Nonlinear Control Systems[END_REF], [START_REF] Zheng | Transfer function description for nonlinear systems[END_REF]. Such a concept is equivalent to that of [START_REF] Fliess | Une interprétation algébrique de la transformation de Laplace et des matrices de transfert[END_REF] for linear timevarying systems which allows us to associate to a nonlinear system the tangent (or variational) linear system, see for instance [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], over Kähler differentials [START_REF] Johnson | Kähler differentials and differential algebra[END_REF] except that now the time-varying coefficients of the polynomials are not necessarily independent [START_REF] Li | Simplifying skew fractions modulo differential and difference relations[END_REF]. The transfer function formalism of nonlinear systems generalizes well known results valid for linear time invariant systems and was, for instance, already employed in [START_REF] Perdon | The pole-zero structure of nonlinear control systems[END_REF] to investigate some structural properties of nonlinear systems, in [START_REF] Halás | Transfer function approach to the model matching problem of nonlinear systems[END_REF] to study the nonlinear model matching problem, in [START_REF] Halás | Synthesis of Observers for Nonlinear Systems: A Polynomial Approach[END_REF] to study the observer design and in [START_REF] Halás | Realization problem of SISO nonlinear systems: a transfer function approach[END_REF] to study the realization problem of nonlinear systems. The polynomial approach to nonlinear systems and the notion of a transfer function was recently carried over also to the case of time-delay systems [START_REF] Halás | Nonlinear time-delay systems: a polynomial approach using Ore algebras[END_REF], [START_REF] Halás | Ore algebras: a polynomial approach to nonlinear timedelay systems[END_REF] where some basic moog@irccyn.ec-nantes.fr properties were discussed. In this paper, the model matching problem of nonlinear time-delay systems is solved within such a transfer function formalism. As it was done in [START_REF] Halás | Ore algebras: a polynomial approach to nonlinear timedelay systems[END_REF], a more detailed discussion is provided below, concerning also structural properties as the notions of a relative degree and a relative shift. In addition, we also depict a possible solution to the state elimination problem for the nonlinear time-delay case.

II. TRANSFER FUNCTIONS OF NONLINEAR TIME-DELAY

SYSTEMS

We will use the algebraic formalism of [START_REF] Márquez-Martínez | Note sur l'accessibilité des systèmes non linéaires à retards[END_REF], [START_REF] Márquez-Martínez | Input-Output Feedback Linearization of Time-Delay Systems[END_REF], [START_REF] Márquez-Martínez | The structure of nonlinear time-delay systems[END_REF], [START_REF] Moog | The disturbance decoupling problem for timedelay nonlinear systems[END_REF], [START_REF] Xia | Analysis of nonlinear time-delay systems using modules over noncommutative rings[END_REF] which extends the concept of differential oneforms to the case of time-delay systems and of [START_REF] Halás | Nonlinear time-delay systems: a polynomial approach using Ore algebras[END_REF], [START_REF] Halás | Ore algebras: a polynomial approach to nonlinear timedelay systems[END_REF] which introduces transfer functions of nonlinear time-delay systems.

In this paper we restrict our attention to the SISO nonlinear time-delay systems defined by an input-output equation of the form

y (n) (t) = ϕ({y (k) (t -i), u (l) (t -j)}) (1) 
where 0 ≤ k ≤ n -1; 0 ≤ l ≤ n; i, j ≥ 0 and u ∈ R and y ∈ R denote input and output to the system and ϕ is assumed to be an element of the field of meromorphic functions K. Note that it is not restrictive to assume i, j ∈ N as all commensurable delays can be considered as multiples of an elementary delay h [START_REF] Márquez-Martínez | The structure of nonlinear time-delay systems[END_REF]. Remark 1: In the case of systems without delays even if one starts with a state-space representation it is always possible to eliminate the state variables to get an input-output equation, see for instance [START_REF] Conte | Algebraic Methods for Nonlinear Control Systems[END_REF]. However, it is not completely clear how one can carry over the idea of the state elimination procedure to the time-delay case. A special case is discussed in Appendix I. In the general case, possible drawbacks may be met in the state elimination process for system [START_REF] Halás | An algebraic framework generalizing the concept of transfer functions to nonlinear systems[END_REF]. For the sake of simplicity, here we assume that the system (10) admits an input-output equation of the form (1).

The Ore algebra K[δ, s] of polynomials in s and δ over K with the usual addition, and the (non-commutative) multiplications given by the commutation rules sa(t) = a(t)s + ȧ(t) δa(t) = a(t -1)δ

(2) sδ = δs where a(t) ∈ K, represents the ring of linear differential time-delay operators that act over the vector space of one-forms E = span K {dξ(t); ξ(t) ∈ K} in the following way

  i,j a ij δ j s i   v(t) = i,j a ij v (i) (t -j)
for any v(t) ∈ E. The commutation rules (2) actually represent the rule for differentiating and, respectively, time-delaying.

Proposition 1 (Ore condition): For all non-zero a, b ∈ K[δ, s], there exist non-zero

a 1 , b 1 ∈ K[δ, s] such that a 1 b = b 1 a.
Thus, the ring K[δ, s] can be embedded to the noncommutative quotient field K δ, s by defining quotients [START_REF] Ore | Linear equations in non-commutative fields[END_REF], [START_REF] Ore | Theory of non-commutative polynomials[END_REF] as

a b = b -1 • a
The addition and multiplication in K δ, s are defined as

a 1 b 1 + a 2 b 2 = β 2 a 1 + β 1 a 2 β 2 b 1
where

β 2 b 1 = β 1 b 2 by Ore condition and a 1 b 1 • a 2 b 2 = α 1 a 2 β 2 b 1 (3) 
where β 2 a 1 = α 1 b 2 again by Ore condition. Due to the non-commutative multiplications (2) they, of course, differ from the usual rules. In particular, in case of the multiplication (3) we, in general, cannot simply multiply numerators and denominators, nor cancel them in a usual manner. We neither can commute them as the multiplication in K δ, s is non-commutative as well.

Once the fraction of two skew polynomials is defined we can introduce the transfer function of the nonlinear timedelay system (1) as an element F (δ, s) ∈ K δ, s such that dy(t) = F (δ, s)du(t).

After differentiating (1) we get

dy (n) (t) - n-1 k=0 i≥0 ∂φ ∂y (k) (t -i) dy (k) (t -i) = = n-1 k=0 j≥0 ∂φ ∂u (k) (t -j) du (k) (t -j)
or alternatively

a(δ, s)dy(t) = b(δ, s)du(t) (4) 
where

a(δ, s) = s n - n-1 k=0,i≥0 ∂φ ∂y (k) (t-i) δ i s k and b(δ, s) = n-1 k=0,j≥0 ∂φ ∂u (k) (t-j) δ j s k are in K[δ, s]. Then F (δ, s) = b(δ, s) a(δ, s) (5) 
= b m (δ)s m + • • • + b 1 (δ)s + b 0 (δ) s n + a n-1 (δ)s n-1 + • • • + a 1 (δ)s + a 0 (δ)
where m = max{i ≥ 0; ∂ϕ/∂u (i) = 0}.

Example 1: Consider the system

ÿ(t) = ẏ(t -1)u(t -1)
After differentiating

dÿ(t) -u(t -1)d ẏ(t -1) = ẏ(t -1)du(t -1) (s 2 -u(t -1)δs)dy(t) = ẏ(t -1)δdu(t)
and the transfer function is

F (δ, s) = ẏ(t -1)δ s 2 -u(t -1)δs (6) 
The reader is referred to [START_REF] Halás | An algebraic framework generalizing the concept of transfer functions to nonlinear systems[END_REF], [START_REF] Halás | Nonlinear time-delay systems: a polynomial approach using Ore algebras[END_REF], [START_REF] Halás | Ore algebras: a polynomial approach to nonlinear timedelay systems[END_REF], [START_REF] Halás | Symbolic computation for nonlinear systems using quotients over skew polynomial ring[END_REF], [START_REF] Halás | Extension of the concept of transfer function to discrete-time nonlinear control systems[END_REF], [START_REF] Halás | Transfer Functions of Discrete-time Nonlinear Control Systems[END_REF], [START_REF] Halás | Transfer function approach to the model matching problem of nonlinear systems[END_REF] for more detailed description of the transfer function formalism in nonlinear control theory and to [START_REF] Bronstein | An introduction to pseudo-linear algebra[END_REF], [START_REF] Chyzak | Effective algorithms for parametrizing linear control systems over Ore algebras[END_REF], [START_REF] Chyzak | Non-commutative elimination in Ore algebras proves multivariate identities[END_REF], [START_REF] Halás | Nonlinear time-delay systems: a polynomial approach using Ore algebras[END_REF], [START_REF] Halás | Ore algebras: a polynomial approach to nonlinear timedelay systems[END_REF] for more detailed description of Ore rings and Ore algebras.

III. STRUCTURAL PROPERTIES

Transfer functions of control systems are well known from linear theory. Their use is the most natural for a several control problems, for they give the insight into the system structure. Recently, it was shown that such an algebraic formalism can be generalized also to nonlinear systems without delays [START_REF] Halás | An algebraic framework generalizing the concept of transfer functions to nonlinear systems[END_REF], [START_REF] Halás | Extension of the concept of transfer function to discrete-time nonlinear control systems[END_REF] and even to the time-delay case [START_REF] Halás | Ore algebras: a polynomial approach to nonlinear timedelay systems[END_REF]. In this section we, in comparison to [START_REF] Halás | Ore algebras: a polynomial approach to nonlinear timedelay systems[END_REF], discuss additional structural properties of transfer functions of nonlinear timedelay systems.

In dealing with polynomials from K[δ, s] we define their (highest) degrees and lowest degrees in s and in δ as

deg s a(δ, s) = max k ≥ 0; ∂a(δ, s) ∂s k = 0 deg δ a(δ, s) = max k ≥ 0; ∂a(δ, s) ∂δ k = 0 low deg s a(δ, s) = min k ≥ 0; ∂a(δ, s) ∂s k = 0 low deg δ a(δ, s) = min k ≥ 0; ∂a(δ, s) ∂δ k = 0 where 0 = a(δ, s) ∈ K[δ, s]. If a(δ, s) = 0 then define deg s a(δ, s) = deg δ a(δ, s) = -∞ and low deg s a(δ, s) = low deg δ a(δ, s) = ∞.

A. Structural indices

Certain structural indices of a control system play a key role in solving a number of control problems. One of them is represented by the notion of a relative degree, originally introduced for the case of systems without delays. It can be easily extended also to the time-delay case [START_REF] Moog | The disturbance decoupling problem for timedelay nonlinear systems[END_REF]:

Definition 1: The relative degree of the system (10) is defined as

ρ = min k ≥ 0; ∂y (k) (t) ∂u(t -j) = 0 for some j ≥ 0
It is straightforward to show that the relative degree is given as the difference between orders of polynomials in s in denominator and numerator of the transfer function ( 5)

ρ = rel deg s F (δ, s) = deg s a(δ, s) -deg s b(δ, s)
as in the linear case. Another important structural index in the time-delay case is given by the notion of a relative shift [START_REF] Márquez-Martínez | Input-Output Feedback Linearization of Time-Delay Systems[END_REF], [START_REF] Moog | The disturbance decoupling problem for timedelay nonlinear systems[END_REF]:

Definition 2: Assume that the relative degree ρ of the system (10) is finite. Then the relative shift of this system is defined as

µ = min k ≥ 0; ∂y (ρ) (t) ∂u(t -k) = 0
It can be shown that in terms of the transfer function [START_REF] Chyzak | Non-commutative elimination in Ore algebras proves multivariate identities[END_REF] it

means µ = deg δ b m (δ)
where b m (δ) is the leading coefficient of b(δ, s) in s.

Example 2: Consider the system from Example 1 with the transfer function [START_REF] Conte | Algebraic Methods for Nonlinear Control Systems[END_REF]. Then

ρ = rel deg s F (δ, s) = 2 µ = deg δ ẏ(t -1)δ = 1
Remark 2: Note that in comparison to the relative degree, the relative shift is not the difference between orders of polynomials in δ in denominator and numerator of the transfer function ( 5), µ = rel deg δ F (δ, s) = deg δ a(δ, s)deg δ b(δ, s), which does not play such an important role as the notion of the relative shift.

B. Accessibility

An important notion, concerning additional structural properties of a given system, is the notion of accessibility. It is related mainly to the possibility of controlling the system and can be carried over also to the time-delay case [START_REF] Márquez-Martínez | Note sur l'accessibilité des systèmes non linéaires à retards[END_REF], [START_REF] Márquez-Martínez | Accessibility of nonlinear time-delay systems[END_REF]:

Definition 3: The system (1) is said to be accessible if there does not exist any non-constant autonomous function.

One possibility how to study the accessibility is to introduce the notion of an autonomous element. In the case of system without delays this results in the equivalence of the two following conditions:

• There does not exist any non-constant autonomous function for system. • System does not have any autonomous elements. For linear time-delay systems both definitions are equivalent to the property that the system is torsion free over the ring R[δ, d/dt], [START_REF] Fliess | Controllability and observability of linear delay systems: an algebraic approach[END_REF]. However, in the case of nonlinear time-delay systems their equivalence remains an open problem [START_REF] Márquez-Martínez | Accessibility of nonlinear time-delay systems[END_REF]. The accessibility filtration, employing the notion of an autonomous element, was introduced for nonlinear systems without delays in [START_REF] Conte | Algebraic Methods for Nonlinear Control Systems[END_REF]. Recently, it was extended to the timedelay case as well [START_REF] Márquez-Martínez | Note sur l'accessibilité des systèmes non linéaires à retards[END_REF], [START_REF] Márquez-Martínez | Accessibility of nonlinear time-delay systems[END_REF]. However, it should be noticed that the submodules H k are, in general, infinite dimensional for time-delay systems, which represents a major drawback of their practical computation. Therefore, an alternative way to compute this filtration was studied [START_REF] Márquez-Martínez | Accessibility of nonlinear time-delay systems[END_REF]. However, another alternative accessibility condition can be stated in terms of polynomials a(δ, s) and b(δ, s) in (4).

Proposition 1: The system (1) is accessible if polynomials a(δ, s) and b(δ, s) have no nontrivial common left factors.

Proof: It was shown in [START_REF] Halás | Nonlinear time-delay systems: a polynomial approach using Ore algebras[END_REF] that a(δ, s) and b(δ, s) have no common left factors if and only if system does not have any autonomous elements, following the same line as in [START_REF] Zheng | A polynomial approach to nonlinear system controllability[END_REF].

C. Observability

Following the lines in [START_REF] Perdon | The pole-zero structure of nonlinear control systems[END_REF] also the observability condition can be stated in terms of polynomials.

Proposition 2: The system (10) is observable if and only if deg s a(δ, s) = n Sketch of the proof: If the system is not observable one obtains, by eliminating the state variables in [START_REF] Halás | An algebraic framework generalizing the concept of transfer functions to nonlinear systems[END_REF], see Remark 1 and Appendix I, an input-output equation of the form

y (r) (t) = ϕ({y (k) (t -i), u (l) (t -j); 0 ≤ k ≤ r -1; 0 ≤ l ≤ r; i, j ≥ 0})
where r < n and then deg s a(δ, s) = r.

IV. MODEL MATCHING PROBLEM

The transfer function approach to the model matching problem is the most natural, in comparison with the state space approaches. For the nonlinear system without delays it was recently considered in [START_REF] Halás | Transfer function approach to the model matching problem of nonlinear systems[END_REF]. As in linear case, it is stated as the equality of the transfer functions of the model and of the compensated system. Here, we extend some basic ideas of [START_REF] Halás | Transfer function approach to the model matching problem of nonlinear systems[END_REF] to the time-delay case. Consider a nonlinear system F and a model G described by the transfer functions

F (δ, s) = b F (δ, s) a F (δ, s) G(δ, s) = b G (δ, s) a G (δ, s)
respectively. Find a (proper) feedforward compensator R, described by the transfer function

R(δ, s)

such that the transfer function of the compensated system coincides with that of the model G

G(δ, s) = F (δ, s) • R(δ, s)
Proposition 3: Given F (δ, s) = 0 and G(δ, s), there exists a feedforward compensator R(δ, s) which solves the model ,s). Proof: By the transfer function algebra [START_REF] Halás | Ore algebras: a polynomial approach to nonlinear timedelay systems[END_REF] we get

matching problem if a R (δ, s)du -b R (δ, s)dv is integrable, where b R (δ,s) a R (δ,s) = F -1 (δ, s) • G(δ
G(δ, s) = F (δ, s) • R(δ, s) Hence, the compensator R(δ, s) = F -1 (δ, s) • G(δ, s) = b R (δ, s) a R (δ, s) (7) 
Clearly, the existence of such a compensator is determined by the integrability of the compensator's equation a R (δ, s)du = b R (δ, s)dv.

Example 3:

Given the system F ẏ(t) = u(t -1) + u 2 (t -2)
with the transfer function

F (δ, s) = δs + 2u(t -2)δ 2 s Consider the following three models G(δ, s) = δ s G (δ, s) = δ s + 1 G (δ, s) = δ s + 2y(t)
By ( 7) and ( 3) we get the following transfer functions of the compensators

R(δ, s) = s δs + 2u(t -2)δ 2 • δ s = δ δs + 2u(t -2)δ 2 R (δ, s) = s δs + 2u(t -2)δ 2 • δ s + 1 = δs (s + 1)(δs + 2u(t -2)δ 2 ) R (δ, s) = s δs + 2u(t -2)δ 2 • δ s + 2y(t) = δs -ẏ(t) y(t) δ (s + 2y(t) -ẏ(t) y(t) )(δs + 2u(t -2)δ 2 )
While R(δ, s) and R (δ, s) result in the integrable compensators

R : u(t) = -u 2 (t -1) + v(t) R : ü(t) = -2u(t -1) u(t -1) -u(t)- -u 2 (t -1) + v(t) R (δ, s) does not.
Remark that in multiplying transfer functions one always has to follow the rule (3) which, in general, yields a different result from the standard multiplication, as can be seen for instance in the case of R (δ, s). Remark 3: Note that in contrast to what happens in the linear case, a class of nonlinear systems for which the solution in terms of a feedforward compensator exists is, due to the integrability condition, quite restricted.

A. Properness of the compensator

Obviously, we are interested in finding a solution in a class of proper compensators. However, in comparison to what happens in the case of systems without delays [START_REF] Halás | Transfer function approach to the model matching problem of nonlinear systems[END_REF] here, it is not sufficient to restrict just the relative degrees of the model and of the system by the standard inequality

rel deg s G(δ, s) ≥ rel deg s F (δ, s)
even in the linear case.

Example 4: Consider the system

F (δ, s) = δ 2 s -δ and the model G(δ, s) = δ s 2 However, even if rel deg s G(δ, s) = 2 ≥ rel deg s F (δ, s) = 1 the compensator R(δ, s) = F -1 (δ, s) • G(δ, s) = s -δ δ 2 • δ s 2 = s -δ δs 2 is nonproper ü(t -1) = v(t) -v(t -1) ü(t) = v(t + 1) -v(t)
Here, the necessary and sufficient condition, under which the compensator becomes proper, is more involved. Clearly, to satisfy the propernes of the compensator R the highest derivative of its output has to depend only on the past values of its output, input and their derivatives

du (k) (t -l) ∈ span K {du (i1) (t -j), dv (i2) (t -j); 0 ≤ i 1 ≤ k -1; 0 ≤ i 2 ≤ k, j ≥ l} (8)
for some l ≥ 0. Remark 4: Note that in the linear time-delay systems the properness of the compensator ( 7) is satisfied by the requirement that a n R (δ), which is the leading coefficient of a R (δ, s) in s, contains a nonzero constant term [START_REF] Picard | Model Matching for Linear Systems with Delays and 2D Systems[END_REF]. That is, low deg δ a n R (δ) = 0. However, in that case the solution is, in general, given by a compensator from the class of systems of a neutral type. Such solutions are out of the scope of this paper, as we restricted our attention to systems, models and compensators respectively of the form [START_REF] Anguelova | State elimination and identifiability of the delay parameter for nonlinear time-delay systems[END_REF]. From this point of view, the condition (8) means that the leading coefficient contains only a nonzero constant term; that is,

deg δ a n R (δ) = 0.
Clearly, the condition [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], in terms of the transfer function [START_REF] Fliess | Une interprétation algébrique de la transformation de Laplace et des matrices de transfert[END_REF], means that in addition to deg s a R (δ, s) ≥ deg s b R (δ, s) also powers of δ in a R (δ, s) and b R (δ, s) have to be taken into account. Namely

deg δ a n R (δ) ≤ min {low deg δ a R (δ, s), low deg δ b R (δ, s)} (9) where a n R (δ) is the leading coefficient of a R (δ, s) in s.
When coming back to the transfer functions F (δ, s) and G(δ, s) one concludes that Proposition 4: R(δ, s) is proper (causal) if and only if

• rel deg s G(δ, s) ≥ rel deg s F (δ, s) • µ F ≤ min {low deg δ b F (δ, s), low deg δ b G (δ, s)
} where µ F is the relative shift of the system F . Proof: For rel deg s G(δ, s) ≥ rel deg s F (δ, s) it follows the same line as in [START_REF] Halás | Transfer function approach to the model matching problem of nonlinear systems[END_REF]. For the second part note firstly that µ F = deg δ b m F (δ) where b m F (δ) is the leading coefficient of b F (δ, s) in s. Now, from [START_REF] Fliess | Une interprétation algébrique de la transformation de Laplace et des matrices de transfert[END_REF] it follows that

deg δ a n R (δ) = deg δ b m F (δ) + deg δ a n G (δ) low deg δ a R (δ) = low deg δ b F (δ) + low deg δ a G (δ) low deg δ b R (δ) = low deg δ a F (δ) + low deg δ b G (δ)
where a n G (δ) is the leading coefficient of a G (δ, s) in s. Since both the system and the model are considered to 

V. CONCLUSIONS

In this paper, several problems are discussed within the transfer function formalism of nonlinear time-delay systems. Mainly, the structural properties of the transfer functions and the model matching problem. In the model matching problem it was shown that the existence of the compensator requires a restrictive integrability condition and that its properness requires to restrict not only the relative degrees, as in the case without delays [START_REF] Halás | Transfer function approach to the model matching problem of nonlinear systems[END_REF], but the relative shift and a zero structure of both the system and the model as well. A preliminary result relating the state elimination problem for the nonlinear time-delay case was also given. In conclusion, the paper depicts basic ideas in a quite wide range of problems relating the nonlinear time-delay systems and opens the others that are worth to be studied, as for instance finding a solution to the model matching problem of nonlinear time-delay systems allowing the compensator to be a system of a neutral type, or considering the more general class of feedback compensators, etc.

APPENDIX I STATE ELIMINATION FOR SISO NONLINEAR TIME-DELAY

SYSTEMS

Consider the nonlinear time-delay system of the form

ẋ(t) = f ({x(t -i), u(t -j); i, j ≥ 0}) y(t) = g({x(t -i), u(t -j); i, j ≥ 0}) (10) 
where x ∈ R n , u ∈ R and y ∈ R.

To find an input-output equation for the system (10) we will try to carry over the idea of the state elimination procedure known for the systems without delays, where an input-output representation is constructed by applying a suitable change of coordinates [START_REF] Conte | Algebraic Methods for Nonlinear Control Systems[END_REF], also to the time-delay case. However, as the system (10) is the subject of two operators, in comparison to what happens in the case of systems without delays we may not be able to find such a change of coordinates.

Example 5: Consider the system

ẋ(t) = u(t) y(t) = x(t)x(t -1)
Following the lines of [START_REF] Conte | Algebraic Methods for Nonlinear Control Systems[END_REF] ẏ(t) = u(t)x(t -1) + x(t)u(t -1)

However, one cannot go any further, since from y(t) = x(t)x(t -1) one cannot express x(t). Remark 5: It was shown in [START_REF] Anguelova | State elimination and identifiability of the delay parameter for nonlinear time-delay systems[END_REF] that it is possible to derive N independent equations over K in N variables x i (t -j), i = 1, . . . , n, j ≥ 0, for some N which may be greater than n. For instance, in the previous example one considers y(t) = x(t)x(t -1) y(t -1) = x(t -1)x(t -2) ẏ(t -1) = u(t -1)x(t -2) + x(t -1)u(t -2) However, in that case it yields, in general, an input-output equation representing a system of a neutral type, i.e. not being of the form (1). Thus, for our purpose a stronger result is needed.

In what follows we present the state elimination procedure extended to a class of systems with delays. State elimination procedure: Let s denote the minimum nonnegative integer such that

rank K[δ]    c 0 (δ)
. . . is, in fact, an observability matrix and if s < n the system (10) is not observable. Clearly, to eliminate the state variables in y (s) (t) = g (s) (•) we must have that c(δ) ∈ span K[δ] {c 0 (δ), . . . , c s-1 (δ)}.

Then the input-output relation we are looking for can be found. That is y (s) (t) = ϕ({y (k) (t -i), u (l) (t -j)}) [START_REF] Halás | Nonlinear time-delay systems: a polynomial approach using Ore algebras[END_REF] where 0 ≤ k ≤ s -1; 0 ≤ l ≤ s; i, j ≥ 0. Example 6: Consider the system ẋ1 (t) = x 1 (t)x 2 (t -1) ẋ2 (t) = x 2 (t)u(t) y(t) = 1/x 1 (t)

We have ẏ(t) = -x 2 (t -1)/x 1 (t), ÿ(t) = -x 2 (t -1)u(t -1)/x 1 (t) + x 2 2 (t -1)/x 1 (t) and

x 1 (t) = 1/y(t)

x 2 (t) = -ẏ(t + 1)/y(t + 1) Finally ÿ(t) = ẏ(t)u(t -1) -ẏ2 (t)/y(t)

  be of the form (1) note, however, thatdeg δ a n G (δ) = low deg δ a G (δ) = low deg δ a F (δ) = 0 which means that µ F ≤ min {low deg δ b F (δ, s), low deg δ b G (δ, s)} is equivalent to[START_REF] Fliess | Controllability and observability of linear delay systems: an algebraic approach[END_REF].Note that in Example 4 we have µ F = 2, low deg δ b F (δ, s) = 2 and low deg δ b G (δ, s) = 1 and in Example 3 we have µ F = 1, low deg δ b F (δ, s) = 1 and for all G, G and G low deg δ b G (δ, s) = low deg δ b G (δ, s) = low deg δ b G (δ, s) = 1.

  c i (δ) ∈ K 1×n [δ] and d i (δ) ∈ K[δ] are such that dy (i) (t) = c i (δ)dx(t) + d i (δ)du(t)for i = 0, . . . , s. If c 0 (δ) = 0 we define s = 0 and y(t) = g(•) is the input-output equation. Note that
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