
HAL Id: hal-00582606
https://hal.science/hal-00582606v1

Submitted on 2 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A packet error recovery scheme for vertical handovers
mobility management protocols

Pierre Ugo Tournoux, Emmanuel Lochin, Henrik Petander, Jérôme Lacan

To cite this version:
Pierre Ugo Tournoux, Emmanuel Lochin, Henrik Petander, Jérôme Lacan. A packet error recovery
scheme for vertical handovers mobility management protocols. ICST MobiQuitous - 7th International
ICST Conference on Mobile and Ubiquitous Systems, Dec 2010, Sydney, Australia. pp.NC. �hal-
00582606�

https://hal.science/hal-00582606v1
https://hal.archives-ouvertes.fr

A packet error recovery scheme for vertical

handovers mobility management protocols

Pierre-Ugo Tournoux1,2, Emmanuel Lochin1,2, Henrik Petander3, Jérôme
Lacan4

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

3 NICTA, Australian Technology Park, Eveleigh, NSW, Australia
4 ISAE ; 10 av. Edouard Belin - BP 54032 - 31055 Toulouse Cedex 4, France

Abstract. Mobile devices are connecting to the Internet through an
increasingly heterogeneous network environment. This connectivity via
multiple types of wireless networks allows the mobile devices to take
advantage of the high speed and the low cost of wireless local area net-
works and the large coverage of wireless wide area networks. In this
context, we propose a new handoff framework for switching seamlessly
between the different network technologies by taking advantage of the
temporary availability of both the old and the new network technology
through the use of an “on the fly” erasure coding method. The goal is
to demonstrate that our framework, based on a real implementation of
such coding scheme, 1) allows the application to achieve higher goodput
rate compared to existing bicasting proposals and other erasure coding
schemes; 2) is easy to configure and as a result 3) is a perfect candidate
to ensure the reliability of vertical handovers mobility management pro-
tocols. In this paper, we present the implementation of such framework
and show that our proposal allows to maintain the TCP goodput (with
a negligible transmission overhead) while providing in a timely manner
a full reliability in challenged conditions.

1 Introduction

With the proliferation of new wireless access network technologies, mobile users
can now access the Internet using multiple types of access network technolo-
gies. This heterogeneous network environment provides access through a varying
range of network technologies. The characteristics of these access networks vary
greatly; Wireless Local Area Networks (WLANs) provide high speed access with
a network latency of tens of milliseconds, often at the price of fixed Internet ac-
cess but with a very limited coverage. Wireless Wide Area Networks (WWANs)
on the other hand provide wide coverage but have a significantly lower data
rate, higher latencies up to several hundreds of milliseconds and a cost which
may be several magnitudes larger than that of WLAN networks. For obvious cost
and performance reasons, smartphone users frequently switch to WLAN when
a hotspot is available although the cellular connection is almost always enabled.
Therefore the ability to switch seamlessly between these different technologies

2 Pierre-Ugo Tournoux et al.

allows a user to maximize his data rates and an operator to free resources in
more expensive WWAN networks by maximizing the utilization of lower cost
WLAN networks.

Seamless switching between heterogeneous access networks requires carefully
managed vertical (inter-technology) handovers. Protocols, such as Mobile IP
(see RFC 3344), can be used to ensure the handover does not break the on-
going connections of a mobile node and that the mobile node remains reachable
in spite of the handover. In a Mobile IP vertical handoff, on-going traffic is
often disrupted due to protocol deficiencies [2]. Although, more advanced handoff
protocols such the Safetynet architecture [13] (and Safetynet v.2 [12], where the
use of FEC codes are suggested to mitigate the number of lost packets during
the bicasting) can be used to reduce these packet losses, the challenging wireless
link conditions triggering the handoff may cause unavoidable packet losses. This
is especially the case for upward vertical handovers (i.e. handovers from WLAN
to WWAN networks) which are typically performed only when the signal to
noise ratio of the WLAN becomes too weak to offer a correct connectivity. This
decrease of the signal strength may result in packet losses due to wireless errors
or even a complete loss of connectivity with the Previous Access Router (PAR)
during the time it takes to prepare the WWAN interface and link layer connection
to the Next Access Router (NAR).

There are currently two main class of solutions that address the problem from
a transport layer point of view. The first one aims to improve TCP tolerance to
handover [7, 3] while the second one uses multipath SCTP [14] version to benefit
from this multiple connectivity capability [5, 16]. In the present contribution,
we show that the proposed coding scheme shares both advantages and allows
the use of any kind of transport protocol without modification. In other words,
this proposal is completely independent of the end-to-end transport solution
deployed.

In this paper, we present the potential use of this “on the fly” coding scheme
through an implementation called Tetrys [15], which can be applied to transport
and layer-3 mobility management protocols to achieve a so called ”soft han-
dover” and significantly reduce the impact of the handover on the application
traffic. A soft handover allows a mobile device to connect to multiple networks
at the same time and receive coded streams of traffic from multiple routers or
base stations at the same time and to combine those coded, partially redundant
streams to a single, complete data stream. This allows the handover process to
be very smooth since the ratio of data and the level of coding of the different
streams can be dynamically adjusted to handle changing packet loss rates. So far
soft handovers have been successfully used only in tightly controlled horizontal
handovers in CDMA networks in which the traffic is synchronized between the
different base stations and the mobile device. This paper explores whether a sim-
ilar soft handover can be achieved in handovers between IP based WLAN and
WWAN networks with the more challenging asymmetric and non-synchronized
network conditions. The purpose of this study is not to propose yet another ex-
haustive mobility management architecture as this generic coding scheme could

A packet error recovery scheme for vertical handovers 3

WWAN
WLAN

PAR

NAR
CN

MN

(a) Standard handover with the
use of two interfaces

Internet

ISP

HOME WLAN

UMTS

MN

(b) Opportunistic use of two inter-
faces without HO

Fig. 1. Two illustrations of multipath.

be used inside any mobility management protocol (such as Fast Handovers Mo-
bile IPv6 for instance). We rather seek to demonstrate that our adaptive coding
scheme can significantly reduce the impact of the challenged network conditions
in a vertical handover by using a soft handover like approach. Thus, we evaluate
our proposal for vertical soft handovers and the results obtained show that TCP
remains close to its pre-handoff bitrate.

2 Background and related work

A soft vertical handover differs from a hard vertical handover as no disconnection
occurs during the soft handover process. Although both are challenging, they
impact the transport and application layers differently and also the methods
used to minimize the handover effect at both layers are different.

The main problem in hard handovers, and also failed soft handovers, is the
handover delay during which packets are lost. These lost packets cause a number
of issues, discussed below. Solutions for reducing this delay, i.e. optimizations for
hard handovers, consist of reducing the network detection period, the address
configuration interval and the network registration time which reduce (see [2]).
The solutions are also valid for reducing the chances of a soft handover turning
into a hard handover.

The first and the most pressing issue that a transport protocol, such as TCP,
must handle is the loss of its in-flight packets. This handover delay might trigger
RTO in TCP and the resulting backoff procedure could lead to a connection
stall. This problem can be mitigated by freezing the sending of TCP packets
during the handover process [7]. Another challenge in hard and soft handovers
is the possible differences in network characteristics between the new and the
previous network in terms of propagation delay, bandwidth and packet loss rate
(PLR). A plethora of work have been devoted to this problem and have mainly
proposed solutions to adapt the TCP congestion windows length or to quickly
update the TCP RTO value on the new link (involving active probing on the
new link) in order to prevent RTO buffer overflow and/or RTO expiration [7, 3].

4 Pierre-Ugo Tournoux et al.

As the multiple interfaces present on a mobile host can be enabled at the same
time, many proposals provide soft handovers between heterogeneous networks.
This can be achieved with IP-level mobility solutions such as MIH, Multihom-
ing MIP (see RFC 4908 [10]) at the cost of a devoted network infrastructure.
This provides (see RFC 4980 [11]) improved reliability, load sharing between the
different links and bandwidth aggregation.

Several propositions use multihoming to improve the quality of the communi-
cation by bicasting the flows via multiple available interfaces. When a handover
becomes highly probable, packets are sent both from the PAR and the NAR.
This allows a more robust service as it is known that the link signal can signifi-
cantly decrease during the HO leading to high packet loss rate (PLR) as shown
in Fig. 1(a). Instead of copying the same packets on both paths, the authors
of [9] choose to send data packets on one path and redundant FEC packets on
the other, thus reducing drastically the impact of losses on a video stream com-
pared to the standard bicasting procedure. In [4], the authors obtain a similar
result using staggered FEC.

Several modifications to the Stream Control Transmission Protocol (SCTP)
have been proposed, enabling support for both real-time and non real-time traf-
fic [5, 16] taking benefit of the multihoming capability without the cost of a large
network architecture deployment. For instance, the authors in [16] demonstrate
that the use of SCTP allowed them to aggregate the bandwidth of different net-
works, thus providing a video with a better quality and a more robust service
even in high mobility scenario.

To illustrate the generic character of our solution, another application where
our proposal is of interest is illustrated in Fig. 1(b). In this figure, we represent a
mobile node which has subscribed to both ADSL and 3G offer within the same
operator and opportunistically uses its home wireless access (or any accessible
local wireless spot) conjointly with a 3G access. The benefit of our proposal in
this context will be highlighted in Section 4. Our scheme can be deployed both
in a end-to-end fashion or from the edge router of the ISP to the terminal host
while remaining transparent to the application layer. On the contrary, SCTP
needs an end-to-end deployment and the use of specific applications build on
top of SCTP socket.

Which issues have still not been addressed?

Adapting TCP to the context of handover would require changing every trans-
port protocol stack already deployed to support these changes. In addition, defin-
ing the parameters of these TCP modifications (new values such as RTO and
congestion window: cwnd, adapted to the new link) require a probing delay or
a certain level of a-priori knowledge on the links characteristics which may not
always be available. Finally they do not take advantage of the diversity of the
links. The main drawback related to the solutions based on multipath SCTP is
that they require modifying the interface between the application and the trans-
port layer. Additionally, to date, the deployment of SCTP has been limited to
Unix-like hosts. This requirement would make the deployment of these proposals

A packet error recovery scheme for vertical handovers 5

harder. The bi-casting proposals, even when they involve FEC coding, result in
halving the available bandwidth which might already be limited in the case of
WWAN interfaces. Further, with the exception of the bi-casting procedure, none
of these proposals seem to perform well in challenged conditions with high PLR
common before and after handover due to poor signal quality.

To the best of our knowledge, there currently exists no solution allowing to
benefit from the robustness and bandwidth aggregation provided by the mul-
tihoming capability of new devices with an application on top of the standard
TCP/IP protocol suite (i.e. without any modification of the suite).

All these facts motivate our proposal described in the following section 3.

3 Our proposal

We present in this section the architecture and internal mechanisms that define
our framework proposal.

3.1 Architecture, coding and handover

In
te

rn
et

9

8

7

6

Tetrys
divert

sockets

IPFW / IPCHAINS

Transport layer:

(UDP, TCP, RTP...)

Application layer

Tetrys
divert

sockets

IPFW / IPCHAINS

2

3

Access Router

1

Transport layer:

(UDP, TCP, RTP...)

Application layer

1

IPFW / IPCHAINS

Correspondent Node

1

4

5

WLAN (10 Mb/s−10ms)

Transport Layer Packets

Mobile Node

Coded Packets

WWAN (4 Mb/s−100ms)

Fig. 2. How to plug our coding scheme in the network protocol stack.

Our coding scheme, detailed in the next section, allows recovering in a timely
manner from all the losses that occurred on a path, regardless of their distribu-
tion. The sole requirement is that in average the amount of redundant packet
sent must be greater than the amount of the losses. The key idea is to use our
proposal to enforce the part of a path that can be affected by PLR losses during
a handover. The whole path can be protected by coding and decoding the pack-
ets at both ends of the connection if the Correspondent Node (CN) is aware of
the different addresses of the Mobile Node (MN). Otherwise, as Fig. 2 suggests,
in the case where multihoming is provided by an IP-level mobility solution, the
coding/decoding can also be done between the Access Router (AR) and the
MN. We propose to use our coding scheme at layer-3, thus hiding the losses to
the transport layer. Fig. 2, describes a possible way to plug our coding scheme

6 Pierre-Ugo Tournoux et al.

through the use of Divert Socket. In our case, we used the BSD implementation
of divert socket which is also provided under GNU/Linux with ipchains API.

The sending of a data segment from the CN to the MN works as follows: as a
first step, packets travels normally through the TCP/IP protocol stack as the CN
is not involved in the coding process. Packets that reach the Access router cross
the IP forwarding rules (IPFW) which diverts (second step) the packets destined
to the MN to the related Tetrys instance (there might be one instance by MN
supported by the AR). Tetrys adds the packets to its encoding window and re-
injects them (step 3 and 4) adding a packet sequence number (three bytes might
be more than necessary) plus a bit to distinguish redundancy from source data
packets inside the IP option field. Redundancy (i.e. coded) packets are injected
with such an IP destination address that they go through the WWAN (step 4)
or WLAN (step 5) links depending on whether it is an upward or downward
vertical handover. The size of these coded packets is equal to the maximum size
of the data packets currently in the Tetrys encoding window. Packets reach the
MN through the different interfaces and are diverted to Tetrys (step 6) which
decodes and rebuilds any lost packets. The whole packets received by the Tetrys
encoder at step 2 are re-injected (step 7) without losses and ordered in-sequence.
Finally at step 8, packets are transmitted to the transport and application layers
in a transparent manner.

When our coding scheme is used to improve the link quality (with two in-
terfaces) the source data packets are sent on the fastest (which is also the more
lossy one in our experimental scenario) interface while the redundancy (coded)
packets are sent through the WWAN.

During upward handover, the PLR is monitored and when it exceeds a given
threshold (70% in the experiment), a coded version is sent over the WWAN for
each data packet received from the source. When the WLAN is definitely out of
range, packets are sent uncoded over the WWAN. During a downward handover,
all the source data packets are sent coded over the WWAN and uncoded over the
WLAN. When the WLAN PLR decreases below a threshold, the coded packets
will be sent according to the redundancy ratio through the WWAN only until
the PLR becomes negligible for TCP.

3.2 The Tetrys on-the-fly coding scheme

The Tetrys sender uses an elastic encoding window (denoted Wsender) which
includes all the source packets sent and not yet acknowledged. Let Pi be the
source packet with sequence number i. Every k source packets, the sender sends a
(single) repair packet R(i..j), which is built as a linear combination (with random
coefficients) of all the packets currently in Wsender . The receiver is expected to
periodically acknowledge the received or decoded packets, and each time the
sender receives an acknowledgment, the acknowledged packets are removed from
Wsender . A receiver can decode lost packets as soon as the number of available
repair packets is higher or equal to the number of lost packets (the lost packets
are detected by the gaps they introduce in the sequence number of the received
packets). Fig. 3 illustrates this principle. In the figure k = 2, which means that a

A packet error recovery scheme for vertical handovers 7

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

R(9,10)

P10

P9

R(1..8)

P8

P7

R(1..6)

P6

P5

R(1..4)

P4

P3

R(1,2)

P2

P1

P3

P2

Missing Pkts Redundancy Pkts

R(1,2)

R(1..6)

R(1..6) R(1..8)

R(9,10)

Fig. 3. Tetrys principle.

repair packet is sent each time two source packets have been sent. The right side
of this figure shows the list of packets that are lost and not yet rebuilt, as well as
the repair packets kept by the receiver in order to recover them. During this data
exchange, packet P2 is lost. However, the repair packet R(1,2) successfully arrives
and allows to rebuild P2. The receiver sends an acknowledgement for packets
P1 and P2, in order to inform the sender that it can compute the next repair
packets from packet P3. Unfortunately this acknowledgement is lost. However,
this loss does not compromise the following transmissions and the sender simply
continues to compute repair packets from P1. After this, we see that P3, P4 and
R(1..4) packets are also lost. These packets can be rebuilt using R(1..6) and R(1..8)

since the number of repair packets becomes higher or equal to the number of
lost packets.

The acknowledgement path is only used to optimize the encoding process
and is not mandatory during a handover of a few seconds. However, these ac-
knowledgements contain information about the PLR experienced by the MN that
might be used to update or tune the redundancy ratio when the handover takes
a longer time (we consider higher than 30sec). If the role of the coding scheme is
to make the transport layer more robust, the redundancy ratio does not require
to be frequently adjusted while coding for real-time application would need more
accurate adaptation.

Unlike Tetrys, most of the forward error codes (FEC) used over packet erasure
channels are block codes [8]. This means that at the encoder side, a set of repair
packets (R) is built from a given set of source data (SD) packets and at the
decoder side, these repair packets can only be used to recover SD packets from
their corresponding set. If too many packets (among the SD and repair packets)
are lost during the transmission, the recovery of the missing SD packets is then
not possible.

As a result and compared to block codes:

– Tetrys is tolerant to any burst of source, repair or acknowledgement losses, as
long as the amount of redundancy exceeds the PLR;

– the lost packets are recovered within a delay that does not depend on the
RTT ;

8 Pierre-Ugo Tournoux et al.

time (s)

s
e
q

n
u
m

. . .

. . .

 L segment
lost

cwnd-L
segment

. . .

. . .

RTO

. . .

time (s)

s
e
q

n
u
m

. . .

. . .

L segment
lost

cwnd-L
segment

. . .

. . .

. . .

RTO

. . .

. . .

Number of repair packet received

Number of missing packet

repair packet

Data packet

Fig. 4. Mechanism to prevent a blocking TCP window.

– the configuration is much easier and more robust to network variation than
configuration for a block code. This is a key point in the context of handover;

These properties make Tetrys a perfect candidate to reduce packet loss and
recovery delay during a handover process.

3.3 Redundancy emission/allocation and interaction with TCP

TCP is well-known for bad performance over lossy links as every lost packet is
considered by TCP as an indication of congestion. A possible solution to mitigate
this effect would be to use a FEC mechanism to correct losses due to error link.
However in [1]1, the authors show that the joint use of end-to-end FEC with TCP
does not solve the problem in case of significant PLR. This is due to the fact that
TCP needs in-order delivery of data packets and is also strongly sensitive to RTT
variations which trigger spurious timeouts resulting in a decreased throughput.
A spurious timeout occurs when a non lost packet is retransmitted due to a
sudden RTT increase (typically when the mobile node moves from a WLAN
to WWAN) which implies an expiration of the retransmission timer set with a
previous, and thus outdated, RTT value.

In a previous work [15], we have already shown that this code protects effi-
ciently real-time traffic such as Voice over IP and video-conferencing over links
with high PLR. Even if TCP behaves and performs better above Tetrys than
above FEC as previously described, rebuilding a burst of L lost packets requires
receiving at least L redundant packets. This means that if within a congestion
window (and thus a RTT) there were more than R · cwnd lost packets, the de-
coder may not be able to rebuild the packets, freezing the connection until the
emission of at least L−R·cwnd

R
TCP retransmission. Needless to say, during our

experiment we found that over Tetrys, TCP often entered into backoff mode
and the connection stalled. To prevent such phenomenons, we propose to in-
crease the redundancy based on a temporal frequency instead of a fixed ratio.

1 In their scheme, TCP is modified to ignore losses. In our case, we assume a complete
separation between the coding layer and the transport protocols.

A packet error recovery scheme for vertical handovers 9

The sole requirement to correct errors timely while minimising extra transmis-
sions is thus to size the frequency so that 1

RTT
> fr >

L−R·cwnd
4·RTT

, with fr the
minimal frequency for the emission of redundancy packet (assuming the RTO
is roughly four times the RTT). As explained in Fig. 4, the sending of 1 repair
packet every k source data packets (left subfigure), L data losses would require
k ∗ L more data packets to be sent by TCP. As TCP cannot send more than
cwnd − L data packets, if k ∗ L > cwnd − L, RTOs may be triggered and the
connection may stall. As the subfigure on the right suggests, this problem can
be solved by sending repair packets at a minimal rate fr when the TCP window
is abnormally stalled (e.g. when the throughput drops below k ∗ fr).

4 Evaluation

Our testbed architecture is similar to the one presented in figure 2, except for
the WLAN and WWAN links which are emulated with Netem [6] on the top of
two Ethernet links. The CN and AR are connected with a 10Mbit/s Ethernet
link with a negligible transmission delay. Default settings assume 10Mbit/s and
an RTT of 10ms for the WLAN and 4Mbit/s with a RTT of 100ms for WWAN
(this is realistic for UMTS HSDPA cellular networks). The default redundancy
ratio is set to 20%.

4.1 Comparison with FEC over lossy links

PLR 0.0 0.5 2 4 5
8 10 12 16 20

TCP/Tetrys (4,5) 7.78/0.01 7.81/0.01 7.81/0.01 7.80/0.01 7.81/0.00
7.82/0.01 7.81/0.01 7.81/0.01 7.18/0.02 4.6/0.26

TCP/FEC (4,5) 7.79/0.02 7.83/0.00 6.48/1.2 3.01/0.6 2.68/2.24
Timeout

TCP/FEC (8,10) 7.81/0.01 7.78/0.05 7.81/0.03 6.3/1.48 Timeout
Timeout

TCP/FEC (12,15) 7.82/0.02 7.82/0.01 7.79/0.03 7.54/0.10 4.06/5.05
Timeout

TCP/FEC (16,20) 7.81/0.01 7.81/0.02 7.82/0.01 7.825/0.01 Timeout
Timeout

Table 1. Throughput/Std. dev. in Mb/s for R = 0.2, BD = 10Mbps, BR = 4.0Mbps

with data and repair packets sent on WLAN only.

Tab. 1 shows the throughput obtained by TCP on top of Tetrys or FEC when
packets are sent over a single lossy link (over WLAN only). We can see that both
Tetrys and FEC can handle a low loss rate efficiently maintaining a throughput
of 8Mbit/s for the TCP flow. Similarly to previous work on TCP/FEC [1], we
observe that with a significant loss rate, the TCP/FEC throughput decreases and
the connection often stalls. In contrast to this, TCP over Tetrys is not severely
impacted by these loss rates, and in fact the TCP throughput starts to decrease

10 Pierre-Ugo Tournoux et al.

PLR 0.0 0.5 2 4 5
8 10 12 16 20

TCP/Tetrys (4,5) 9.54/0.00 7.69/0.18 6.5/0.49 8.18/0.34 9.02/0.05
8.55/0.7 8.66/0.3 8.45/0.57 7.10/0.31 5.12/0.2

TCP/FEC (4,5) 9.53/0.00 5.96/0.02 3.07/0.08 1.13/0.6 1.25/0.14
0.17/0.05 Timeout

TCP/FEC (8,10) 9.54/0.00 7.19/0.08 4.72/0.32 2.71/0.46 1.85/0.40
Timeout

TCP/FEC (12,15) 9.55/0.00 7.7/0.11 4.79/1.36 3.73/1.13 Timeout
Timeout

TCP/FEC (16,20) 9.53/0.00 7.37/0.65 5.83/0.68 3.73/1.13 0.84/1.18
Timeout

Table 2. Throughput/Std. dev. in Mb/s for R = 0.2, BD = 10Mbps, BR = 4.0Mbps

with data sent on WLAN and repair sent on WWAN only.

only after PLR = 14%. We have to remark that the code rate is fixed during
the experiments. As a matter of fact, there would not a decrease of the TCP
throughput by dynamically adjusting the code rate as a function of the PLR.

Tab. 2 shows the throughput obtained by TCP on the top of Tetrys or FEC
when data packets are sent over the (10Mbit/s, 10ms) WLAN link lossy link and
the coded packets over the (4Mbit/s, 100ms) WWAN link.

We can notice that the results of TCP/FEC are even worse than in the
one link only experiment (Tab. 1). We can make the same observation for
TCP/Tetrys under small PLR (for 0.5% or 2%). This is explained by the delay
asymmetry between the two links and the TCP cwnd which fits the bandwidth
delay product (BDP) corresponding to the WLAN link. When losses occur, their
reconstruction requires to wait for the coded packet that arrives 90ms later. Dur-
ing this time, no packet reaches the TCP receiver and thus there is no acknowl-
edgement sent to the TCP sender that would slide the congestion window. The
RTT perceived by TCP increases with the PLR and the cwnd also increases until
it reaches the BDP corresponding to the slowest link. This explains the poor per-
formance2 of TCP/Tetrys for small PLR and the improvement observed when
the PLR is higher. These two facts: 1) the link delay asymmetry, and 2) the
few losses not recovered by FEC, impact the TCP throughput over FEC more
significantly.

In spite of our testbed not enabling bandwidth aggregation (as in SCTP),
these results show that in contrast to previous coding proposals, Tetrys allows
transport protocols such as TCP to remain efficient in spite of the deteriorated
link conditions during and around a handover.

4.2 Illustration of the mechanism during a handover scenario

Fig. 5 shows the results for various WWAN bandwidths (300kbit/s, 1Mbit/s and
4Mbit/s) It takes 0.5 second to the WLAN link to change from ”up” state to
”down” state and the same for the opposite transition. We can see that even if

2 This can be solved by artificially delaying the packet at the speed of the slowest
interface.

A packet error recovery scheme for vertical handovers 11

 1e+07

 2e+07

 3e+07

 10 20 30 40

se
q

nu
m

seconds

300kbit/s
1Mbit/s
4Mbit/s

Fig. 5. Handover scenario with various WWAN bandwidth and (10Mb/s, 10ms)
WLAN.

 1.2e+07

 1.6e+07

 2e+07

15 20

se
q

nu
m

R=1/5
R=1/6

15 20
seconds

15 20

R=1/8
R=1/9

Fig. 6. Handover scenario with various redundancy ratio with (10Mb/s, 10ms) WLAN
and (4Mb/s, 100ms) WWAN.

these various parameters have an impact on the TCP throughput, they do not
significantly impact the amount of time required by TCP to reach its average
throughput with Tetrys. Similar results hold for different values of the WWAN
RTT.

Fig. 6 shows the impact of the redundancy ratio (R = 1/5, R = 1/6, R =
1/8, R = 1/9) on TCP during a handover. In this case, it takes 10 seconds for
the WLAN PLR to switch from 0 to 100% and inversely. The three sub-figures
show different runs of the experiment. We can see that the configuration of the
Tetrys redundancy ratio does not require to be timely adjusted as there is no
impact on the throughput achieved by TCP.

Compared to block codes (characterized by a specific FEC coding configura-
tion) where we would have to dynamically reconfigure the redundancy param-
eters ((k, n)) as a function of the size of the loss burst, Tetrys is resistant to
any kind of loss burst patterns and does not need to be dynamically adjusted
(as already highlighted Section 3.2 illustrated and Tab. 1, 2). Furthermore, al-
though the increase of the redundancy parameters allows to correct larger burst
of losses, they trigger TCP timeout as the decoding process can be longer than
the RTO value.

This last result illustrates that compared to block codes (such as a specific
FEC coding configuration), Tetrys is resistant to any kind of loss burst patterns.

12 Pierre-Ugo Tournoux et al.

5 Conclusion

In this paper, we evaluate the benefits of using an “on the fly” coding scheme
to reduce packet losses during a soft vertical handover due to low signal quality.
The experimental evaluation suggests that the use of this type of coding scheme
may be an interesting complementary strategy to vertical handover manage-
ment protocols due to its fast configurability and in the context of multipath
communications. Our experiments clearly show that this coding scheme allows
to maintain the TCP throughput during a handover by taking advantage of the
multiple wireless interfaces present in today’s smartphones. Particularly, results
show that it significantly improves the quality of TCP flows in terms of delivery
ratio. As a next step, we are planning to integrate the implementation of this
error recovery algorithm called Tetrys as a part of the SafetyNet architecture
and evaluate the performance empirically using our SafetyNet implementation.

References

1. T. Anker, R. Cohen, and D. Dolev. Transport layer end-to-end error correcting,
2004. Tech. Rep. School of Engineering and Computer Science, Hebrew University.

2. R. Chakravorty, P. Vidales, K. Subramanian, I. Pratt, and J. Crowcroft. Perfor-
mance issues with vertical handovers - experiences from GPRS cellular and WLAN
hot-spots integration. In IEEE PERCOM, 2004.

3. L. Daniel and M. Kojo. The performance of multiple TCP flows with vertical
handoff. In ACM MobiWAC, 2009.

4. H. Liu et Al. A staggered FEC system for seamless handoff in WLANs: Imple-
mentation experience and experimental study. In IEEE ISM, 2007.

5. M. Fiore and C. Casetti. An adaptive transport protocol for balanced multihoming
of real-time traffic. In IEEE GLOBECOM, 2005.

6. S. Hemminger. Network emulation with netem. In Australia’s national Linux
conference (LCA), Canberra, Australia, 2005.

7. S.-E. Kim and J. A. Copeland. TCP for seamless vertical handoff in hybrid mobile
data networks. In IEEE Globecom, 2003.

8. S. Lin and D. Costello. Error Control Coding: Fundamentals and Applications.
Prentice-Hall, Englewood Cliffs, NJ, 1983.

9. H. Matsuoka, T. Yoshimura, and T. Ohya. A robust method for soft IP handover.
IEEE Internet Computing, 7:18–24, 2003.

10. K. Nagami et al. Multi-homing for small scale fixed network using mobile IP and
NEMO. RFC 4908, 2007.

11. C. Ng et al. Analysis of multihoming in network mobility support. RFC 4980,
October 2007.

12. H. Petander and E. Lochin. Safetynet version 2, a packet error recovery architecture
for vertical handoffs. In ICST MONAMI, Santander, Spain, 2010.

13. H. Petander, E. Perera, and A. Seneviratne. Multicasting with selective delivery:
a safetynet for vertical handoffs. Wirel. Pers. Commun., 43(3):945–958, 2007.

14. R. Stewart et al. Stream Control Transmission Protocol. RFC 4960, 2007.
15. P. U. Tournoux, A. Bouabdallah, J. Lacan, and E. Lochin. On-the-fly coding for

real-time applications. In ACM Multimedia, 2009.
16. J. Wang, J., and X. Zhu. Latent handover: A flow-oriented progressive handover

mechanism. Computer Communications, 31(10):2319–2340, 2008.

