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Bayesian Nonparametric Binary Regression

via Random Tessellations.

Lorenzo Trippa1,2,* , Pietro Muliere1

1Department of Decision Sciences, Università Bocconi

2Department of Biostatistics, M.D.Anderson Cancer Center

Abstract

A Bayesian nonparametric model for binary random variables is introduced. The

characterization of the probability model is based on the Dirichlet process and on the

Poisson hyperplane tessellation model. These two stochastic models are combined

in order to adapt, under the hypothesis of partial exchangeability, the reinforcement

mechanism of the Pólya urn scheme. A Gibbs sampling algorithm for implementing

predictive inference is illustrated and an application of the inferential procedure is

discussed.

Key words: Binary regression, Random tessellations, Dirichlet process

1 Introduction

Consider an heterogeneous population of subjects with covariates. A dichoto-

mous random variable (r.v.) Yi is associated with each subject, with response

probability depending on the covariates:

P (Yi = 1|Xi) = f(Xi),

i indexes the individual and Xi represents its profile. We propose a Bayesian

nonparametric model for the regression function f .

∗ E-mail: lorenzo.trippa@unibocconi.it
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The response probability function f is modeled by means of a probability

measure D on a space of mosaics having cells associated with the values 0 or

1. We will refer to a mosaic with values assigned to each cell as a colored tes-

sellation. Throughout the article we use colored tessellations of the covariates

space. The response probability f(X), for a generic point X, will be defined

as the probability of sampling from D a tessellation having the cell containing

X associated with the value 1.

The most widely used parametric models for binary regression are defined

by means of a parametric function lθ, which maps the covariates space on the

real line, and a cumulative density function (cdf) H; such models assume that

P (Yi = 1 | Xi, θ) = H[lθ(Xi)]. In the probit model, for example, lθ is linear and

H is the standard Gaussian distribution function. This framework is exploited

in Newton et al. (1996) to define a semiparametric Bayesian binary regression

model, therein lθ is linear and a Normal prior distribution on the coefficients

is combined with a Dirichlet-Ferguson prior (Ferguson , 1973) for the cdf H.

Wood and Kohn (1998) proposed an alternative Bayesian semiparametric

model, the cdf H is fixed and a flexible prior for the function l, which is

assumed to be a sum of functions of single covariates, is defined.

More recently Choudhuria et al. (2007) studied a nonparametric prior distri-

bution on the response probability functions which is not entirely concentrated

on the monotone functions nor on the additive ones; the typical assumptions

of the semiparametric models are removed. Therein the link function H is the

standard Normal cdf and l is modeled as a Gaussian process.

In this article a Multivariate-beta prior, whose characterization is based on

the distribution of a random tessellation, is proposed to model binary response

variables. The prior is specified through an instrumental Dirichlet process on a

space of colored tessellations. The process is centered on the probability law of

a random tessellation with colored cells. The regression model is structured as

if the response variables {Yi}i≥1 were functions of a latent sequence of random

tessellations drawn from an unknown distribution D. If the cell of the i-th

tessellation where is located Xi is associated with the value 1 then Yi is equal

to 1 and 0 otherwise. We use the Dirichlet-Ferguson prior for the unknown

distributionD. The regression model is characterized by an easily interpretable

dependency structure. If the random probability measure D is expected to
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concentrate on few tessellations, intuitively, Y1 is strongly predictive of the

response variable Y2, especially if X1 is near to X2.

The article is organized in 4 sections. In Section 2 the the Poisson hyperplane

tessellation is briefly described. We consider this random tessellation model to

specify the parameter of the random probability measureD on the tessellations

space. The Poisson hyperplane tessellation model has been studied by several

authors; important properties are discussed in Miles (1964), Miles (1972),

Møller (1989) and Hug et al. (2004). More generally, random tessellations

have received much attention during the last decades and find applications in

many fields as geostatistics and stereology. For a comprehensive overview on

random tessellation models we refer to Okabe et al. (1992).

In Section 3 we introduce the random probability measureD in order to char-

acterize a class of dependent random distributions on the real line {DX}X∈Rd

indexed by covariates. The adopted approach allows us to center the random

probability measures {DX}X∈Rd on any arbitrarily chosen distribution F . In

particular if F concentrates on 0 and 1, i.e. F ({0, 1}) = 1, it allows us to spec-

ify the random response probability function f(X) ≡ DX({1}). We conclude

Section 3 describing a simulation algorithm for posterior inference on the re-

sponse probability function f and illustrating an application of the proposed

binary regression model. Some final remarks are given in the last section.

2 Poisson hyperplane tessellations

Random tessellation models have been extensively studied in stochastic ge-

ometry and are applied in a wide range of fields ranging from geography to

molecular biology. A tessellation t of the Euclidean space Rd can be described

as a mosaic of d-dimensional polytopes which entirely cover Rd. In this section

we give an intuitive description of the Poisson hyperplane tessellation model

and provide the definition of the stochastic model.

A hyperplane tessellation of Rd or of a subset, say [0, 1]d, is defined by a

set of hyperplanes. Figure 1 displays an example; the class of represented

polytopes which are not crossed by any of the plotted lines is an hyperplane

tessellation of [0, 1]2. We can similarly define hyperplane tessellations of an ar-
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bitrarily chosen Euclidean set of interest. A tessellation of [0, 1]d, for example,

can be specified simply substituting the lines in Figure 1 by a set Q of hyper-

planes. If Q is a possibly empty random set of hyperplanes crossing [0, 1]d we

obtain a random hyperplane tessellation of [0, 1]d. The outlined construction

can be easily extended for specifying a random tessellation of Rd. Throughout

the article Q is constituted by the atoms of a Poisson process on a space of

hyperplanes and defines a random tessellation.

A random tessellation of Rd is a stochastic counting measure on the mea-

surable space (P ,B), where P denotes the class of polytopes in Rd and B is

the Borel σ-field with respect to the Hausdorff metric. Consider the class of

counting measures T such that for every t ∈ T the following hold:

(i) for every polytope p ∈ P t(p) ∈ {0, 1},
(ii)

⋃
t(p)=1

p = Rd,

(iii) for every pair of polytopes (p1, p2) such that t(p1) = t(p2) = 1 the

interior of p1 and p2 are disjoint and

(iv) given a bounded set c ⊂ Rd the class {p ∈ P : t(p) = 1, p ∩ c 6= ∅}
has finite cardinality.

Each counting measure t ∈ T is a tessellation of Rd. Let T denotes the smallest

σ-field that guarantees, for every set B ∈ B, the measurability of the function

t → t(B). The measurable space (T, T ) endowed with a probability measure

P defines a random tessellation.

As we previously mentioned, a Poisson hyperplane tessellation of Rd is char-

acterized by a Poisson process Q on a space of hyperplanes. In what follows

Sd−1 = {x ∈ Rd : ‖x‖ = 1} is the unit sphere, given (s, r) ∈ Sd−1 × [0,∞),

Hs,r indicates the hyperplane {x ∈ Rd : 〈x, s〉 = r}, and γ denotes the product

measure of the uniform distribution on Sd−1 and the Lebesgue measures on

the real line. Q is an homogeneous Poisson process on the space of hyperplanes

Hd ≡ {Hs,r; (s, r) ∈ Sd−1 × [0,∞)} with intensity λ if for every measurable

set A ⊂
(
Sd−1 × [0,∞)

)
, Q(Hs,r ∈ Hd : (s, r) ∈ A) is a Poisson r.v. with pa-

rameter λγ(A), and for every class (A1, . . . , AJ) of disjoint sets the variables

{Q(Hs,r ∈ Hd : (s, r) ∈ Aj)}Jj=1 are independently distributed.

The atoms of the Poisson process Q specify a Poisson hyperplane tessellation

t of Rd. The polytopes that constitute the mosaic, i.e. {p ∈ P : t(p) = 1},

4
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can be represented as nonempty intersections of closed half-spaces. The single

polytope p is a cell of the random tessellation, i.e. t(p) = 1, if and only if there

exist a set of hyperplanes {Hsj ,rj}mj=1 and a binary vector (I1, . . . , Im) ∈ {0, 1}m

such that Q(Hsj ,rj ) = 1 for every j ∈ {1, . . . ,m},

p =




⋂

Ij=0

(x ∈ Rd : 〈x, sj〉 ≤ rj)
⋂

Ij=1

(x ∈ Rd : 〈x, sj〉 ≥ rj)



 and

Q(H ∈ Hd : H ∩ int(p) 6= ∅) = 0, where int(p) is the interior of p.

[Figure1]

The described random tessellation model has received much attention in lit-

erature. For an overview of the properties of this stochastic model we refer to

Stoyan et al. (1995). In the reminder of the article it will be relevant that the

Poisson process Q and the introduced random tessellation are isotropic and

stationary (cf. Miles (1964)): the laws of both processes are invariant with re-

spect to translations and rotations. We will also use the following proposition.

Proposition 1 Given a Poisson hyperplane tessellation of Rd with intensity

λ, the probability that a segment ab is entirely contained in a single cell is

P
(
Q(H ∈ Hd : H ∩ ab 6= ∅) = 0

)
= exp

(
−λ‖ab‖

2

Γ(d
2
)

Γ(d+1
2

)Γ(1
2
)

)
. (1)

Proof. Recall that the tessellation process is isotropic. We can therefore as-

sume, without loss of generality, that a = (0, . . . , 0) and b = (b1, 0, . . . , 0), with

b1 > 0. Let (u1, . . . ud) be a random vector uniformly distributed on the unit

sphere. It is known (see for example Eaton (1981)) that z ≡ u2
1 has a beta

distribution with parameters (1
2
, d−1

2
). It follows that

log
(
P
(
Q(H ∈ Hd : H ∩ ab 6= ∅) = 0

) )
=

= −λγ
(

(s, r) ∈ Sd−1 × [0,∞) : Hs,r ∩ ab 6= ∅
)

=

= −λγ
(

([s1, . . . , sd], r) ∈ Sd−1 × [0,∞) : 0 ≤ r ≤ b1s1

)
=

= −λ
2
γ
(

([s1, . . . , sd], r) ∈ Sd−1 × [0,∞) : 0 ≤ r ≤ b1

√
s2

1

)
=

= −λ
2

∫
b1 z

1
2

Γ(d
2
)

Γ(1
2
)Γ(d−1

2
)
z

1
2
−1(1−z)

d−1
2
−1dz = −λ b1

2

Γ(d
2
)

Γ(d+1
2

)Γ(1
2
)
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3 Partial exchangeability via random tessellations

We propose a Bayesian nonparametric model for partially exchangeable ran-

dom variables {Yi}ni=1 with covariates {Xi ∈ Rd}ni=1. We characterize the joint

distribution of {Yi}ni=1 exploiting an exchangeable sequence of colored tessel-

lations {ti}i≥1. The intuitive idea is that Yi is the color of the cell containing

Xi of the i-th tessellation. The law of the random sequence {ti}i≥1, which is

specified introducing a random probability measure D on a space of colored

tessellations, characterizes the response variables {Yi}ni=1.

Let (T ⊗ RN, T ⊗ B(RN)) be the measurable space of colored tessellations;

each tessellation t is constituted by the cells {p1, p2, . . .} ordered with respect

to an arbitrary criterion and the i-th real coordinate of the product space

indicates the color of the i-th cell. In what follows, ptX denotes the cell with

the minimum index containing X and g(X; t) is the cell color. The selection

of the minimum is required for covariate values that fall on a boundary and

are contained in more than one cell. D is a Dirichlet process on the measurable

space (T ⊗RN, T ⊗B(RN)) with parameter M [Pλ⊗FN], where M is a positive

constant, Pλ denotes the distribution of a Poisson hyperplane tessellation and

F is a distribution on the possible cells colors. The cells colors are real values

and F is a probability measure on the real line. The Bayesian model for the

partially exchangeable variables {Yi}ni=1 is:

Yi | ti = g(Xi; ti) i = 1, . . . , n , (2)

{ti}i≥1 | D i.i.d.∼ D and D ∼ Dirichlet(M [Pλ ⊗ FN]) .

The elements of the partially exchangeable sequence {Yi}i≥1 are, conditionally

on D, independently distributed with

P (Yi ∈ B|D) = D(t ∈ T ⊗ RN : g(Xi; t) ∈ B) ∀B ∈ B(R) . (3)

We will write DX to indicate the random distribution

{DX(B) ≡ D(t ∈ T ⊗ RN : g(X; t) ∈ B)}B∈B(R) .

The definition of the model implies that the random probability measure DX
associated with a single covariate point X is Dirichlet distributed with concen-

6
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tration parameter M and centering distribution F . This fact follows directly

from the definition of the Dirichlet process (Ferguson, 1973).

The equality (1) allows us to evaluate the degree of dependency between the

random probability measures DX1 and DX2 for any pair of covariates (X1, X2).

The following proposition illustrates that, for every measurable set B, the

correlation coefficient Corr(DX1(B),DX2(B)) has a simple closed form.

Proposition 2 For every measurable set B ∈ B(R), such that 0 < F (B) < 1,

and every pair of covariates (X1, X2) ∈ Rd × Rd

Corr(DX1(B),DX2(B)) = exp

(
−λ‖X1 −X2‖

Γ(d
2
)

2Γ(d+1
2

)Γ(1
2
)

)
· (4)

Proof. Expressions (3) and (1) respectively imply the equalities

P (Y1 ∈ B, Y2 ∈ B|DX1(B),DX2(B)) = DX1(B)DX2(B) and

P (Y1 ∈ B, Y2 ∈ B | t1 = t2) = F (B)2+(F (B)−F (B)2) exp
(
−λ‖ab‖

2

Γ( d
2

)

Γ( d+1
2

)Γ( 1
2

)

)
.

It follows that

E(DX1(B)DX2(B)) = P (Y1 ∈ B, Y2 ∈ B) =

=P (Y1∈B, Y2∈B | t1 6= t2)P (t1 6= t2)+P (Y1∈B, Y2∈B | t1 = t2)P (t1 = t2)=

= F 2(B)+(F (B)−F 2(B))
1

M + 1
exp

(
−λ‖X1 −X2‖

Γ(d
2
)

2Γ(d+1
2

)Γ(1
2
)

)
.

The fact that DX1(B) and DX2(B) are identically beta distributed with mean

F (B) and variance F (B)−F 2(B)
M+1

completes the proof.

If the variables {Yi}ni=1 are dichotomous, i.e. F ({0, 1}) = 1, the parameters

of the defined model have a clear interpretation. The response probability

f(X) ≡ DX({1}) is a priori beta distributed with mean F ({1}) and variance
F ({1})−F 2({1})

M+1
, while the correlation between f(X1) and f(X2) depends on the

intensity parameter λ and on the distance between X1 and X2.

Remark 1. The correlation function (4) depends exclusively on the random

tessellation distribution Pλ that parameterizes the random probability mea-

sure D. It can be easily verified that this peculiarity is preserved if the Poisson

hyperplane tessellation model is substituted, in the construction of the prior,

with alternative random tessellation models. Consider, for example, the dead

leaves tessellation model (Matheron (1968)), with spherical leaves having ran-

dom radius R with P (R > r) = exp(− r2

2/a2 ). An elementary application of the

7
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results in Bordenave et al. (2006), allows us to obtain the correlation function

of this slightly modified version of the proposed model: for every B ∈ B(R)

Corr(DX1(B),DX2(B)) =
Φ(−a‖X1 −X2‖)
Φ(a‖X1 −X2‖)

, (5)

where Φ denotes the standard Gaussian cumulative distribution function.

Remark 2. An alternative characterization of dependent Dirichlet processes,

whose dependency relationships allow a representation similar to expression

(4), is discussed in Walker and Muliere (2003) and Muliere et. al. (2005). A

relevant difference between such a characterization and the introduced prior

consists in the fact that, with the proposed model, the correlation coefficients

Corr(DX1(B),DX2(B)) gradually decrease as the distances ‖X1−X2‖ increase.

3.1 Predictive inference.

In the following paragraphs we propose a Gibbs sampling algorithm which,

conditionally on {Y1, . . . , Yn}, allows us to perform predictive inference on

a future response variable Yn+1. In the reminder of the article the center-

ing distribution F is assumed to be discrete. In the next subsections we will

use the algorithm to estimate unknown response probability functions f . The

algorithm approximately samples from the conditional law of the latent tes-

sellations {ti}ni=1, given {Y1, . . . , Yn}. We emphasize that sampling {t1, . . . , tn}
conditionally on the data allows us to generate Yn+1 from the predictive distri-

bution and to make inference on the unknown distributions {DX}X∈Rd . Both

these objectives can be achieved exploiting the Monte Carlo method and the

conjugacy property of the Dirichlet process. The Gibbs sampling strategy con-

sists of iteratively sampling the latent tessellations ti from the respective full

conditional distributions, i.e. ti is sampled conditionally on {Y1, . . . , Yn} and

{t1, . . . , ti−1, ti+1, . . . , tn}. We show that the latent tessellation ti can be easily

sampled from the full conditional distribution. We refer to Robert and Casella

(2004) for a detailed explanation of the Gibbs sampling method.

The sampling algorithm is based on the Blackwell MacQueen representation

of an exchangeable sequence of variables with Dirichlet random distribution

(Blackwell and MacQueen, 1973). In our case the elements of the sequence

are the latent tessellations. The algorithm is initialized by a truncated se-

8
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quence of colored tessellations, one for each observation. In each iteration the

tessellation corresponding to a single observation is conditionally generated.

The structure of the algorithm has similarities with some of the approaches

proposed in literature for fitting Dirichlet mixture models (Lo, 1984); see for

example Escobar and West (1995) and MacEachern and Muller (1998).

The Blackwell MacQueen representation allows us to verify that, if D is a

Dirichlet process with parameter M [Pλ ⊗ FN] and {ti}i≥1 | D i.i.d.∼ D, then for

every measurable set ∆ ∈ {T ⊗ B(RN)}

P (ti ∈ ∆ | t1, . . . , ti−1, ti+1, . . . , tn) = M
Pλ ⊗ FN(∆)

M + n− 1
+

n∑

j=1
j 6=i

I(tj ∈ ∆)

M + n− 1
. (6)

Note that it is simple to generate ti conditionally on {t1, . . . , ti−1, ti+1, . . . , tn}.
The law of ti conditionally on {t1, . . . , ti−1, ti+1, . . . , tn} and {Yi}ni=1 is identical

to the conditional distribution (6) restricted to {t ∈ T ⊗ RN : g(Xi; t) = Yi},
indeed for every measurable ∆

P (ti ∈ ∆ | t1, . . . , ti−1, ti+1, . . . , tn, {Yj}nj=1) ∝
P (ti ∈ ∆ | t1, . . . , ti−1, ti+1, . . . , tn)P (Yi | t1, . . . , ti−1, ti ∈ ∆, ti+1, . . . , tn) =

= P (ti ∈ {t ∈ ∆ : g(Xi; t) = Yi} | t1, . . . , ti−1, ti+1, . . . , tn) . (7)

Expressions (6) and (7) allows us to sample ti from the full conditional:

P (ti ∈ ∆ | t1, . . . , ti−1, ti+1, . . . , tn, {Yj}nj=1) = (8)

=

MPλ ⊗ FN({t ∈ ∆ : g(Xi; t) = Yi}) +
∑

j≤n; j 6=i
I(g(Xi; tj) = Yi)I(tj ∈ ∆)

MF (Yi) +
∑

j≤n; j 6=i
I(g(Xi; tj) = Yi)

.

We exploit the fact that it is simple to compute the conditional probabili-

ties of the events {ti = tj} for every j ∈ {1, . . . , i − 1, i + 1, . . . , n}. More-

over, when it is necessary to sample the latent tessellation ti conditionally

on the complementary event ti 6∈ {t1, . . . , ti−1, ti+1, . . . , tn}, the data and

{t1, . . . , ti−1, ti+1, . . . , tn}, expression (8) indicates that it suffices (i) to gener-

ate a Pλ distributed tessellation t, (ii) to assign color Yi to the cell ptXi
and

(iii) to randomly color the other cells accordingly with F . Note that at each

iteration it is not necessary to sample the entire tessellation ti; it suffices to

9
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partially generate ti in such a way to know how a subset of interest A ⊂ Rd,

such that A ⊃ {X1, . . . , Xn}, is partitioned and colored.

3.2 Simulation example.

The proposed algorithm has been applied to the simulated data set rep-

resented in Figure 2.a. n = 100 points {X1, . . . , X100} have been randomly

selected in [0, 1]2 and for each point a Bernoulli r.v. Yi has been generated ac-

cordingly with the response probabilities illustrated in Figure 2.b. The surface

in the graph is the rescaled density of a mixture of two truncated bivariate

Gaussian distributions.

The prior distribution has been specified choosing the parameters M = 2,

F ({0}) = F ({1}) = 1/2 and λ = 10. The adopted parameterization implies

that the response probabilities are a priori marginally uniformly distributed

and their distribution is characterized by the correlation function

Corr(f(X1), f(X2)) = exp(−10

π
‖X1 −X2‖) .

Figure 2.c represents an approximation of the posterior mean

f̂(X) = E(DX({1}) | data)

of the response probability function, which has been obtained computing, by

means of the proposed Gibbs sampling algorithm, the values of f̂ on a grid of

2500 points on the unit square. We note that the Bayesian estimate f̂ captures

the bimodal shape of the response probability function adopted to generate

the data.

[Figure 2]

Figure 2.d illustrates a unidimensional section of f̂ and the relative 90%

credible intervals. The credible intervals have been computed by approximat-

ing the quantile functions of the random probabilities DX({1}) via Monte

Carlo method. In order to compute the quantile functions, we have itera-

tively sampled the latent tessellations {t1, . . . t100} from their conditional dis-

tribution and have exploited the conjugacy property of the Dirichlet prior.

This property implies that, for every X ∈ [0, 1]2, DX({1}) conditionally on

{t1, . . . t100} and {Y1, . . . , Y100} has a beta(1 +
100∑

i=1

g(X; ti) ; 101−
100∑

i=1

g(X; ti) )

distribution.

10
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3.3 Example: Spatial variation in risk of disease

We apply the proposed inferential procedure to an epidemiological data set.

The data set reports the postcodes of patients in Northeast England affected

with primary biliary cirrhosis (PBC) and of a control group of residents of the

region. For a detailed description of the data set we refer to Prince et al. (2001).

One of the main findings of the cited study was that the risk of disease varies

considerably across the region. Identifying the high-risk areas can substantially

contribute to ascertain the environmental risk factors. Controls, as described

in Prince et al. (2001), are randomly selected from the region population.

As discussed in Kelsall and Diggle (1998), the problem of identifying the

variations of the risk of disease across a specific area can be formalized as

a binary regression problem. In principle, it would be desirable to compare

the spatial distribution of patients with a specific disease diagnosed in a fixed

time interval with the population density across the region. In practice, a com-

plete record of the diagnosed patients and reliable data about the population

density, in many cases, are not available to the investigator.

Kelsall and Diggle (1998) assume that unknown proportions of the diseased

and of the non-diseased populations ( q1 and q2 ) are observed and model the

observed cases and controls as two independent non homogeneous Poisson pro-

cesses with intensities η1(X) = q1ν1(X) and η2(X) = q2ν2(X). They observe

that both

g(X) ≡ ν1(X)

ν1(X) + ν2(X)
and f(X) ≡ η1(X)

η1(X) + η2(X)

have clear interpretations. Note that g(X) can be interpreted as the risk of

disease associated with the spatial coordinates X and that f allows us to

evaluate if the risk of disease varies considerably across the area of interest.

Observe that for every pair of locations (X1, X2)

log

(
g(X1)

1− g(X1)

)
− log

(
g(X2)

1− g(X2)

)
= log

(
f(X1)

1− f(X1)

)
− log

(
f(X2)

1− f(X2)

)
.

We are interested in estimating the binary regression function f . A flat re-

gression function would represent a constant risk of disease while possible

variations could be determined by environmental factors which vary across

11
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the region.

Figure 3.a illustrates the polygonal approximation of the study area and the

residence locations of the 761 patients affected by PBC and 3044 controls in

the data set. Figure 3.b gives a synthetic representation of the results obtained

from applying the proposed model. The graph illustrates the estimate f̂ of the

binary regression function. The shades of gray used in the picture show that

the estimates f̂(X) vary approximately between 0.1 (lightest tone) and 0.3

(darkest tone). The map suggests a relevant difference in the incidence of PBC

between the urban areas of Newcastle and Gateshead, which are associated

with the highest values of f̂ and are colored in black in Figure 3.b, and the

surrounding areas.

[Figure 3]

In order to evaluate the strength of the evidence that there is a higher risk

of disease in the identified urban centers than in the peripheral areas, we

have computed the posterior probabilities that the risk variations suggested

by Figure 3.b correspond to analogous variations of the unknown regression

function f . These posterior probabilities allow us to evaluate the evidence

in favor of the hypothesis that, if the environmental risk factors will remain

unchanged, the risk of disease will continue to be higher in the urban centers

than in the peripheral areas.

The introduced Gibbs sampler allows us, for any couple (X1, X2), to ap-

proximate the posterior distribution of the difference f(X1)− f(X2). In order

to evaluate the evidence of relevant variations of the risk across the region

we have approximated the posterior distributions of the random quantities

f(X1)− f(X2), where X1 is fixed, maximizes f̂ (i.e. f̂(X1) = max f̂(X) ) and

is located in the urban center of Newcastle while X2 varies on a grid of points.

This simple procedure identifies the points X2 for which the data gives strong

evidence that the difference f(X1)−f(X2) is strictly positive. The criteria that

we adopted for distinguishing such points is P (f(X1)−f(X2)>0 |data)>0.95.

The dashed line in Figure 3.b approximately identifies the points that satisfies

the inequality. The entire study region with the exception of the identified

urban centers and a restricted peripheral area satisfies the adopted criteria.

12
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4 Final remarks

In this article a class of dependent beta r.v.’s {f(X)}X∈Rd indexed by co-

variates is characterized introducing a Diririchlet random distribution on a

space of colored tessellations. More generally the adopted approach allows us

to characterize a class of dependent Dirichlet processes {DX}X∈Rd . In recent

years several contributions on dependent random probability measures have

appeared in literature, see for example De Iorio et. al. (2004), Griffin and

Steel (2006) and Dunson and Park (2007). We have used the dependent pro-

cesses {DX}X∈Rd for performing nonparametric binary regression. It remains

unexplored if the proposed characterization of the random distributions can

be usefully adopted for alternative purposes. The random probability mea-

sures {DX}X∈Rd could be used, for example, for defining dependent Dirichlet

mixtures of parametric densities.
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Figure 2. Panel (a) illustrates the simulated data set, ◦ = 0 and • = 1. Panel (b)

represents the response probability function f used for generating the data. Panel

(c) illustrates the estimate f̂ . Panel (d) shows unidimensional sections of f̂ (solid

line) and f (dotted line), and illustrates the 90% credible intervals of f (dashed

lines).
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(a) (b)

Figure 3. Panel (a) illustrates a polygonal approximation of the study area and the

places of residence of the 3805 individuals involved in the study. The overall size of

the study region is 7.581 km2. Panel (b) illustrates the estimate f̂ . The sites with

the highest values of f̂ are colored with the darkest tones of grey.
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