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Abstract

For the renewal counting process M(t) = min {k : Sk > t} and the independent
of it nonnegative random variable T we investigate the asymptotic behaviour of
P (M(t) < T ) and P (M(t) ≤ K(t)x | M(t) < T ) in case when the interarrival times
have an infinite mean. These quantities appear in a natural way when considering
limiting behaviour of random time changed branching processes and shock models.

Key words: regular variation, (weighted) renewal theory, domains of attraction,
shock models, branching processes.
AMS (2000) Subject Classification: 60K05, 60K99.

1 Introduction

Consider the discrete time stochastic process Z = {Z(n), 0 ≤ n < T } where the random
variable T is a positive integer valued. The variable T is called the life period of the
process. In fact, the process evolves during the life period T and then dies out.

Consider also, an independent of Z, sequence of nonnegative i.i.d. random variables
X = {X1, X2, ...} with distribution function (d.f.) F (x). Let S0 = 0 and for n ≥ 1, let
Sn = X1 + X2 + ... + Xn. Define the renewal counting process

M(t) = min {k : Sk > t} .
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Using these two processes one can define a new process ξ(t) as follows:

ξ(t) = Z(M(t)), 0 ≤ M(t) < T, t ≥ 0.

Clearly the subordinated process has a lifetime depending on T and M(t).

In the present paper we are interested in the following problems.

Q1. What is the life period of the subordinated process? To this end we shall determine
the probability of the event

{ξ(t) is alive at time t} = {M(t) < T } .

Later we will determine the asymptotic behavior of P (M(t) < T ) as t → ∞. Note that

P (M(t) < T ) = E(F T (M(t))),

where F T (t) = 1 − FT (t) = P (T > t).

Q2. What happens with the subordinator during the life period? In this case we study
probabilities of the form

P (M(t) ≤ x | M(t) < T ).

For an appropriate normalizing function K(t), we will obtain the detailed asymptotic
behaviour of

Ut(x) = P (M(t) ≤ K(t)x | M(t) < T ).

Clearly we have

1 − Ut(x) =
P (M(t) > K(t)x, M(t) < T )

P (M(t) < T )
,

and we see that problem Q2 is related to problem Q1.

In particular, one can consider Z(n) as a Galton-Watson branching process in subcritical
or critical case. (See e.g. Athreya and Ney (1972)). In these two cases the branching
process evolves until reaching the state zero, i.e. it degenerates with probability one
at random time T . The asymptotic of the probability for non-extinction and the lim-
iting distributions are of the main interest for the branching processes. Let us remem-
ber that the limiting distributions are non degenerate only conditionally on the event
{T > n} = { the process does not degenerate at time n }. In case of the random time
changed branching process Z(M(t)) this event becomes {T > M(t)} and the solutions
of the questions Q1 and Q2 relate to the probability of non extinction and the limiting
distribution of this process.

The paper is organized as follows. Section 2 contains some results from weighted renewal
theory which are used later. In section 3 we study the event {M(t) > T } and use results
form weighted renewal theory to obtain the asymptotic behaviour of P (M(t) > T ) under
various conditions on (the distribution of) X and T .
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In section 4 we study the asymptotic behaviour of Ut(x) = P (M(t) ≤ K(t)x | M(t) < T ).
We finish the paper with some concluding remarks.

In this paper we shall assume that µ = E(X) = ∞. In the case where µ < ∞, it is
well-known that M(t)/t → 1/µ and for this case there are many papers cf. Alsmeyer
(1992), Omey and Teugels (2002), Mallor and Omey (2006) that give conditions under
which

P (M(t) < T ) = E(F T (M(t))) ∼ F T (t/µ).

We treat the more complicated case where µ = ∞. As for the random variable T , we
consider the two cases where either E(T ) < ∞ or E(T ) = ∞.

2 Weighted renewal theory

2.1 Notations

Let X1, X2, ... denote i.i.d. positive r.v. with distribution function F (x) = P (Xi ≤ x).
Let ak, k ≥ 0 denote a sequence of weights.

Now consider the weighted renewal function (wrf) G(x) defined as follows:

G(x) =
∞∑

k=0

akF
∗k(x),

where, as usual, F ∗k(.) means the k−fold convolution of the d.f. F (.).

The wrf G(x) has a useful interpretation as an expectation. To see this, we define the
function A(x) as follows: A(x) = a0 + a1 + ... + a[x], x ≥ 0. In this case we have
G(x) = E(A(M(x))), where M(x) denotes the renewal counting measure defined above.
Conversely, for any function A(x) we have

E(A(M(x))) =
∞∑

k=0

akF
∗k(x),

where a0 = A(0) and ak = A(k) − A(k − 1), k ≥ 1.

2.2 Asymptotic behaviour of G(t)

In the case where µ = ∞, it makes sense to assume that the tail distribution F (x)
is regularly varying. The motivation is in the following result. To formulate the result,
define the integrated tail

m(x) =
∫ x

0
F (t)dt,
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and let K(x) = x/m(x). Note that if µ < ∞, we have K(x) ∼ x/µ.

Proposition 1 (Mallor and Omey (2006), Theorems 6 and 9) (i) If m(x) ∈ RV (1−α),
with 0 < α ≤ 1, then

M(t)

K(t)
=⇒ L−α(α),

where for 0 < α < 1, L(α) is an α-stable law with E(exp(−sL(α)) = exp(−Γ(2 − α)sα)
and where L(1) is degenerate at 1.

(ii) If m(x) ∈ RV (1 − α), with 0 < α < 1, then for all r ≥ 0, (M(t)/K(t))r is uniformly
integrable and

E

(
M(t)

K(t)

)r

→ E(L−αr(α)).

Here and later =⇒ means convergence in distribution.

In Mallor and Omey (2006), the asymptotic behaviour of G(t) = E(A(M(t))) is deter-
mined in case where A(∞) = G(∞) = ∞. (See also Embrechts and Omey (1983)).

Proposition 2 ( Mallor and Omey (2006), Theorem 43) Suppose 0 < α ≤ 1 and ρ > 0.
Each two of the following statements (a, b, c) implies the third statement and (d).

(a) A(x) ∈ RV (ρ);

(b) m(x) ∈ RV (1 − α);

(c) G(x) ∈ RV (αρ);

(d) G(x)/A(K(x)) → D(α, ρ) = (Γ(2 − α))−ρΓ(1 + ρ)/Γ(1 + αρ).

Moreover we have the following implications

(i) (a) with ρ ≥ 0 and (b) with 0 ≤ α ≤ 1 imply (c) and (d).

(ii) (a) with ρ > 0 and (c) imply (b) and (d).

(iii) (b) with 0 < α ≤ 1 and (c) with ρ ≥ 0 imply (a) and (d).

Remark 1 (1) In view of Proposition 1, we have D(α, ρ) = E(L−αρ(α)), ρ ≥ 0.
(2) If A(x) ∈ RV (0), then m(x) ∈ RV (1 − α), 0 < α ≤ 1, implies that G(x) ∈ RV (0)

and G(x) ∼ W (K(x)).

Remark 2 Proposition 2 concerns the extension of the Elementary Renewal Theorem
for the weighted renewal functions in the infinite mean case. It was proved by Omey
in his PhD dissertation Omey (1982). An extension of the Blackwell’s Theorem for
the weighted renewal functions in the infinite mean case was proved by Anderson and
Athreya (1988), Theorem 2. Their proof used an extension of the Key Renewal Theorem
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in the infinite mean case (Theorem 1) and the assertions of Proposition 2, given there
as Theorem D. Let us note that the strongest form of the Key Renewal Theorem in the
infinite mean case was proved also by Anderson and Athreya (1987).

3 Asymptotic behaviour of P (M(t) < T )

In this section we discuss the asymptotic behaviour of G(t) = P (M(t) < T ) assuming
the more general situation where T is a positive, but not mandatory integer valued, r.v.
independent of {Xk} . Clearly we have the following identity:

G(t) = E(F T (M(t))).

We suppose that F T (x) ∈ RV (−β) and consider several cases.

Using the lemma of Fatou and Proposition 1, we see that

lim inf
G(t)

F T (K(t))
≥ E(Lαβ(α)).

Using P (L(α) > x) ∼ x−α, we have P (Lαβ(α) > x) ∼ x−1/β and we obtain for β ≥ 1
that

lim
G(t)

F T (K(t))
= ∞. (1)

Clearly we should compare G(t) with another function.

3.1 The case β ≥ 1 and E(T ) < ∞

If β ≥ 1 and E(T ) < ∞, we proceed as follows. We clearly have

G(t) =
∞∑

n=0

P (M(t) < T, T = n) +
∞∑

n=0

P (M(t) < T, n < T < n + 1)

=
∞∑

n=2

P (M(t) ≤ n − 1, T = n) +
∞∑

n=1

P (M(t) ≤ n, n < T < n + 1)

=
∞∑

n=2

P (M(t) ≤ n − 1)P (T = n) +
∞∑

n=1

P (M(t) ≤ n)P (n < T < n + 1)

=
∞∑

n=2

P (Sn−1 > t)P (T = n) +
∞∑

n=1

P (Sn > t)P (n < T < n + 1).

Now F (x) ∈ RV (−α) implies that P (Sn > t)/F (t) → n, n ≥ 1. We need the following
result

5
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Lemma 1 (i) For each n ≥ 1, F ∗n(x) ≤ nm(x)/x.

(ii) If F (x) ∈ RV (−α), 0 ≤ α < 1 then m(x) ∼ xF (x)/(1 − α).

Proof.

(i) See Daley et al. (2007), Lemma 5).

(ii) This is a standard result in regular variation, cf. Bingham et al. (1987). �

From Lemma 1, it follows that for 0 ≤ α < 1 we have P (Sn > t) ≤ CnF (t). If E([T ]) <
∞, Lebesgue’s theorem can be applied twice, and we obtain that

G(t)

F (t)
→

∞∑

n=2

(n − 1)P (T = n) +
∞∑

n=1

nP (n < T < n + 1)

= E([T ]) − P (T ∈ {1, 2, ...})

= E([T ]) − P (T ∈ N0).

As usual [T ] is the integer part of T .

Remark 3 (1) If 0 ≤ α < 1 we have F (x)K(x) = F (x)x/m(x) ∼ 1 − α. Using
F T (x) ∈ RV (−β), we obtain that

F T (K(t)) ∼ cF T (1/F (t)).

Since E(T ) < ∞,it follows that

lim
F T (K(t))

F (t)
= lim xF T (x) = 0.

This explains why (1) holds.
(2) In case where T is positive, integer valued one gets

G(t)

F (t)
→ E(T − 1), t → ∞.

3.2 The case β ≤ 1 and E(T ) = ∞

In this case we proceed in a different way. We write G(t) = U(t) = 1 − U(t) := 1 − P (T ≤
M(t)). Using the definition of M(t), we see that

6



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

U(t) =
∞∑

k=1

P (T ≤ k)P (M(t) = k)

=
∞∑

k=1

k−1∑

i=0

P (i < T ≤ i + 1)P (M(t) = k)

=
∞∑

i=0

P (i < T ≤ i + 1)P (M(t) > i)

=
∞∑

i=0

aiP (Si ≤ t),

where ai = P (i < T ≤ i + 1). Since (cf. section 2) A(x) ↑ 1, the results of Section 2 are
not directly applicable. We proceed as follows.

Using Laplace transforms, we have (similar notations are used for U):

F̂ (s) =
∫ ∞

0
e−sxdF (x), mF (x) =

∫ x

0
F (t)dt, m̂F (s) =

1 − F̂ (s)

s
.

Note that since F is not increasing, we always have xF (x) ≤ mF (x) ≤ x. Using these
notations, we obtain that

Û(s) =
∞∑

k=0

ak

(
F̂ (s)

)k
.

Since {ak, k = 0, 1, 2, . . .} is a probability distribution, we also have

1 − Û(s) =
∞∑

k=1

ak

(
1 −

(
F̂ (s)

)k
)

and then
m̂U(s)

m̂F (s)
=

1 − Û(s)

1 − F̂ (s)
=

∞∑

k=0

wk

(
F̂ (s)

)k
= Ĥ(s),

where

wk =
∞∑

i=k+1

ai = P (T > k + 1) and H(x)=
∞∑

k=0

wkF
∗k(x).

It follows that

m̂U (s) = Ĥ(s)m̂F (s) (2)

where Ĥ(s) =
∑∞

k=0 wk(F̂ (s))k. Since E(T ) = ∞, we can treat H(x) as in Proposition 2.

To this end, let W (x) =
∑[x]

k=0 wk and as before, let K(x) = x/mF (x).

Note that if F T (t) ∈ RV (−β), β < 1, then

W (x) ∼ xF T (x)/(1 − β) ∈ RV (ρ),

7
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where ρ = 1 − β.

If F T (t) ∈ RV (−1) then

W (x) ∈ RV (0) and xF T (x) = o(W (x)) as x → ∞.

The following result follows from Proposition 2.

Proposition 3 Suppose 0 < α < 1 and ρ = 1 − β ≥ 0. If W (x) ∈ RV (ρ) and F (x) ∈
RV (−α), then H(x) ∈ RV (ρα) and H(x) ∼ D(α, ρ)W (K(x)).

In our application we need to find the asymptotic behaviour of U(x). Relation (2) plays
a central role. Proposition 3 shows that

H(x) ∼ D(α, 1 − β)W (K(x)) ∈ RV (α(1 − β))

and by Karamata’s theorem we have

Ĥ(1/x) ∼ H(x)Γ(1 + (1 − β)α).

Also F (x) ∈ RV (−α) implies that mF (x) ∼ xF (x)/(1 − α) ∈ RV (1 − α) and then

m̂F (1/x) ∼ mF (x)Γ(2 − α) ∼ xF (x)Γ(1 − α).

Using (2) one gets m̂U (1/x) ∈ RV (2 − α(1 − ρ)) and then also

m̂U(
1

x
) ∼ mU(x)Γ(2 − αβ).

Therefore
mU(x)Γ(2 − αβ) ∼ Γ(1 − α)Γ(1 + (1 − β)α)xF (x)H(x).

Using the monotone density theorem, we find that mU(x) ∼ xU(x)/(1 − αβ) and then

U(x)Γ(1 − αβ)) ∼ Γ(1 − α)Γ(1 + (1 − β)α)F (x)H(x).

Using the relation H(x) ∼ D(α, 1 − β)W (K(x)) one gets

U(x)Γ(1 − αβ)) ∼ Γ(1 − α)Γ(1 + (1 − β)α)D(α, 1 − β)F (x)W (K(x)). (3)

To simplify further, we have to consider the cases 0 < β < 1 and β = 1 separately.

If 0 < β < 1 then from W (x) ∼ xF T (x)/(1 − β) we obtain

H(x) ∼ D(α, 1 − β)
1

1 − β
K(x)F T (K(x))

and then

8
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U(x)Γ(1 − αβ)

∼ D(α, 1 − β)
1

1 − β
Γ(1 − α)Γ(1 + α(1 − β))F (x)K(x)F T (K(x))

∼ D(α, 1 − β)
1

1 − β
Γ(2 − α)Γ(1 + α(1 − β))F T (K(x)).

Using the expression for D(α, 1 − β), one obtains that

U(t)

F T (K(t))
→ (Γ(2 − α))βΓ(1 − β)

Γ(1 − αβ)
= E(Lαβ(α)).

If β = 1 then we have from (3) that

U(x)Γ(1 − α) ∼ Γ(1 − α)Γ(1)D(α, 0)F(x)W (K(x)).

Using that D(α, 0) = 1, K(x) ∼ (1 − α)/F (x) and W (x) ∈ RV (0) we get

U(x) ∼ D(α, 0)F (x)W (K(x)) ∼ F (x)W (1/F (x)).

Therefore
U(t)

F (t)W (1/F (t))
→ 1.

3.3 Limit Theorem

We summarize our findings in the following theorem.

Theorem 1 Suppose that F (x) ∈ RV (−α), 0 ≤ α < 1 and F T (x) ∈ RV (−β), β ≥ 0.

(i) If β ≥ 1 and E(T ) < ∞, then

G(t)

F (t)
→ E([T ]) − P (T ∈ N0).

(ii) If β < 1 and E(T ) = ∞, then

G(t)

F T (K(t))
→ (Γ(2 − α))βΓ(1 − β)

Γ(1 − αβ)
= E(Lαβ(α)).

(iii) If β = 1 and E(T ) = ∞, then

G(t)

F (t)W (1/F (t))
→ 1.

9
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4 Asymptotic behaviour of Ut(x)

In this section we discuss the asymptotic behaviour of Ut(x), where

Ut(x) = P (M(t) ≤ K(t)x | M(t) < T ).

Denote by I{.} the indicator of the event {.}. The following theorem holds.

Theorem 2 Suppose F (t) ∈ RV (−α), 0 < α < 1 and F T (t) ∈ RV (−β).

(i) If β < 1 and E(T ) = ∞, we have

Ut(x) → E(Lαβ(α)I {L−α(α) ≤ x})

E(Lαβ(α))
.

(ii) If β ≥ 1 we have Ut(x) → 1. Moreover, if P (T ∈ N0) < E([T ]) < ∞ then

F (t)

F T (K(t))
(1 − Ut(x)) → 1

(E([T ] − P (T ∈ N0))
E(Lαβ(α)I

{
L−α(α) > x

}
).

Proof. Clearly we have

1 − Ut(x) =
P (M(t) > K(t)x, M(t) < T )

P (M(t) < T )
=

A

B
.

The numerator A can be written in the following form

A = E
(
F T (M(t))I {M(t) > K(t)x}

)
.

Since F T ∈ RV (−β) is non-increasing, we have

F T (M(t))I {M(t) > K(t)x} ≤ F T (xK(t))I {M(t) > K(t)x}

and
F T (K(t)(M(t)/K(t))

F T (K(t))
=⇒ Lαβ(α).

Lebesgues theorem on dominated convergence shows that

A

F T (K(t))
→ E(Lαβ(α)I

{
L−α(α) > x

}
).

Using Theorem 1, the result now easily follows. �

10
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5 Concluding remarks

• If ρ = 0, Proposition 2 shows that G(x) ∼ W (K(x)). Using the class Π, Theorem
45 of Mallor and Omey (2006) can be used to obtain an estimate for the difference
G(x) − W (K(x)). Using (2) this result, in the case β = 0, leads to an estimate for
the difference mU(x) − H(x)mF (x). It would be interesting to see how this leads to an
estimate of G(t) − F T (K(t)).

• Some of the results can be extended into the multivariate case. In the bivariate case
we consider weighted renewal function of the form

G(x, y) =
∞∑

n=0

anF
∗n(x, y)

and its interpretation in terms of renewal counting processes. In the finite means case,
Mallor et al. (2007) extended the univariate results of Omey and Teugels (2002).

• The results of this paper can be used in the context of shock models. Imagine a system
that is subject to shocks that appear with i.i.d. inter-shock times X1, X2, .... The shocks
cause i.i.d. damage D1, D2, ... The system fails if the total damage exceeds a critical
value K, i.e. the system fails at time T given by

T = min {k : D1 + D2 + ... + Dk > K}

Since the number of shocks up to time t is given by M(t), we can use our results to
discuss P (M(t) < T ) and related quantities.
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